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A generalization of percolation from a two-species (black-and-white) random process to a multispecies

(polychromatic) process has been developed. The division of the chromatic composition field into regions in

which different numbers of colors percolate for C colors on a lattice with percolation threshold p, has been

analyzed. A panchromatic regime (all species percolate) occurs when C & p, ', occupying a fraction (1—
Cp, ) ' of the composition field. Since polychromatic percolation has greatest scope for highly connected low-

p, lattices, these ideas have been applied to site-percolation processes on d-dimensional close-packed lattices,
as well as d = 2 and d = 3 lattices with long-range interactions. Also the concept of a lattice-independent

dimensional-invariant critical volume fraction for site percolation has been extended to d = 4 and d = 5,
but is shown to fail for d & 8. Possible applications. of polychromatic percolation are briefly discussed.

I. INTRODUCTION

Percolation theory"' continues to develop rapid-
ly and fruitfully, primarily because it provides a
well-defined, but neverthel. ess transparent and in-
tuitively satisfying, geometrical model for spatial-
ly random phenomena. It has been applied to a
diverse (and growing) collection of physical situa-
tions which includes, inter alia, dilute ferromag-
nets, ' polymeric gels, ' amorphous semiconduc-
tors, ' random- resistor networks, ' and micro-
scopically inhomogeneous materials. ' Among the
most recent developments has been the mapping
onto percolation theory of the renormalization-
group approach which has been so successfully
applied to the theory of phase transitions, ' as well
as the comparison of the critical dimensionalities
(above which mean-field theory applies to the
critical exponents) in the two theories. ' "

The standard formulation of percolation theory
is obtained by associating a nongeometric proper-
ty (or state) with each of the sites (vertices) or
bonds (connections between sites, usually, but not
necessarily, limited to pairs of sites which are
nearest neighbors) of a regular periodic geometric
lattice. The nongeometric property, which is ran-
domly assigned to each site or bond and which
carries the statistical character of the problem,
is usually assumed to take on only two values.
Thus, in site-percolation processes, each site is
either filled or empty (with probabilities p and
1 p, respectively), while in bond percolation,
each bond is either unblocked or blocked (with
corresponding probabilities). Adjacent filled sites
(or unblocked bonds) are regarded as linked, and
when p exceeds a critical value p, (the critical
probability, critical concentration, or percolation
threshold) the clusters of linked sites (or bonds)
are no longer all isolated and an infinitely extended
cluster appears. It is the occurrence of this criti-

cal behavior at p, which has made the percolation
process an attractive model for the physical situa-
tions cited above.

In this paper, we develop a generalization of
percolation theory in which the randomly assigned
nongeometric property may take on three or more
discrete values, rather than just two. We shall
refer to this situation as polychromatic percola-
tion. This is in close analogy to the generalization
which occurs in group theory on passing from the
Shubnikov bl.ack-and-white symmetry groups to the
Belov groups of colored symmetry. " Another
analogy is the transition from spin y. and multi-
plicity 2 to higher spin and multiplicity ~3.

The possibility of having many colors or species
present, rather than just two, is most interesting
in situations in which the percolation threshold is
low, since in such cases it is possible for several
species to simultaneously possess concentrations
which exceed P,. Qnly lattices which are highly
connected (i.e. , which provide an abundant supply
of interconnecting bonds per site) can exhibit low
values of P, and thereby permit the coexistence of
several interpenetrating, unbounded clusters of
different colors. In this paper, it will suffice to
use the simplest measure of connectivity, the co-
ordination number z specifying the number of
neighboring sites to which each site is connected.

There are two basic ways in which to obtain lat-
tices with arbitrarily high connectivity. For sim-
ple lattices with connections restricted to nearest
neighbors only, a technique for indefinitely in-
creasing the number of bonds per site is to consi-
der the given type of lattice in higher-dimensional
spaces. For lattices in two and three dimensions,
progressively increasing the interaction range by
introducing bonds to more distant neighbors has
the same effect. Both types of highly connected
lattices will be discussed here as vehicles for
polychromatic percolation. For concreteness and
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simplicity, the specific cases considered will deal
mainly with site percolation, but the trends and

ideas involved carry over to bond percolation also.
Polychromatic percolation in general is analyzed

in Sec. II, with emphasis on the composition field
and its partition into regions in which different
species percolate (or all do, or none; two situa-
tions of special interest). Percolation properties
of close-packed lattices in higher dimensions are
discussed in Sec. III, in preparation for the appli-
cation of the results of Sec. II. While p, is now

known for site-percolation processes on d-dimen-
sional simple cubic lattices, it is not known for
the close-packed lattices. Estimates for the lat-
ter are developed, for the first time, in Sec. III B.
As a prerequisite for these estimates, in Sec.
IIIA we deal with the validity of extending to higher
dimensions the concept of a critical volume frac-
tion in site-percolation processes. We find that
this construct retains its validity for 0= 4 and
d= 5, but fails to be valid for d&8. A quantitative
description of the scope for multiple percolation
on higher-dimensional lattices is given in Sec.
IVA, and a corresponding discussion for site-
percolation processes on highly connected two-
and three-dimensional lattices is given in Sec.
IV B. Brief discussions of polychromaticity in the
context of bond percolation and of possible applica-
tions are presented in Secs. IVC and IVD. Section
V contains a summary of the main points of the
paper.
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white

black percolates

100%
black

R
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FIG. 1. Composition fields for site-percolation pro-
cesses on the fcc lattice. The upper diagram corre-
sponds to ordinary (black-and-white) percolation; the
lower diagram corresponds to polychromatic percola-
lation with three colors labeled blue, green, and red)
present.

II. POLYCHROMATIC PERCOLATION

A. Coexisting percolating species

The familiar version of percolation is essentially
a bichromatic process, although our attention is
normally focused on the finite clusters and the
presence or absence of a percolation path (infinite
cluster) of just one of the two species present:
the filled sites in site-percolation processes or
the unblocked bonds in bond-percolation processes.
A similar percolation problem exists for the other
species present (the empty sites, or the blocked
bonds), which is normally ignored. The composi-
tion of the system is determined by the single in-
dependent variable p, the fraction or concentration
of the "species of interest. " The complementary
concentration of the "uninteresting" species is
just 1 —p.

Since the composition diagram of an ordinary
percolation system is one-dimensional, it can be
represented by a line segment as at the top of
Fig. 1. In this figure, the value of P, corresponds
to that for site percolation on the face-centered-
cubic (fcc) lattice in three dimensions. (Each lat-

tice treated, until Sec. IV, will be of the simple
type with no bonds beyond nearest neighbors. ) In
order to emphasize the inherent symmetry be-
tween the two nongeometric states assigned to the
sites, the composition line has been labeled in
terms of the fractions of "black" and "white" sites
rather than filled and empty sites. Since p, is
close to 0.2 in this case,"each individual species
percolates over about 80Vo of the composition field,
and both percolate in the central 60% of the field.

If, instead of just two colors present there are
C colors, then there are C equivalent percolation
problems. Consider C = 3. For three-color site
percolation, each site can be singly occupied by,
say, either blue, green, or red "particles. " Two
adjacent sites of the same color (i.e. , occupied by
particles of the same color) are regarded as
linked. For bond percolation, each bond is per-
meable to either the blue or the green. or the red
"fluid, " and adjacent bonds of (permeable to the
fluid of) the same color are linked.

With three colors present, two concentrations
are needed to specify the composition. The two-
dimensional composition diagram is the equilateral
triangle familiar from the chemistry of ternary al-
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loys, in which the vertices represent the pure ele-
ments, the edges represent the binary alloys, and
the interior points (exploiting the invariance of the
sum of the normals to the sides) represent all pos-
sible ternary compositions. Trichromatic site
percolation on the fcc lattice is represented in this
way on the lower part of Fig. 1. Each of the three
lines which cut through the field corresponds to the
locus of ternary compositions for which one com-
ponent is present in a concentration equal to the
percolation threshold. These loci symmetrically
divide the composition field into regions in which
various colors percolate. For the fcc lattice,
which corresponds to close packing and is thus
the most highly connected (z = 12) simple lattice in
three dimensions, all three types of particles
present in a three-color site-percolation process
may simultaneously percolate (form infinite clus-
ters) over about one-sixth of the composition field.
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FIG. 2. Growth of panchromatic percolation with di-

mensionality (via increasing connectivity) for site per-
colation on d-dimensional simple cubic lattices. Two-
color composition fields are on the left, three-color
fields are on the right, and dimensionality increases
from top to bottom (d=l, 2, 3, 4, and 10).

B. Chromatic composition fields: C= 2, 3, and 4

Composition diagrams such as those in Fig. 1
provide a convenient characterization of the pos-
sibilities which can arise in a polychromatic per-
colation process. With C colors present, there
are C- 1 independent concentrations x;. We will
use C~= C~(x, ) to denote the number of percolating
colors (number of i's for which x, &p,) at each
composition (x,). The boundaries of the composi-
tion regions of constant C~ are the loci x, = p, (two
points, three lines, or four planes, respectively,
for C=2, 3, or 4). The nature of the partition of
the composition field by these loci depends on the
relationship between C and P,. If P, &C ', there is
a central region in whichx, &P, for alii so that all
of the colors percolate. This situation obtains for
both cases diagramed in Fig. 1. We will refer to
a composition region in which C~= C as a panchro-
matic regime. If p, & C-', there is a central re-
gion in which none of the colors percolate, i.e. , a
nonpercolating regime (C~ = 0).

To illustrate these two mutually exclusive situa-
tions and their variation with p, (for constant C)
we show in Fig. 2 the division of the two-color and
three-color fieMs for site percolation on simple
cubic (sc) lattices in 1, 2, 3, 4, and 10 dimen-
sions. Percolation thresholds for site percolation
on sc lattices in higher dimensions have been esti-
mated through d=6 by Kirkpatrick" using comput-
er studies, and by Gaunt eE al."using series ex-
pansions. For the d= 10 sc lattice, the p, used in
the bottom row of Fig. 2 was estimated from their
data by a simple extrapolation described in Sec.
IIIA. In the one-dimensional case illustrated in
the top row of Pig. 2, there is no percolation any-
where except at the singular (and singularly unin-

teresting) points corresponding to all sites being
of one color. In two dimensions p, is about
0.6,"' so that the central part of the composition
field is nonpercolating for both C=2 and C=3. In
three dimensions, P, is about 0.3,""and now the
central region exhibits panchromatic percolation
in both cases. With increasing dimensionality and
a fixed number of colors, the panchromatic regime
appears when P, has dropped below C ' and then
grows to dominate the composition field (as has
happened by d = 10 in Fig. 2).

When C = 4 the composition figure is a tetra-
hedron, and is dissected into at most 15 three-
dimensional regions by the four x; =p, planes. For
the fcc lattice, each face of the tetrahedron is di-
vided in the same way as is the three-color field
of Fig. 1, while for the sc lattice each face is
equiva. lent to the C= 3 diagram in the middle of the
right side of Fig. 2. For both lattices, the four-
color field contains a central region which does
not intersect the faces of the tetrahedron. This
interior region (which symmetrically surrounds
the body center) is nonpercolating (C~=O) for the
sc lattice, while for the fcc lattice it is a panchro-
matic regime (C~= 4).

The following connection to an analogy alluded
to in the Introduction is worth noting here. Each
chromatic composition field (like the examples
shown in Figs. 1 and 2, and the tetrahedra dis-
cussed above) is a figure which, uith the colors
included, exhibits a symmetry corresponding to a
Belov point group. " In such a group, each geo-
metric rotation or reflection acts in concert with
a color-exchange operation.

In order to more quantitatively characterize the
composition figure for polychromatic percolation,
we introduce a set of quantities symbolized by
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TABLE I. Polychromatic percolation with two, three, or four colors present. E(C&, C;p, )

is the fraction of the C-chromatic composition field over which C& colors percolate, for a

critical percolation threshold pc. The bottom section lists some general relations in terms

of Co, the maximum C& consistentwith a given p, . Co is the integer which satisfies pci
1» Co&Pc .

C=2, p C=2, p, &~i p & i C=C, p, &-'

F(0,2}=0
F(1,2)=2pc

pc

C=3, p, &,'

(0 2)=2pc-1
F{12}=2(1-pc}
E{2,2) =0

F(0,3)=1—3{1-p )
F(1,3)= 3(1-pc)
F(2, 3)=F{3,3)=0

F(0, C)= 1-F(]., C)
F(l, C)=C{1-p.)'-'
E(C~ 2,C}=0

1&p &i

F(0,3)=0
F(1*3)=6Pc

) =3(1 2pc}2 -3(l-3pc)
E(3.3)= (1—3Pc)

F(0,3)= (3p, -1)
F(1 3)=3( —Pc) —6(1-2p,)

F(2, 3)=3{1-2pc}
F(3,3)=0

C=4, p&

E(0,4) = 0
F(1,4) = 24p,'
F{2,4) =6(1—2Pc) -12(1-3Pc) +6(1-4P )

F(3,4)=4(1-3P.)'-4(1-4P.)'
F(4,4) = (1—4p, }

C=4, —&p, &&
i

F(0 4)=(4P -1)'
F{1,4) =24p -4(4p —1)~

F(2, 4) =6 (1-2Pc) —12(1-3Pc)
F{3,4) =4(1-3p,)'
E(4,4}=0

C»C,

C)=(1—Cp )c
E(0,C)=0

Co Co)-(1-Cop )
' —(Co+1)

C &Co

F(C,C)=0, F(O, C}~0
E(0 Cp + 1)=[(Co + 1}p —1) o & C,
F(Co% Co+ 1)=(Co+ 1){1-CoPc) —E(Cot Co)

TABLE G. Comparison of the composition fields for
four-color site-percolation processes on the three-
dimensional simple cubic {sc) and face-centered-cubic
(fcc) lattices.

F(Cp, C) sc; p, =0.311 fcc; p, =0.198

F(0 4}
F(1,4)
F(2, 4)
F(3,4)
F(4,4)

66.4%
32.0%
0.12%
0.0%

0.0%
18.6%
57.3%
23.2%
o.e%

F(C~, C;P,). F is defined as the fraction of the C-
chromatic composition field over which C~ colors
percolate when the percolation threshold is P,.
Included in F are all of the (cc ) symmetrically-
related separate regions in which x, &P, for exactly
C~ colors and x, &p, for the remaining C —C~. For
example, for site percolation on the fcc lattice,
E(2, 3;0.198) is the fraction of the triangular field
of Fig. I which is occupied by the three C~=2
trapezoids with their bases centered on the edges.

Expressions for F(C~, C;P,) in terms of P, for
various C~, C situations with C = 2, 3, or 4, are
straightforwardly obtained from an analysis of the
geometry of composition figures like those dis-

cussed above. These are collected in Table I. As
illustrations of these results, we show in Table II
a numerical breakdown of the fractions corre-
sponding to four-color site percolation on the
three-dimensional sc and fcc lattices. " For the
fcc case, multiple percolation (C~~ 2) occurs over
more than 80%%uo of the tetrahedral composition field.

C. Chromatic composition fields: C)4

In general, with C colors present, the composi-
tion figure is a (C —1)-dimensional simjlex, i.e. ,
the simplest polytope" (generalized polyhedron)
in C —1 dimensions. Thus, with C=5, the figure
is a pentatope, or five cell, in four dimensions.
The partition of the simplex by the x, =P, hyper-
planes requires analysis of such higher-dimen-
sional geometries for C & 4. Although techniques
exist for this, "we shall confine ourselves here
to several important generalizations to large C
which can be obtained directly or by induction.
Most of these have been included in Table I.

The entries at the end of the top row in Table I
reflect the fact that if the percolation threshold
exceeds &, multiple percolation cannot occur and
the field is divided between the nonpercolating re-
gion and C monopercolating regions;
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F(0, C) = 1 —F(1,C),

F(1,C) =C(l —P,) '~ P, &z ~

F(CD 2, C) = 0 ~

(»)
(1b)

(lc)

The expression for F(1,C) follows directly from
the observation that the monopercolating region
which adjoins each of the C vertices of the (C —1)-
dimensional composition simplex is a similar
simplex whose edge is reduced by a factor of 1 —p, .
Examples of this situation are the diagrams in the
second row of Fig. 2, corresponding to C=2 and
C= 3 for site percolation on the square lattice.

More interesting than (1) are the general rela-
tions which make up the last row of Table I. These
involve a special value C, for the number of col-
ors. C, is the maximum number of colors which
can simultaneously percolate for a given percola-
tion threshold, i.e. , it is the largest integer whose
reciprocal (C ' is the concentration of each color
when all x, are equal) exceeds P„

Pl 1~C (P 1 (2)

When the number of species is below Cp, or equal
to it, the composition field contains a panchro-
matic regime and no nonpercolating regime:

(3a)

(3b)

When C& C„ there is a nonpercolating regime
and no panchromatic regime. No simple general
expression analogous to (3a) can be written down
for the nonpercolating fraction because, for a
given C, the nonpercolating region intersects the
simplex boundaries and changes shape C- 2 times
as p, is increased from C ' to 1. For the specific
case C=C,+1, expressions for F(O, C,+1) and
F(C„C,+ 1), as well as upper bounds analogous to
(4), are given in Table I.

Several other results for general C, such as

E(l, C P &C ')=CP ' C&C

for the monochromatic-percolation fraction when

Equation (3a) for the panchromatic fraction can be
arrived at by induction from the results in Table
I for F(C, C;P, &C ') with C=2, 3, and 4, as well
as by observing that the panchromatic region is a
simplex whose edge is reduced by a factor of
1 —CP, with respect to that of the full simplex
(e.g. , the last three rows of Fig. 2). The behavior
of F(C, C) as a function of P„ for several values
of C, will be shown graphically in Sec. IVA. When
C = C„(2) and (3a) yield the following upper bound
for the panchromatic fraction:

F(C C) (C+1)-'"-"

at least one must percolate, are readily apparent
via induction from Table I.

P,'(d)f (d) = 4'.(~) . (6)

While the values of P, for site percolation on the
three-dimensional fcc, sc, body-center-cubic, and
diamond-structure lattices vary between 0.198 and
0.428,"the values of P~f& for all four fall within
the range 0.156 + 0.010.

If (6) were to be valid for d&3 as it is for d=2
and d = 3, it would provide a painless method for
obtaining a quick estimate of P, for site percola-
tion on a d-dimensional lattice, based on a known

p, for some other lattice of the same dimensional-
ity. From the work of Kirkpatrick" and of Gaunt
et al. ,

"P, is known for higher-dimensional sc
lattices (hypercubic lattices) through d=6. Their
results for d=4, 5, and 6 are well fit by

p", =(1+6.3d ')(z„-1) ' d~4

where z„=2d is the coordination number. Because
of the rapid approach (in the sc case) to the Bethe-
lattice (BL) limit (z —1) ', Eq. (7) can be used to
obtain good estimates for higher d. Since P,"(d) is
now closely known for all d, the validity of (6) in
d dimensions would allow us to approximate P~(d),
for any lattice j, simply by P;'(d)f (d)/f~(d).

Unhappily, the above prescription does not work
for d sufficiently large. This can be demonstrated
as follows. Suppose that, in d dimensions, we
compare the sc lattice to the lattice which is the

III. PERCOLATION IN HIGHER DIMENSIONS

A. Critical volume fraction

The construct of a critical volume fraction" for
percolation processes has proven useful in a vari-
ety of applications to microscopically" and mac-
roscopically" heterogeneous solids composed of
conducting and insulating regions. The critical
volume fraction Q, (d) is defined as (p~(d)f~(d)),
where p~(d) is the site-percolation threshold for
the simple (nearest-neighbor bonds only) lattice
j in d dimensions. Here, f~(d) is the filling factor
of the lattice corresponding to the packing of equal
touching nonoverlapping d-dimensional spheres
centered on the lattice sites. The utility of Q, (d)
in two and three dimensions is based on the em-
pirical rule that, while p, varies strongly with j,
the product P~f~ (corresponding to the fraction of
space which, at the site-percolation threshold, is
occupied by the spheres containing filled sites) is
nearly independent of j for given d." Thus, at
least for d=2 and d=3, P~f~ is a "dimensional in-
variant" (a form of "universality" ) which depends
on dimensionality but does not depend on the de-
tails of lattice geometry:
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generalization of the fcc lattice. In four dimen-

sions, for example, Cartesian coordinates for the
nearest-neighbor sites of a site at the origin would

be of the form (+1,0, 0, 0) for the sc lattice (with

eight nearest neighbors) and (+I, +1,0, 0) for the
fcc lattice (with 24 nearest neighbors). In general,
z„(d}=2d and

zi, (d) =4 =2d' 2d-.d
(8)

2- ~~»+'(I 6.3d-')(2d I,) ' (10}

However, P, must exceed' the BL value (z —1) ',
so that, using (8)

P~"(d) & (2d —2d- 1}'.
For d ~ 9, the "estimate" given in (10}falls below,
and therefore violates, the lower bound given in
(11).

Thus the idea of lattice-independent dimensional-
invariant critical volume fraction Q, (d) cannot be
extended indefinitely; it fails for dimensions of
nine or more. Because (6} does work so well in
two and three dimensions, we shall assume that
the failure sets in smoothly and that Q, remains
a useful approximation in four and five dimensions.
This assumption is supported, as described below,
by results obtained in Sec. III B. Using the p, and

It is not hard to show that the filling factors for
the two lattices are given by

f„(d}= 2-'v(&),

f (d) 2-(u/2hlg(d) (9b)

where v(d) is vz~'/I'(zd+ 1), the volume of the d-
dimensional sphere of unit radius. If (6) could now

be used, then the following expression for P,'"(d}
could be obtained by combining (6), (7), and (9):

f„values of Table III and Eq. (9a), we obtain the

estimates

P, (d = 4) = 0.061, (12a)

P,(d= 5) = 0.023. (12b)

Estimates based on (12) are obtained for p', "(d= 4}
and P,'"(d=5) in Sec. IIIB. These are found to
agree well with other estimates discussed below,
providing evidence for the utility of (6) for dimen

sionalities up to d= 5.

B. Close-packed lattices in d dimensions

Close-packed (cp) lattices in higher dimensions
provide examples of lattices of very high connec-
tivity. However, until now, no estimates have
been given for p,"(d) for d&3. In this section, we
induce estimates (which, although rough, provide
the only such values thus far available) for site-
percolation thresholds for cp lattices in d from 4
to 8.

Quantities relevant to polychromatic percolation
on cp lattices are listed in Table III, along with
some corresponding values for sc lattices. The
coordination number z, (d) for close packing is
known up to d= 8." For d= 2, P," is —,

'
(the exact

result known for site percolation on the triangular
lattice"} and for d= 3, P," is 0.198." The brack-
eted values in column 8 of Table III are our esti-
mates for P,"for d=4- 8. Each of these is an
average of separate estimates given in columns
9-11. Column 9 shows the values based on the
critical volume fractions of Eq. (12}. Column 10
is based on the observation that the amount by
which the BL limit (z —1} ' underestimates the
site-percolation threshold is nearly the same
(0.10+ 0.01) for different three-dimensional lat-

TABLE III. Quantities relevant to polychromatic percolation for site-percolation processes on simple cubic and
close-packed lattices in 4 dimensions. & is the lattice coordination number, p, is the site-percolation threshold,
and Co is the maximum number of percolating colors. Q, is the critical volume fraction, a dimensional invariant;
useful for d=1-5. Bracketed values for p, are estimates based on the extrapolations shown in succeeding columns.

SC
&SC &C

Simple cubic lattices
(1+6.3d )

1 QSC
CP

pCP

Close-packed lattices
&C -(~SC-» 2.2

X (Zcp 1) pep
0

1 1.00
2 0.45
3 0.156
4 0.061
5 0.023
6
7
8

2 1.000
4 0 593
6 0 311c
8 0.198

10 0.141
12 0.107
14 [0.087]
16 [O.O73]

0.199
0.139
0.107
0.087
0.073

0
1
3
5
7
9

11
13

2
6

12
24'
4o'
72'

126 '
24O

'

1.000 1.00
o.5oo b o.5o
0.198 6 0.21

[0.098] 0.099
[o.o54] o.o5o
[o.o31]
[o.o18]
[0.010]

1.00
0.46
0.20
0.099
0.056
0.030
0.018
0.011

0.44
0.20
0.096
0.056
0.031
0.018
0.009

0
1
5

10
18+ 1
32+ 2
55+ 6

100+20

' Reference 14.
Reference 20.
References 10 and 13.

~ Reference 13.
References 10 and 11.
Reference 19.



1432 RICHARD ZALLEN 16

tices. Assuming the same for d&3, these esti-
mates are obtained from z, (d) and the known

p, (d) values by setting p,"-(z„—1) ' equal to

P."-(z..—1) '.
These two methods for estimating p", (d) yield

values in good agreement with the known values
for d=1-3, and with each other for d=1-5. For
sc lattices, which in high dimensions are lattices
of relatively low connectivity, we noted in Sec.
IIIA that P, rapidly converges to the BL limit
(z„-1) ' with increasing d. This does not happen

for the close pack-ed lattices The. ratio of p~ to
(z,~

—1) ' for d= 2, 3, 4, and 5 is 2.5, 2.2, 2.3,
and 2.1 (using the above estimates for the last
two}. For cp lattices, the approach of the site-
percolation threshold to the Bethe-lattice limit
with increasing d, if it occurs at all, is painfully
slow. Assuming little progress in the approach
(to the BL limit) by d= 8, we include values of
2.2(z„- 1} ' in column 11 of Table III as another
approximation for p,'~.

The behavior of ~, P„and C, for cp and sc lat-
tices is shown in Fig. 3. (Also included is P„
which gradually drops away from P~ as the filling
factor for close packing falls from 1 at d = 1 to
0.465 at d=5). The dimensionality dependence of
each of these quantities is much stronger for cp
than for sc lattices.

From three dimensions up to eight, the quanti-
ties for cp lattices can be approximated by expo-
nentials with a geometric ratio of 1.8:
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I I I I I
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I I I
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FIG. 3. Site-percolation threshold p, , coordination
number z, and maximum number of simultaneously
percolating species Co, shown as a function of d for d-
dimensional simple cubic (a) and close packed (b) lat-
tices. Included in (b) is the lattice-independent critical
volume fraction ft}.

z (d) =2.17 x (1.8)~,

p,'~(d) =1.10x (1.8) ~, 3 ~d «8.

Co"(d) =0.91 x (1.8)~

(13a)

(13b)

(13c)

(15} and the result of Domb and Dalton is given in

Sec. IVB.

IV. THE COEXISTENCE OF UNBOUNDED CLUSTERS IN

HIGHLY CONNECTED LATTICES

Equation (13a) can be compared with an asymptotic
upper limit derived by Coxeter":

z (d}((z/2)&&2e-&dst &2&~2 d 00 (14)

p' (d)z, (d) = 2.4, 3 & d & 8. (15)

This relation for close packing, which cuts across
different dimensionalities, is reminiscent of an
asymptotic limit which Domb and Dalton" obtained
for site percolation on highly connected complex
lattices (with bonds beyond nearest neighbors) of
the same dimensionality. The connection between

This asymptotic upper bound approaches a geo-
metric progression of ratio V 2.

The reciprocal relation between (13b) and (13c)
simply reflects the fact that, because P, is so
small, C, is essentially P,' for highly connected
lattices. However, the threshold- ver sus- connec-
tivity relation between (13a) and (13b) is extremely
interesting:

A. Polychromatic percolation in higher dimensions

We now exhibit the consequences for polychro-
matic percolation of the dimensionality depen-
dences of Fig. 3. Thus far only C„ the maximum
possible number of percolating species, has been
given as a function of d. C, is an oversimplified
measure of the connectivity- enhanced opportuni-
ties for multiple percolation. It can also be mis-
leading in that, for high connectivity and large C„
it exaggerates the possibilities. Inequality (4) of
Sec. IIC reveals that when C, is large, the regime
in which C, colors percolate with C, colors present
occupies only a minute fraction of the composition
field.

Much more complete information is contained in
the full set of numbers E(C~, C) which specify the
fraction over which C~ out of C species percolate.
Even if we restrict ourselves to the finite subset
of cases with C~ ~ C ~ C„ there are &(C,'+ C,) non-
vanishing E's to contend with, which rapidly be-
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the cp lattice, but is barely appreciable for the sc
lattice. Similarly, F(C~=C) for C=2, 3, and 4
have all approached closer to saturation (at d = 8)
for the cp lattice than has C= 2 for the sc lattice.
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FIG. 4. Panchromatic perco1ation fraction vvith 2, 3,
4, 6, or 12 colors present. I'(C, C; pc) is shorn in

(a) as a function of the percolation threshold for a site
or bond process on a general lattice, and also as a func-
tion of d for site percolation on the d-dimensional
close-packed (b) and simple cubic (c) lattices discussed
in the text.

comes cumbersome. Besides which, explicit ex-
pressions for F(C~, C;P,) are not available for all
general cases with C&5. However, the general
expression for the panchromatic fraction E(C~ = C)
was obtained [as Eq. (3a)] in Sec. IIC. This quan-
tity, evaluated for various values of C smaller
than C„provides a fine measure of the scope for
multiple percolation.

Figure 4(a} displays the panchromatic fraction
as a function of the percolation threshold with 2,
3, 4, 6, or 12 colors present. The p, seal, e is ex-
ponential, extending from unity down to below
3 x 10'. Increasing the number of colors not only
shifts the onset of panchromaticity to lower P„ it
also makes the onset progressively softer.

Using the information of Fig. 3, we present
analogous results for site percolation in higher-
dimensional lattices in Figs. 4(b) (for cp lattices)
and 4(c) (for sc lattices), plotted this time against
d from 1 to 8. The rapid growth of panchromaticity
for cp lattices, and the relative sluggishness for
sc lattices, is clearly seen. With d=8, the pan-
chromatic regime for C = 6 dominates the field for

B. Highly connected lattices in two and three dimensions

The basic requirement for polychromatic perco-
lation is simply a low threshold, as shown in. Fig.
4(a). Thus far we have used higher-dimensional
nearest- neighbor- connected lattices to illustrate
the effects of decreasing P, within a given lattice
type. By dropping the limitation to simple lattices
with bonds only between nearest-neighbor sites,
and adding connections beyond nearest neighbors,
we can encounter quite low thresholds in three
dimensions and even in two.

Domb and Dalton" determined P, for several
two- and three-dimensional lattices in the presence
of such longer-range interactions. For the tri-
angular lattice (cp lattice for d= 2), the addition of
connections out to third-nearest neighbors raises
z to 18 and lowers p, to 0.22. Thus the ability for
two sites of the same color to communicate in
spite of intervening sites of other colors intro-
duces the possibility of polychromatic percolation
into two- dimensional site-percolation processes.
In three dimensions, the addition of bonds out to
third neighbors raises z to 26 and lowers P, to
0.10 for the sc lattice, while the fcc lattice
achieves a coordination number of 42 and a site-
percolation threshold of 0.06. By further in-
creasing the range, z can be made arbitrarily
large and P, arbitrarily small.

The indicated correspondence between the effect
of increasing dimensionality (for fixed range) and
of increasing range (for fixed dimensionality) can
be epitomized in a few remarkably simple empiri-
cal correlations. The product P,z states the aver-
age number of filled sites accessible to a given
site at the percolation threshold. In Eq. (15) we
noted that for d-dimensional close-packed lattices,
this product is approximately independent of di-
mensionality (with a value of 2.4} for d~ 3. Domb
and Dalton ' noted relations analogous to this one
for site percolation on various lattices of the same
dimensionality as they increased the range. They
observed that Pp approached 4.5 in two dimen, -
sions, 2.7 in three dimensions. Since z is so
large for the close-packed lattices in higher di-
mensions, our result clearly suggests that the
limiting value at high dimensionality of the isodi-
mensional asymptotic limit (s- ~ at constant d)
of Domb and Dalton is 2.4.

C. Bond percolation

All of the specific cases treated here have dealt
with site percolation, but it is important to recog-
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nize the applicability to bond-percolation processes
as well. Thus Fig. 4(a), as well as Table I, ap-
plies to both bond and site processes. In fact, a
moment's thought reveals that we have been some-
what conservative in focusing on site processes
since on any given lattice, P,(bond) &P,(site)" (ex-
cept for a Bethe lattice, where the two coincide).
From Table II, we know that for four-color site
percolation on the d= 3 fcc lattice (with P, = 0.198},
the panchromatic regime occupies less than 1% of
the composition tetrahedron. For the correspond-
ing bond-percolation process (with P, = 0.12) the
panchromatic regime is far more extensive, oc-
cupying 14% of the field.

The most striking example of the greater gener-
osity which bond processes display toward multi-
ple percolation is the nearest-neighbor-connected
triangular lattice. As with all other simple two-
dimensional lattices, polychromatic percolation is
not possible for site percolation on this lattice
(P, is & and C, is 1). For bond percolation, how-
ever, p, is 0.347 for the triangular lattice, ' so
that two colors can simultaneously percolate. The
reason that a pair of unbounded two-dimensional
clusters (infinite "spider webs") can interpene-
trate each other in the bond-percolation case is
that the two spider webs are permitted to cross
each other at the sites. No such crossing is a.l-
lowed in the nearest- neighbor site-percolation
case, so that the existence of one extended web
precludes the occurrence of a second. "

D. Possible applications

One possible application of these ideas in a
bond-percolation context is the question of extend-
ed propagation of multiple signals on a communi-
cations network composed of saturable lines. A
site-percolation example would be a substitutional
mixed crystal in which each atom can communicate
only with other atoms of the same type. Exciton
motion in molecular crystals is a candidate here,
since the resonance-transfer mechanism for ener-
gy migration requires chemical identity between
the transmitting and receiving molecules. Conven-
tional percolation has recently been applied to ex-
citon transfer processes, "and polychromatic per-
colation could provide a model for exciton motion
within several of the chemically distinct sublat-
tices which make up a substitutionally disordered
mixed- crystal system. Multiple percolation could
be favored in such a system because the reso-
nance-transfer interaction extends well beyond
nearest neighbors, so that the lattice is effectively
highly connected.

For composite materials made up of a number of

different solid phases, an important and difficult
problem is the estimation of bulk properties of the
composite from the properties of the components.
Recent studies" of calculational techniques for
multicomponent media indicate that results depend
on which pha, ses are percolating and which are not.
The critical fraction Q, (d= 3) would replace P, in
the construction of the chromatic composition
figure for such a case.

V. SUMMARY

We have developed a generalization of percola-
tion from a two- species black- and-white process
to a multispecies, polychromatic process. The
partition of the C-chromatic composition field, a
key characteristic of polychromatic percolation
(Figs. 1 and 2), has been analyzed via the quanti-
ties F(C~, C;P,) defined in Sec. II. The general re-
sult [Eq. (3a)] for the fraction of the field occupied
by the panchromatic regime provides a useful
measure of the scope for multiple percolation, and
has been shown as a function of P, in Fig. 4(a} for
C=2, 3, 4, 6 and 12.

Polychromatic percolation is richest for highly
connected lattices, in which many species can
simultaneously percolate. As examples of high-
connectivity low-P, lattices, we have considered
site-percolation processes on d-dimensional sim-
ple cubic and close-packed lattices, as well as a
few two- and three-dimensional lattices with long-
range interactions. The growth of polychromatic-
ity with dimensiona, lity for sc and cp lattices has
been demonstrated in Fig. 4.

Higher dimensions have entered in two ways:
in Sec. IIC as the dimensionality of composition
fields for C &4, and in Secs. III and IVA dealing
with d-dimensional lattices as examples of high
connectivity. Estimates have been obtained, for
the first time, for p, for site percolation on close-
packed lattices for d from 4 to 8 (Fig. 3). For cp
lattices the product P,z is approximately 2.4 for
d -3, a remarkably simple result analogous to
Domb and Dalton's asymptotic limits for high z at
constant d. Also, the concept of a lattice-indepen-
dent dimensional-invariant critical volume frac-
tion for site percolation has been extended to d= 4
and 5, although it is shown to ultimately fail for
d&8.

Finally, polychromatic percolation has been
briefly discussed in the context of bond percolation
and of possible applications. Many avenues exist
for extending these ideas, such as permitting the
species in site processes to have different inter-
action ranges (and thereby different P, 's). Only
the simplest cases have been considered here.
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