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Hopping motion is considered in a linear chain containing an arbitrary density of particles that are not

allowed to hop to occupied sites. The general case of two inequivalent lattice sites A and B is treated.

Transition-rate equations are solved by Monte Carlo simulation and, where possible, by analytic techniques.

Only for the case of equivalent sites do the results here agree with those recently obtained by Huber from

nonlinear differential equations for site occupancy which neglect certain correlations. The conductivity is

mean-field-like for equivalent sites, but shows sizeable departure for inequivalent sites, having an activation

energy increased over the mean-field value. Here "mean-field" behavior is one where the only effect of
forbidden hops to occupied sites is to reduce effective transition rates by a factor 1 —n, where n is the

average occupation number of the site to which a jump occurs. The velocity correlation function is shown to

consist of a 8-function part which reproduces the mean-field conductivity and a function P{t) which is

negative for times t & 0. This is qualitatively quite different from the picture given by Huber s equations.

Motion of a single distinguishable particle shows an anomalous x ' ~ t '" dependence of the mean square

displacement upon time t, but the displacement X of all the particles does obey a diffusion relation X ac t.
This difference is explained in terms of the number of particles which have to be pushed aside in order for a

particle to move a distance x, and in terms of the ensuing density fluctuation. Differences between time

dependences and attempt fequencies as measured by bulk conductivity and microscopic probes such as NMR

are noted and discussed in light of data on the one-dimensional superionic conductor P eucryptite (LiA1Si04).
Reinterpretation of NMR relaxation data on some of the organic charge-transfer salts is also suggested.

I. INTRODUCTION

Quasi-one-dimensional (1D) conductivity is mani-
fested in a variety of physical systems under pres-
ent investigation. Among these are superionic con-
ductors such as' P-eucryptite (LiAIS10,) for which
fast ion motion takes place dominantly along 1D
channels and organic conductors and/or semicon-
ductors like tetrathiafulvalene- tetracyanoquinodi-
methane (TTF-TCNQ) which display highly aniso-
tropic conductivity. ' In the localized-state limit
associated with ionic conductivity or with short-
mean-free-path electronic motion it may be ap-
propriate to describe the dynamics by nearest-
neighbor hopping.

For noninteracting particles such hopping equa-
tions give rise to single-particle diffusion ex-
pressed by

x' =2D. t

where x' is the mean-square displacement of a
distinguishable particle in time t, and D, is the
s ingle-particle diffusion coefficient. The conduc-
tivity a' in the same model is

o =N„e'D/keT

for N„carriers per unit volume of charge e at tem-
perature T, as follows from the Einstein-Nernst
formula. ' Here D is the bulk diffusion coefficient
and is equal to D, for noninteracting particles.

When the particles interact through C'oulomb re-

~2 ~] i/2I (3)

so that diffusion in the normal sense does not ex-

pulsion the situation is much more complicated,
even in a classical hopping model such as consid-
ered here. A common practice is to assume that
the repulsion is sufficiently strong to forbid two or
more particles from occupying the same lattice
site but to neglect nearest-neighbor and longer-
range repulsions. Thus the particles are taken as
noninteracting except for an exclusion principle
which allows hops to unoccupied sites only. This
approach, used in the present paper, is obviously
an oversimplification but it has the advantage of
treating the dominant effect of repulsion so that it
may not differ qualitatively from a hopping model
in which finite-range interactions are also included.

The simplest approximation is one in which the
rate for hopping to a site j is reduced by the factor
1-n&, where n~ is the thermal equilibrium proba-
bility that site j is occupied. (For two types of
sites A and B, n& has the value n„or ne. ) The hop-
ping equations are then linear just as in the nonin-
teracting case and the only effect is to reduce D„
and thereby o', by the same factor. We refer to this
as a mean-field calculation, and a major object of
the paper is to investigate the extent to which
mean-field theory is applicable.

Mean-field theory breaks down completely for
single-particle "diffusion. " Instead of (1) we find
the relation
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ist. Not only is the above unpredictable by mean-
field theory, it is also indescribable by a correla-
tion factor4 which is commonly used for diffusion
in two and three dimensions (2D and 3D). It is
found, however, that the total displacement X
=Z x of all the particles is diffusive,

X = 2N~Dt (4)

o~ Vt VO) dt.
0

(5)

We are able to show that the Monte Carlo equations
yield

(V(f) V(0)) = o'6(f) (6)

for equivalent sites and thereby resolve the diffi-
culty. Third, the nonlinear differential equations
give different results from the Monte Carlo ones
for long-time behavior of the site occupancy. This
discrepancy can be important in, for example,
low-frequency NMR studies which can sample the
long- time decay of s ite occupancy. Reasons for the
difference, which occurs only if there are inequi-

for Np particles and that the relation (2) holds.
Thus bulk properties such as conductivity and sin-
gle-particle motion as obtained by microscopic
probes such as NMR' are not related in a simple
way, and this can have an appreciable effect on the
interpretation of experimental data, as is dis-
cussed later.

The results of Eqs. (3) and (4) and others to be
presented were obtained by Monte Carlo simula-
tions of the hopping motion on closed chains (peri-
odic boundary conditions) containing typically 4000
particles and 8000 available sites. It has in some
cases been possible to give analytical derivations
of the results and/or present physical arguments
which justify them. In particular we establish the
consistency of Eqs. (3) and (4) in terms of the
strong 1D correlations and give expressions for the
conductivity in terms of the relevant parameters.

Huber' has recently treated the same 1D system
with infinite on-site repulsion in terms of nonlinear
differential equations for the probability of site oc-
cupancy. This approach has at least three draw-
backs compared with a Monte Carlo or purely sto-
chastic computation. First, since the equations
are only for site occupancy, they are incapable of
describing distinguishable particle motion and
therefore miss important features such as Eq. (3}.
Second, they give a velocity correlation function
(V(t)V(0)), where V is the total velocity of all par-
ticles, which is identically zero for all t, including
t =0, in an infinite system with all lattice sites
equivalent. One cannot, therefore, reliably calcu-
late the conductivity in this framework by the stan-
dard Kubo formalism'

valent sites, are discussed. The two methods do
give the same results for site occupancy when all
sites are equivalent since in this case the site
equations become linear. '

As in Ref. 6 we consider a lattice with two sites
per unit cell A and B which in general are inequi-
valent. The following results for the conductivity
are derived analytically and confirmed by the Mon-
te Carlo. Let W» and W» be the transition rates
for hopping from A to B and from B to A, respec-
tively. If the sites are equivalent, W» = W», the
only effect of exclusion of hops to occupied sites is
to reduce o by a factor 1-n„=1-n~ from its non-
interacting-particle value so that mean-field theory
works in this special case. This is connected with
the fact that the velocity correlation is zero for un-
equal times as pointed out in Eq. (6). If the sites
are inequivalent, however, such that W»«W~g,
then a novel result is obtained: whereas mean field
gives o o- W», more accurate analysis predicts a
further reduction so that o'~ W„s(W„s/Ws„)'~' for
p=2 (p is the average number of particles per
site). Thus, if &„and 4s are the barriers for
jumping from the deep A and shallow B sites, re-
spectively, the activation energy is inc reased from
&„ to &„+-,(d„—&s}. The correction is shown to
arise from the t 0 0 contribution of (V(t) V(0)) to the
integral in Eq. (5). The 6-function part (6) yields
the mean-field conductivity.

The paper is organized as follows. Section II
presents the hopping equations as used in a Monte
Carlo calculation and points out the similarities
and differences with the nonlinear rate equations of
Ref. 6. The thermal-equilibrium properties are
derived in Sec. III. The conductivity is calculated
in Sec. IV A by finding the net velocity in an applied
field, while its computation by the Kubo formula (5)
is discussed in Sec. IV B. Single-particle and bulk
diffusion are examined in Sec. V. The results are
summarized and discussed in Sec. VI with particu-
lar emphasis placed on the relation between con-
ductivity and Raman-scattering data in p-eucryptite
and interpretation of NMR experiments in TCNQ
salts. Details of the Monte Carlo calculation are
presented in an Appendix.

II. HOPPING EQUATIONS

In this section we write equations for the hopping
process as calculated by Monte Carlo methods and
compare them with the nonlinear differential equa-
tions in Ref. 6. The more-complex equation (I) is
introduced rather than starting with the standard
form, Eq. (10), so that we may properly treat the
velocity correlation later.

The model consists of a chain of even number N
sites at positions x,. =an, (n, =0, 1, 2, . .. . , N } con-
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taining pX particles. Odd-numbered sites are A-

type and even numbered ones are B-type. The sto-
chastic Monte Carlo hopping equations for the

change 6P, are

5P( ---(i(i, i + 1)P,(1 —P„,)P;,
-(I(i, i —1)P;(1—P, ,)P,

- (I'(i, i + 1)P,.(1 -P,.„)(1 P, ,)

+ q(i + 1, i)(1 —P, )(1 —P, ,)P(,
+()(i 1, i)(1 —P,.)(1 P,„)P,.,

+r}'(i+ 1, i)(1 —P;)P;„P;,. (7}

Validity of Eqs. (8) and (9} requires P,(~ 0.5 since
O~R~ 1. The probabilities p;~ are restricted to j
=i +1 and have values p» or p» for i, an A site or
a B site, respectively, in the absence of an applied
electric field.

The sense of Eq. (7) is as follows. First note that
only one of the six terms on the right-hand side can
be nonzero. For example, if sites i and i+I are
occupied and i —1 is unoccupied, then only the sec-
ond term on the right-hand side survives. This is
because the exclusion effect is included and of
course a hop cannot occur out of site i unless there
is a particle there to begin with. The nonzero term
on the right-hand side represents the one possibili-
ty for a hop to take place, in the present example
from i to i —1. If the "throw of the dice" (call to R)
produces g= 1, the hop occurs; otherwise there is
no hop. Note also that the change 6P, can only as-
sume the values 0, +1.

The third and sixth terms on the right-hand side
require special attention. If the third term is non-
zero, a hop can occur to either of two vacant sites;
and the probability for this is just the sum of the
probabilities for the single hops. Hence (i (i, i + 1)

Here P& has the value of 1 if site j is occupied and

0 if it is unoccupied. The quantities p and p' are
variables which have the value 0 or 1 according to
a random number R as follows. The number R has
a square distribution between 0 and 1. We intro-
duce a number PU such that if O~R(i, j}~P;,, (7(i,j}
=1, and q(i, j)=0 if R(i, j) P;;. The indices (i,j) on

R and q indicate that each possible transition i - j
entails a separate call to the random number gen-
erator. It is evident that

(8)

where the bar indicates an average over many val-
ues of R, and thus p;~ represents the probability of
hopping from i to j. The quantity () (i,j) is defined
such that it is equal to 1 if 0~ R(i,j)~ 2P;, and zero
otherwise, so

(7'(i,j)= 2P((.

=P;;„+P,;, for P, „,«1, which we assume
throughout. Likewise, a nonzero sixth term means
that either of two particles can jump into the vacant
site, which leads to j'(i+ 1, i) =P(„,. +P( . ( for

p„, , «1. Questions as to how one decides to which
one of two vacant sites a particle jumps or which
one of two particles jumps into a vacant site are
discussed in the Appendix which contains a more-
detailed description of the Monte Carlo calculation.
Periodic boundary conditions are imposed by taking
i+1=1 for i =N and i —1=N for i =1.

The Monte Carlo calculation proceeds by examin-
ing each site i and changing occupations as pre-
scribed by Eq. (7}. After alii(I sites have been
treated the steps are repeated with the new occupa-
tion numbers P;+ &P;. Each time the process is
carried through the full i =1 to X cycle we say that
the time t increases by an amount 6t. The calcula-
tion of a quantity over n Monte Carlo cycles (for
time up to t =n5t) is repeated a large number of
times, with different random numbers at each step,
to obtain a statistical average.

To transform (7) to a differential equation we
perform an average over many Monte Carlo cycles
so that the g's are replaced by their average values
whereby

5P*, =-P, ,„P,(1 —P,„)—P;;,P, (1 —P;,)

+j(,,4, (1 —P, )P,„+P; 4, (1 —P;)P, , (10)

Here 6P*, represents the average change of P,. for a
a given value of the occupation numbers P;, P;„.
That is, the average leading from (7) to (10) is ta-
ken only over the p's with the P's fixed. Note that
the terms involving a product of three P's cancel
when this average is taken so that Eq. (10) has the
standard form of a rate equation with hops to occu-
pied sites excluded. A further average must be ta-
ken, however, before time development can be de-
scribed. This is evident from the fact that 6P, can
be no larger than p... ;+p;, ;, whereas P& P&+y on
the right-hand side are still restricted to be 1 or
0. Thus we do not yet have P;(t+5i) =P, (t)+5P,*.
To accomplish this a further average must be taken
over all the different values of P;(t) which have re-
sulted from applying many Monte Carlo cycles
starting from the same initial condition. Not only
do we average over the q's for the Monte Carlo
cycle at t, we average over all past p's which leads
to an average distribution at t. This additional
ave rage is denoted by a bar over the right-hand
side of (12), and it then follows that

P((i+ 5t) =P;(t) + 5P; =P;(t) + 5t
dP)

with the second equality holding for sufficiently
small values of p&&. The differential equation is
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FIG. 2. Normalized A-site autocorrelation function
for inequivalent sites W»=0.1 Wzz. Solid curve is
Monte Carlo result for p»=0.1 p~~=10, 4000 particles
on 8000 sites, average over 40 different thermal-
equilibrium initial conditions. Dashed curve is numeri-
cal result obtained in Ref. 6.

Pa, a+i Pq Ps+I. (13}

0. 5

FIG. 1. Normalized site autocorrelation function

(Pg~{t)P)~(0)) /P;A(0) f for equivalent sites W„B
= W~&= W. Circles are Monte Carlo results (Wt=pn,
where n is the number of Monte Carlo steps) for p
=10 2, 4000 particles on 8000 sites, average over 40
different thermal-equilibrium initial conditions. Curve
is analytical result given in Ref. 6.

then

dP] =-W, ,„(P,—P, ,„)—W, (,(P, —P. . .}
+ W(„r(P&„—P( „,) + Wr, ;(P(,—P; &,) (12)

where W;~= P,~/&t and where P; ~ =P, P, describes
joint occupation of sites i and j.

Since they will be used frequently, we summarize
the notations for three kinds of averages. For a
quantity Q, Q* is an average only over the present
random variables g which occur explicitly in the
equation for the change in occupations at a particu-
lar time, as in Eq. (7); Q is an average over all
past p's which occur implicitly as a result of the
time development from a fixed initial condition, as
in Eq. (10}. The thermal average (@=(QQ contains
an additional averaging over many initial configura-
tions of the P, subject to the thermal equilibrium
conditions given in Sec. III.

The quantity P; is interpreted as the probability
that site i is occupied and is a continuous variable
in Eq. (12). Similarly P«„ is the probability for
simultaneous occupancy of i and i + 1. The appoxi-
mation of Ref. 6 was to let

and thereby neglect any correlations. In general,
Eq. (13) is not valid so that differences between the
Monte Carlo results presented here and those of
Ref. 6 can result. A special case is for equivalent
sites in the absence of a field (W;;„=W;„;= W}.
Then, as noted by Huber, the P,. j+y terms cancel
so that the site equations are linear.

The difference between the two methods for in-
equivalent sites and equality for equivalent sites is
illustrated in Figs. 1 and 2. The quantity shown is
the normalized A-site thermal-equilibrium auto-
correlation function' (P~„(t)P;„(0))for W„s ——Ws„
and S'» = 0.1W'». Correspondence between the
number of Monte Carlo cycles n and the time vari-
able t is achieved through the relation P»n = K» t.
The f-~ value of (P;„(t)P;„(0))is assumed to be
(P, )' and given by considerations of Sec. III.

A

W„sn„(1 —ns) = Ws„ns(1 —n„) (14)

in the absence of a field (W;„;„„=W», W;„„;„
=We„}, where n„(ns) =(P, ) fori an A(B) site and
the thermal probabilities are assumed to be uncor-
related [Eq. (13)]. Lack of correlation may be just-
ified by representing the system by the Hamiltonian

X= — Lh)n;,
1

(15)

III. THERMAI EQUILIBRIUM PROPERTIES

Thermal-equilibrium properties are of impor-
tance for the inequivalent site problem and are dis-
cussed in this section, both in terms of the hopping
equations and a model Hamiltonian for classical
particles which obey an exclusion principle but are
otherwise noninte rac ting.

The steady-state solution to (12) is
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where &, = &„(4s) for i odd (even) and n; is a num-

ber operator which can assume only the values 1 or
O. We then find by usual methods of the grand ca-
nonical ensemble

and

n„={1+exp [-(4„+p)/ksT]] ',
ns ={1+exp[-(4s+ii)/ksT) j ',

(n, n, , ) =exp[(4„+hs+2p)/ksT]
x {1+exp [(6„+p)/ks T]

+ exp [(d + ii) /k T]

+ exp [(4„+de + 2 p)/ksT) ) '

Sg SB

(16)

(17)

(18)

w = exp [(d„-~ )/2k T] .
&B ~~B

Although there is no correlation in thermal equi-
librium in zero field, steady-state correlations do
appear when a field is applied, as shall be demon-
strated.

IV. CONDUCTIVITY

The conductivity may be calculated in two ways
from the hopping equations. First there is the
same method an experimentalist would use: Apply
a field and measure the ensuing current. If a weak
field E is applied in the +x direction, the barrier
for hopping is changed by an amount +&eEa, where
the upper (lower) sign is for hops to the right (left).
(Any effects of higher order than linear in E, such
as shifting of the positions of the potential minima
and maxima, , are ignored throughout. } We assume
positive ions so that the charge e is positive. For
thermally activated hopping over a barrier we then
have

W;; „=W~s exp(+6) =
W~s (1 + 6),

where

d. = eEa/2ksT

(20)

(21)

and 4«1 has been assumed. A similar equation
holds for 8',B, ,B+J.

The current density is given by

J'=eQ (22)

Equations (16) and (18) are consistent with the de-
tailed balance condition

W, ~/W~s —exp [(a~ de)/ksT) .

The condition n„+nB =2p fixes the chemical po-
tential p. and allows determination of n„and nB.
For a half-filled lattice 2p = 1, we see that (14) re-
duces to

where V~ is the net steady-state drift velocity of
all the particles in a field and 0 is the volume per
particle (0 is the unit-cell volume for equivalent
sites}.

The net Monte Carlo velocity V«(n) of all the
particles is defined as the number of hops to the

right minus the number of hops to the left which
take place at the nth cycle:

Vuc(n) = 2&i i~iPi(1 —Pi+&}

P, (1 —P), (23)

where the g's and P's are evaluated at the Monte
Carlo time integer n. This is readily converted to
an average velocity V with proper dimensions by
replacing the q's with their average values g, &

= P;& = W, ,/6t and noting that a Monte Carlo jump
corresponds to moving a distance +a in a time Q.
Thus

V=a g[w, „,(P, —P, ,„)
w... ,(P... J,.„,)], (24)

and V~ represents the steady-state value of V in a
field. Details of the solution of Eq. (24) will be
given in Sec. IVA.

A second method, popular with theorists, is to
use the Kubo formula of Eq. (5} repeated here as

o=—=~ Vt VO dt,
B 0

(25)

where the thermal equilibrium correlation function
is calculated in zero field, so that V is calculated
by (23) with 4 = 0.

A. Velocity in presence of field

We compute here conductivity by the first method
of finding the steady-state velocity in presence of a
field. Equation (24} yields

V =a(wiiw —Was) Q (P;~;„„-Pi„ i~,)

+2ad, (w„sN„+We„N )

a~(W„, + W, „)g(P,„,„„+P,„,„.,),. .(26)

after some rearrangement of summation indices
and neglecting end effects either by assuming peri-
odic boundary conditions or by letting N -~. The
summations above are over the odd numbered A
sites, hence the index i„, so that P;„„(P,„,) is the
occupation number for the neighboring B site to the
right (left} of i„The quan. tities N„and Ns are the
total number of particles onA sites and B sites,
respectively.
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In the steady state P&„, ,„„must be independent
of i„so that Eq. (26) reduces to

V(( = a(W» —W»)( ,'N )-y + 2aa(W» N„+N»N(()

—ah(W»+ W((„}Nr,

where we have noted that there are ~ HA sites and

introduced the correlations

(28a)

(28b)

{a)

(c)

i+1 i+2

i+1 i+2

(el ~
i+1

i+1

i+1

{b)

in which the curly brackets indicate a steady-state
average in the presence of a field. Symmetry re-
quires y =0 in zero field or for equivalent sites in
an arbitrary field, but y is not necessarily zero for
W»WW» and AWO. In fact we shall show thaty
makes an appreciable contribution to the conductiv-
ity for inequivalent sites. Steady-state conditions
also require {dP,/dt f=0 which from (12}, (20), and

(28) translate to

-2W»(n„—r) (-2Ws„(ns —r)

+d(W»+W»)y =0, (29)

n„=n~ go(a),
n, =n, +O(~),

(30a)

(30b)

{p(„,.„„)=(p,.„,.„„)+O(a)=n„n, +O(&). (31)

Equation (31) implies

y =O(A}, (32)

where O(d) means of the order of 4 or of higher
order in 4.

Equations (30}-(32)are inserted in (2't) to give

Ve -- a (W((„- W») (q N )y

where n„={P(„),ns ={P(„„)are now the mean oc-
cupation numbers in presence of a field. The same
equation (29) is obtained by using either {dP; /dt)
=0 or {dP, /dt 1=0.

Consider the solution to lowest order in 4. Since
~=0 corresponds to zero field, we have from the
results of Sec. III,

FIQ. 3. Diagrams illustrating terms in hopping equa-
tions. Solid circles represent occupied sites, open
circles unoccupied sites. Arrows indicate direction of
hops. (a)-(d) Terms in Eq. {35) for (d/dt)P&„, &. Dia-
grams (a)-(d) are in one-to-one correspondence with
four terms on right-hand side of {36)with upper sign
taken. (e) Term in P; (d/dt)P;, &

which contributes to
(d/dt)(P&P&, &) but not to (d/dt)(P;;, &).

generally correct, o =O„F, for equivalent sites
since the coefficient of y in (33) is proportional to
Wa~ —W».

Since the term in y of Eq. (29) is O(a'), that
equation gives no information regarding y, at least
in our method of considering 4 as a small pertur-
bation. To determine y we write the rate equations
for d(P; „,)/dt,

d—
(~ ill WBA( }( '(, ((I (e (+ls (&2

(.W»(1+4)(P( („—P; («( ((;2)

+ W((g(1+ d')(P( i, (k P((, i. '(+1}

where i is an A site and P, ~, is the probability of
simultaneous occupation of the three sites i, j,k.
The separate terms in Eq. (36) are shown diagram-
matically in Figs. 3(a)-3(d) to display their meaning
more clearly. Note that d(P; (»)/dttd(P(P(„)/dt
which indicates that correlations do occur which
affect the results of Ref. 6. The terms differ by
the fact that

+Na&[W» n„(1 —ns)+ Ws„ns(1-n„)]+O(d,') .
(33)

dpi'„dp
dt (P; P(„}=P(

dt
(-P,.„d (37)

For y =0 we have the mean-field (MF) or no-cor-
relation result for the velocity

V (MF) =Naa[W„n„(1 —n )

+ Ws„n(((1 —n„)]+0(rV) e (34}

which gives a 4-0 conductivity of

o„v = (Ne'/Of(s T)a' W» n„(1 —ns) (35)

from (14), (21), and (22). Note that Eq. (35) is

contains terms shown in Fig. 3(e) such as
P(W»P, (1 —P;„)which do not contribute to
d(P(, «„}/dt. The steady-state condition d({P, ,

{P(,(,}-)/dt = 0 gives

(W» + BA) y + BA(fBB fB» + f»A

» (f~~ —f»~ +f((»—
where the f 's are new correlations defined by

fAA {.P(~. (~+2] e (39)
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fAzA (Ply, $zit, i'd+2 ) t (40)

so that f„„is the correlation between two A sites
separated by a distance 2a and f„z„is a corre-
sponding three-site correlation. Similar defini-
tions hold for fzz and fz„z. Symmetry does re-
quire (Pi„,r„+2'f=(Pi„.&„2'I=f-„„, etc. , but it

does not require (Pi„,i„.i j=(Pi„,&„-~}if W„z+Wz„
and 40.

A solution for y valid to first order in b is ob-
tained by replacing the f 's and r's by their &=0
uncorrelated values fAA=KA fABA "A B A "B
etc. , whence

y = -4dW„z n„(1—nz)(n~ —nz)/(W„z + Wz„}, (41)

BA+ AB
(42}

where we have made use of the equilibrium condi-
tion (14). For equivalent sites n„=nz and y =0 as
expected. The result y &0 for Wz„& W„z (n„&nz)
may be understood as follows. With W»&W», a
particle at anA site may be thought of as slow
moving and one at a B site as fast moving since
current is limited by the A»B hopping rate. The
quantity y then represents the difference in likeli-
hoods of finding a fast moving particle to the right
of A and to the left of A. For a net drift to the
right (d &0) the motion of a B particle to the left of
A is inhibited on the average whereas there is no

such "pile up" to the right. Thus, it is more likely
to find a particle to the left of A than to the right,
so y &0 in this situation. A highway analogy may
also be helpful. Traffic jams occur behind slow
moving vehicles rather than in front of them.

By using result (41} in (33}-(35),we obtain

The correction to the mean-field conductivity oMF

becomes particularly severe for p~ —,
' since then n„

-1 and o/o»-0 for W»» W». For p=-,' so that

n„+nz= 1, Eq. (42} reduces to

o=2a„rn„nz/(n'„+nz') =2o„r(W„z/Wz„)'~' (43}

for Wa~ WAB- Si.nce oMF is proportional to W~a
the same limit, the above shows that the activation

energy is increased from the MF value 4„ to 4„
+2(h„—4z) if one assumes W„z ~exp(-d„/kzT) and

Wz„~ exp(-hz/kzT) for phonon-assisted hopping

rates with the site barriers 4„~» k~T.
In Fig. 4 we present evidence from the Monte

Carlo calculations in support of Eq. (42) for Wz„
=10 W„~ and p=p, which gives n„=0.760, n~
=0.240. The Monte Carlo velocity is Vz «= Vz(5t/
a) according to the discussion between Eqs. (23) and

(24) and so is obtained from Vz by replacing
W„z(Wz„) by the jump probability P„z(jz„)and tak-
ing unit hopping distance. The specific calculation
has P» = 0.01, P» = 0.1, and 4 = 0.1 for which Eqs.
(34) and (42) yield Vz «/pN=2. 31x 10 ', 1.33
@ 10 ' for the mean-field and complete values, re-
spectively, per particle. Vz «/pN is plotted as a
function of the number of Monte Carlo cycles n(t
=n5t) in Fig. 4. Initially Vz „c is close to the
mean-field value but it decays to a steady-state
level in good agreement with the prediction of Eq.
(42). The reason that Vz Mc starts out near the
mean-field uncorrelated value is that, as in all
Monte Carlo calculations presented here, the ini-
tial conditions correspond to thermal equilibrium
in the absence of a field so that the correlations
which make (42) differ from (34) are initially ab-
sent. In other words the plot of V~ «vs n in Fig.
4 is one for which 4 is a step function applied at n

2. 5.

2. 0

w"
],.5

1.0
0

~ e MEAN FIELD

~ ~

~ ~

I

10

MEAN FIELD, THEORY

~ ~

~ ~ ~

~ ~ ~ ~ ~

THEORY

I

30
I

20

MONTE CARLO TlME n

1.0
0

—0. 9

CU

FIG. 4. Average Monte
Carlo velocity per particle in
a field vs Monte Carlo time
integer n. Circles: W~
= 0.1 W~~(pgg= 0.1,p~= 0.01);
triangles: W~ = W~g (p~p~~
=0.1). Both sets of data have
4= 0.1, Np=1000 particles on
2000 sites, average over
20 000 different thermal eq-
uilibrium initial conditions.
Line labeled "Mean field" is
Eq. (34) to first order in h.
Line labeled "Theory" has
mean-field value multiplied by
correction factor in square
brackets of Eq. (42). "Mean
Field" = "Theory" for W~
= Wa~.
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where 5(t) is the Dirac 5 function and e(t) is the

step function which is unity for t &0. If Eq. (13)
were valid, P(t) would be the same as given in Ref.
6 where the velocity correlation was written

(v(t}v(0)}„„„,= p(t), (45)

with P(t) calculated assuming in (13) that P, „,
P P j 1 and the s tep function would not be neces-

sary. It is further demonstrated that n contains
the mean-field approximation to the conductivity.
That is, upon using the Kubo relation (25}, we have

CD

I

0. 4

o„=(e'/Ak T)(-,'a),
and thus P(t) makes up the difference

e 2

o —O'Mr = p(t) Ct .
8 0

(46)

(47)

0
I

0 10
I I

20 30

0
I

40

FIG. 5. Correlations y and Be=7-n&nz in a field vs
Monte Carlo time integer n. y values are to be read on
scale at left, I5v values on scale at right. Note that,
where nonzero, both y and I57 are negative. Results are
taken from same computer runs used in Fig. 4.

B. Velocity correlation

%e show here that the zero-field velocity corre-
lation function may be written

=0 to a thermal distribution. Figure 5 shows time
development of the correlations 57 =-7 -n„n~ and y.
Not shown are n„and n~ which maintain the values
n„and n~ within stat;istical error. To first order
in &, Eq. (41) predicts y = 1.09 x 10 ' in the steady
state for parameters used in the S'»=10%'»
curve. The previous equations are not adequate to
give expressions for n„, n~, and v' beyond their
zero-correlation values, but Eq. (29) shows that
the combination -W„s(n„—r)+ Ws„(ns —r) is of the
order of Ll' which is consistent with n„~ =n„~
+O(4') v'=n„ns+O(4'), and this appears to agree
with the results in Fig. 5.

Figures 4 and 5 also give results for equivalent
sites using p»=p~„=0. 1, ~=0.1. Here we see
that V~ «has the mean-field. value for all times in
agreement with y =0 for equivalent sites. %'e fur-
ther note, however, that r-n„n~ has significantly
larger magnitude than for the inequivalent site cal-
culation. For W„s= Ws„, Eq. (29) reduces to 0=0
so that we cannot make the same inferences as in
the above paragraph regarding 7'.

However, in the limit of small hopping probability
which is assumed throughout, the term in Eq. (48}
linear in p, ;, dominates, and use of this fact in the
square of V„c(0}leads to

(V (0}')=N[P„n„(1-n )+P „n (1 —n„)] (50)

or

(V(0)') =(Na'j5t) [W„n„(1—n )+W „n (1 —n„)],
(51)

which shows the 6 function character in the limit of
the time interval 6t -0. The precise relation is

ot =2Na'W„sn„(1 —ns), (52)

which is found by trapezoidal-rule numerical inte-
gration with (V(5t) V(0)) «(V(0}2}(see below) to-
gether with the fact that fo 5(t) dt = ~ and we have
used the thermal equilibrium condition (14).

Consider now (V(t)V(0)} for t =0+, which is pro-
portional to (V«(1}v„c(0)}if we take t =0 to refer
to the first Monte Carlo cycle n =0 and if we take
the limit of vanishingly small hopping probabilities.
This correlation function contains terms such as

To establish the above equations we use the Monte
Carlo velocity defined in Eq. (23) in terms of the
random variables qj &. The equal-times correla-
tion contains averages of products of random vari-
ables such as (ri, ,„ri»„}„.These are uncorre-
lated unless they refer to the same jump and thus,
in general,

(th, .rl~, .)„=P, ;.P;,, + (P, , -P', ,,)5,. q5, . ~. , (48)

since q, , can only assume the values 0 or 1 (0', ,,
=q«.) and tl, , ~p, ,, Keeping only the uncorrela-
ted first term or the right-hand side of (48) repro-
duces Huber's equation

p(0) =Na'(Ws„—W„s}'n„ns(1 —n„}(l—ns) . (49}

(V(t}V(0))= a5(t) + p(t)e(t), (44) (U, ,„(1)q, ,„(0)P,(1)P,(0))„



'THEORY OF ONE-DIMENSIONAL HOPPING CONDUCTIVITY. . . 1401

evaluated at n =1 or 0 as shown. Since there is no

correlation between random numbers called at dif-
ferent cycles n it might at first appear that each q
appearing in the above can be replaced by its aver-
age value. It is true that the replacement

Q03

THEORY'~ THEORY

&n, „(I)q.. .,(0)P;(I)P (o)&.,
=P;„.,(ng, g„(0)P;(I)Py(0)&., (53)

can be made (here angular brackets with the sub-
script "av" indicate an average over the variables
q, , i.e. , they have the same meaning as a bar
above a quantity), but an important feature is that

P, (1)= P, (0) + SP,(0} implicitly contains a random
number called at n =0 which is then correlated with

t)»„(0) for values of i andj such that the samej
-j+1 jump is considered in the equation for 6P, .
We then have

0
A

C3)
)

0. 02—

0 k

-2x10

-3
-1 x10

4 f
~ 1

(0. ..(0)P (1)P (o)&.,
=p) ~„[P,~{0)+(SP',{0)P~{0)& j +O(p'), (54)

}

10
I

15

x W„B(n„—nB)n„(1 —nB) (ss)

upon using the prescription outlined in the discus-
sion surrounding Eq. (54) in the correlation ob-
tained from Eq. (23). In the above, P(0) is as given
in Eq. (49} and the second term on the right-hand
side represents the (5P,'. (0)P~(0)&„correction in
(54). Use also has been made of the thermal-equi-
librium condition in Eq. (14}. Further use of (14)
shows that for the half-filled lattice (n„+nB =1),

(WBA WAB) AB(nA nB) A(I B)

=Na (WB„—W„B)'n'„nB = p(0),

so that we obtain the amusing result

(v(o+) v(o)& = p(o+) = p(o) (55)

for p= &. The correlation has the same magnitude
as that given in Ref. 6 for t-0 but is of opposite
sign.

Since {V(0+)V(0))/(V(0)'& is of the order of WBASt
«1, expressions (44) and (52) for the 5-function
behavior are justified. The contributions of aS(t)
and P(t) to the integration are in general of the

where SPI(0) contains only that portion of 5P, (0)
which involves a j-j+1 jump, which of course im-
plies that i = j (i —i+I) or i = j+1 (i —1-i) For.
small hopping probabilities we neglect the O(P')
term in (54). If P& &.,P, &(0) were the only term in-
cluded, we would find {V(0+)V(0)& = p(0+}= p(0) since
Huber's P(t) is continuous at t =0 and is obtained by
replacing the r)'s in Eq. (23) by their average val-
ues. The correction (SPI(0)P&(0)&„ is significant,
however, and we find after some algebra

(V(0+)V(0)) = P(0) —2 ''(W „—W„)

FIG. 6. Monte Carlo zero-field velocity correlation
per particle vs Monte Carlo time interger n. Circles
are for W»= 0.1 Wgg {p»=0.02,p~= 0.2). Triangles
are for W»=W~~ {p»=pz&=0.05). Both sets of data
are for N p=100 particles on 200 sites, average over
100 000 different thermal equilibrium initial conditions.
Theoretical values from Eqs. {50) and {56) are
indicated. Note the change in scale on the ordinate.
The curve is meant as an aid to the eye only.

same order of magnitude. This may be seen by
noting that P(0+) is of the order of W' and it decays
at a rate proportional to W. Thus

~ f,"P(t) dt ~-W'/
W= W, which is of the same order as n. Here we
have used W to stand for W», W» or some linear
combination of the two. Since the complete conduc-
tivity o is less than our according to Eq. (42), it
follows that f,

"p(t)dt, as well as p(0+), is negative.
In particular, since o/o„r-0 as n„1acco-rding to

Eq. (42), we have Jo" P(t) dt = =,' a for n„- 1, in
which limit P(0}-0and n-2Na'W„B for the half-
filled lattice (n„+nB = I).

That P(t) should be negative is expected from the
nature of the correlations. Since hops to occupied
sites are disallowed, it is more probable for a
particle to hop back to its previous location (change
sign of velocity} which is left vacant than to hop
forward to a site which may be occupied.

Figure 6 shows the Monte Carlo velocity correla-
tion per particle both for W» = W» and for W»
=0.1 W». The discontinuity between n =0 and n =1
is clearly seen, and the values at n=0 and n=1
agree well with theory. The n ~ 1 correlation func-
tion for W» =0.1 W» decays to one-half of its
negative initial value in three Monte Carlo steps,
which corresponds to W» t =0.06 for the hopping
probability used, p» =0.02. By comparison the
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correlation P(t) given in Fig. 3 of Ref. 6 decays to
one-half of its positive initial value at 8'»t =0.04,
so P(t) and P(t) have similar decays even though

they are of opposite sign. The results for S'»
= Ws„are consistent with P(t) = 0 to within statisti-
cal error. Although we have not proved that P(t)
=0 for equivalent sites, we have shown that both
p(0+) and f,

"
p(t) dt are zero (the latter follows

from o = a'„r for W„s ——Ws„), and it seems reason-
able to assume that the stochastic hopping equa-
tions are consistent with P(t) = 0 for all times.

6

CD

4

C7

V. DIFFUSION

Thus far it has been adequate to consider the site
occupancies only and not keep track of distinguish-
able particles. In this section we examine the mo-
tion of a single particle and show that it does not
diffuse in the normal sense but rather has a mean
square displacement given by Eq. (3) at sufficiently
high density p.

Before treating the distinguishable particles it is
useful to establish results for the net displacement
of all the particles

X(t) = g[x.(t} x.(0)], (57)

t
(X(t)') = 2 de(t —r) (V(r) V(0)),.

0

since dX/dt = V and thus

(58)

D = lim =— dr (V(r) V(0)) . (59)
1 (X(t}') 1

Nz t " t NJ 0

Equations (59) and (25) may be combined to give a
generalized definition of the Einstein-Nerst formu-
la for N~ interacting particles, as noted in Ref. 7.
We were able to calculate the conductivity in Sec.
IV and thereby also determine D according to the
above prescription. The fact that the drift velocity
VE is linear in the field E for E-O is sufficient to
establish convergence of the quantities in Eq. (59),
by virtue of the Kubo formula (25).

That X(t) involves site probabilities only stems
from the relations

x (t)=Qx, g, (t), (60)

J';(t) =gg;, .(t), (61)

and thus

Px.(t) = Px,.p,.(t), (62)

where x (t) is the position of the o.th particle at
time t and we use the convention that Greek indices
label particles and Roman ones label sites. In his
classic paper' Kubo pointed out that

40 80

FIG. 7. Mean-square displacements vs Monte Carlo
time n. Equivalent sites, p»=pgg= 0.1, 6= 0, 4000
particles on 8000 sites, average over 1600 different
thermal-equilibrium initial conditions.

x'=a 'X P([x.(t) x.(0}]'), (64)

while the corresponding quantity for net displace-
ment of all the particles X'„ is given by taking the
square of the sum in Eq. (57} rather than the sum
of the squares as in (64):

2

X',„=a 'N ' x t)-x 0 (65)

Computation of x' involves keeping track of individ-
ual particles. This task is simplified in a linear
chain since the particles always stay in order as
long as double-site occupancy is forbidden. Details
of the method may be found in the Appendix.

In the absence of correlations x'=X'„. Figure 7
shows Monte Carlo results for X',„and x' vs t. Al-
though X',„ is linear in t with a slope in agreement
with that predicted from the conductivity, x' clearly

where g; = 1 if particle n is at site x,. and 0 other-
wise. The motion of an individual distinguishable
particle not only requires more than just site equa-
tions, its equations are more complex. This is
most clearly seen for equivalent sites where the
rate equations for a distinguishable particle are'

«g,*,.&.,=-pg;, .(2-P;-P;„}
+ p(1 —P;)( g;„,.+ g;, .) (63)

Whereas in the site equations for P» = P» = P the
nonlinear terms cancel, no such cancellation oc-
curs here. One can therefore expect rather differ-
ent behavior for properties connected with individ-
ual particle motion.

The mean-square displacement of a single par-
ticle, averaged over all the Np particles and nor-
malized to unit hopping distance, is
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0 10

FIG. 8. Replot of average square single-particle dis-
placement x2 in Fig. 7, now shown vs n ~

is not. The single particle x' is replotted versus
t ' ' in Fig. 8 and a good straight-line fit is ob-
tained for long times W»t &1.

We have not succeeded in obtaining a first-prin-
ciples derivation of x'ct-t ' ' starting from the
equations of motion, but feel that the result can be
understood from the following semiquantitative
agreement which relates a correlation length to
density fluctuations. We start with the established
diffusive behavior of X',„,

Assume for the sake of argument that x,(t) —x,(0}
&0 and that x~(t) -x~(0) is correlated with x,(t)
—x,(0} over a distance $'a for t}&0and over a dis-
tance $ a for P &0. Then the number of particles
involved in the two sums on the right-hand side of
(6V) are p$' and p( so that

2Da 't=x'+x'p(C'$'+C ) ),--
where C' and C are constants of the order of unity
and we have noted that a '([x,(t) —x,(0)]') =x'. If
the dimensionless correlation lengths g' were inde-
pendent of time, Eq. (69}would simply reduce to x'
=2Da 'ft with a correlation factor f=(1+pC'",'
+ pc $ )

' and the situation would be similar to that

commonly treated in higher dimensions. 4 We ar-
gue, however, that $' are themselves proportional
tox' for long times. Referring to Fig. 9, if the
particle labeled zero moves a number of spaces x
=[(x,(t) —»0(0}]/a to the right in time t then it dis-
places on the average px particles to the right.
is defined such that a particle at a distance (in
units of a) $' to the right of particle zero at time t
is unaffected by this movement. In other words $'
is a region whose size can just "tolerate" the addi-
tional px particles forced into it. The condition on
toleration is assumed to be that px corresponds to
no more or no less than a thermal equilibrium fluc-
tuation ((n') —(n)')'~' in the number of particles n
contained in $'. Since (n'} —(n)'=(n)(1 —p) for a
random distribution and pg' =(n) is the mean num-
ber of particles contained in $', we make the rela-
tion

=2Da 't. (66)

2Da 't=x'+a ' Q ([x,(t) —x,(0)] [x~(t) —x~(0)]}

+a ' Q ([x,(t) -x,(0}][x~(t) —xs(0)] ) .

For equivalent sites in thermal equilibrium Eq.
(66} may be rewritten

[5'p(I —p)]"'=p» . (69)

If $' were smaller than given by (69), the excess
px particles would represent more than a thermal
fluctuation and there would be pressure to push
more particles aside, increasing the correlation
range. If $' were greater than given by (69), the
additional particles would constitute less than a
normal statistical fluctuation and would not be no-
ted.

A similar argument holds for g . If the region x
is depleted, a number p($ x) of particles will
flow into it until the total region $ has a number no
less than that consistent with statistical fluctua-
tions. Thus

p($ «)=pl -[-p(I p)5 ]"'.-
Equations (69) and (VO) show that (' = $ = $ and
thence Eq. (68) becomes

(VO}

FIG. 9. Diagram. accompanying argument surrounding
Eqs. {68)-{76). Solid circle represents particle which
moves a distance {normalized to unit nearest neighbor
spacing) x in time t. Opencircles are particles which
get pushed ahead of it. Crosses are particles which
move in to fill the void left behind.

2Da-'t =x'+x' p'(1- p)-'(C +C-), (Vl)

which establishes the dependence x'(x:t ' ' except at
very low density.

Equivalent sites are implicitly assumed in the
above argument. For the general case of inequiva-
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lent sites the only difference is that the statistical
fluctuation in the number of particles contained in

$ sites, half of which are A type and half of which
are B type, is

(n') —(n)' =
& $ [n„(1-n„)+ns(1- ns)],

where 2p =gg+sg.
As long as the number of displaced particles is

large, which is the case for long times, this num-
ber is still px, so the same arguments go through
with $'= $ given by

(73)$ = px'/[1- p —(n„-ns)'/4p].

For the half-filled lattice, p=2, Eq. (73) reduces
to $ =x'/8n„ns.

The constants C' are estimated as follows, where
reference to Fig. 9 is advised. Consider first the
summation

tributed over the space between x and x+ $ at t and
over the space between 0 and x+ $ at t =0. Then the
sum reduces to

p(5 +x)[2 (x + h +x) —k(x + 5)] = k px(h +x),
since it is just the number of particles times their
average displacement. The argument applies
equally well for inequivalent sites as long as we
understand that x and $ are sufficiently large that
they contain a number of AB units and the mean
position can be taken as midway between an A and
its neighboring B site.

Similarly, the sum for P ~ -1 is computed by as-
suming that the distribution of p($ —x) particles is
between -((-x) and 0 at t =0 and between -$ and 0
att, so

~ x~(f) -x~(0) =p($-x)[-2h ( 2)(4-x)]1 I

S~-i a

a ~ g ([x,(f) x,(0)][x,(f) x,(0)]) =k px(~ -x) ~ (75)

l 1

I
I

200— 20—
I

(
i I I

150— 15-

x~(t} —x~(0)
( )

=1 a

where x~(f) is calculated under the premise that p(x
+ () particles are distributed over the distance $a
with P =0 at x, and we assume that x and g are suf-
ficiently large that the region contains an equal
number of A and B sites for the case of inequivalent
sites.

Assume that the P($+x) particles are equally dis-

Combining the two results we see that C'+C =1
so that Eqs. (71) and (73) reduce in the general
case to

2Da 't =x'+x'p'[1 —p- (n„- n)s' 4/p] '. (76)

Equation (76) suggests a manner of plotting and
predicts a density and occupation number depen-
dence.

A plot of t/x' vs x' should give a straight line
whose intercept is a'/2D and whose slope-to-inter-
cept ratio is p'(1 —p) ' for equivalent sites. Figure
10 presents such plots for several values of p with
W» =S'»=8'. There is some curvature near x'
=0 but straight-line portions are clearly seen. 'The
t =0 values of the curves are compared with the
theoretical value a'/2 D = [2W(1 —p}] ' in Table 1 and
excellent agreement is found up to the highest den-
sity studied, p=0.9. The ratio S/L of the slope of
the straight-line portion to the t =0 value is plotted
versus p2(1 —p) ' in Fig. 11. A good straight line is

100—

50

10 TABLE I. Comparison between theoretical diffusion
coefficient D and t 0 limit of Wt/x for W~ ——Wzz-—W
obtained from Fig. 11. (Conversion is made from n/z
to Wtlx by using pn=Wt, where p=0.105 for the curves
in Fig. 11.)

0. 5
l

10 a W
2D

lim Wt

FIG. 10. Plots of n/x vs x as suggested by Eq. (76)
for various particle densities p shown by numbers on
figure. Data for p ~ 0.5 are for runs with 8000 sites;
for p= 0.9 number of sites is 4000. All runs had p~
=pz&=0.105, rh=0, and show an average over 200
different thermal-equilibrium initial conditions at each
p value.

0.05
0.167
0.25
0.434
0.5
0.75
0.9

0.53
0.60
0.67
0.88
1.00
2.00
5.00

0.54
0.59
0.66
0.87
0.95
2.00
5.14
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XFIG. 11. Slope S of straight-line portion of curves in
Fig. 10 divided by the x2 —0 limit I. of the curve vs p2/

(1—p). Inset gives expanded view of p» 0.5 region.

obtained for p~ 0.5 whose slope of 1.25 agrees
closely with the estimate of unity (C'+C =1), but
there is a pronounced upward curvature for the
higher densities.

We have also plotted (not shown) f/x' vs x' for
W„~ =0.1 S'». Here we neither expect nor find a
straight line near t =0 since the relation X,', =2Dt
holds only for long times when S'~ 8'», i.e., one
has to wait for the P(t) part of the velocity correla-
tion to decay to zero. %'e do find straight-line be-
havior for W„s f~ 20 with a slope 19% less than
predicted by Eq. (76).

In view of the relative crudeness of the model, we
regard the overall agreement as quite satisfactory
and in support of the basic physical picture which
relates the size of the correlated region to one in
which the extra number of particles entering just
corresponds to an average thermal fluctuation.
The key to this correlation is the fact that in the
restricted 1D system a particle cannot move with-
out forcing other particles to move ahead of it.
For this reason, the effect x'o=t ' ' is likely to oc-
cur only in 1D.

It is worthwhile to note that the agreement in Ta-
ble I shows that there is no time-independent cor-
relation effect, i.e., the distances (' in Eq. (68) go
to zero as t-0 so that the correlations can in no
way be accounted for by a constant correlation fac-
tor.

We mention that a similar dependence e'~t ' '
has been derived for the mean-square displacement
c' of a defect of a polymer chain. " However, the

FIG. 12. Probability distribution g(x, t)/g(0, t) at
W't = 200 vs x . Data are for W~= Wgg= 8' (pgp-—pgg
= 0.1), 6= 0, 4000 particles on 8000 sites, average over
40 different initial thermal-equilibrium conditions.

2(1.25)D(l —p) 2.5Wa2(l —p) ~

p2 p2 (78)

where 1.25 is the "experimental" (computed) factor
deduced from Fig. 11 and equivalent sites S'»
= S'» = S' are assumed. The above should be rea-
sonably accurate for p» &, but deviations can be
expected at higher densities in view of the depar-
ture from theory seen in Fig. 11.

VI. SUMMARY AND DISCUSSION

This paper has considered hopping on a linear
chain in which no two particles can occupy the same
site, but the particles are otherwise noninteract-
ing. The general case of two inequivalent sites per
unit cell was studied. Classical transition rate
equations were set up and solved both by Monte

mechanism appears to be quite different there and,
in fact, the defects are assumed to move indepen-
dently.

Figure 12 gives the distribution g(x, t) which is
the average probability that a particle has traveled
a distance x in the time t. For the long time Wt
=200, g(x, t) is nearly Gaussian for two decades.
Since the mean square displacement is known from
the above, we can then assert that the normalized
probability distribution has the form

g(x, t) =(2v) ' '(bt) '~' exp[ x'/2(bt)' -'j ('l'f)

for long times, where
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Carlo simulation and, where possible, by analyti-
cal techniques.

The main results are as follows. If a '*mean-

field" equation or solution is defined as one for
which the only effect of forbidden hops to occupied
s ites is to reduce a trans ition rate by the fac tor 1

-n„~ for hops to A, B sites, where n„~ is the
average occupation number, then the bulk conduc-
tivity and diffusion obey mean-field equations for
the special case of equivalent sites n„=n~. How-

ever, there is a major departure from mean-field
behavior for inequivalent sites. The activation en-
ergy for conductivity is increased from its mean-
field value of 4„ to &„+-,(4„—4s) if &„and &s are
barrier heights for jumping out of deep A and
shallow B sites, respectively, and the lattice is
half-filled with exp(4„/ksT)» exp(4s/ksT)» 1.
Conductivity and bulk diffusion, which can be de-
scribed solely by site occupancies, are still con-
nected by the Einstein-Nernst relation for the in-
equivalent site problem so that anything said in

general about one holds for the other as well.
Mean-field theory breaks down completely for the

motion of a single distinguishable particle. The
mean-square displacement x' obeys x'=2(bt)' ' ra-
ther than the diffusive (and mean-field) dependence
x'=2Dt upon time t. This behavior was explained
by a semiquantitative argument which equated the
number of particles which must get pushed into a
region of correlation size $ when a particle moves
the distance x to the rms statistical fluctuation in
the number particles contained in $. The argument
predicted a density and occupation number depen-
dence of b which were verified by the Monte Carlo
results.

The relation between stochastic hopping equations
used here and the nonlinear rate equations used in
Ref. 6 was explored. Only in the case of equivalent
sites, where the nonlinearities cancel out, do the
two methods coincide. In general the site autocor-
relation decays more slowly in the stochastic mod-
el (Fig. 2). There is a much more significant qual-
itative difference for the velocity correlation func-
tion which decays smoothly to zero without oscilla-
tion in Ref. 6 but which, we argued, becomes nega-
tive for times greater than, but not including, zero.
Careful examination of the probabalis tie equations
showed that the velocity correlation has a 5 func-
tion behavior at t = 0 neglected in Ref. 6 but which
in fact just reproduces the mean-field conductivity
in the Kubo formalism.

Let us examine some of the possible conse-
quences of this work for real systems. Much of the
attention will focus on the superionic conductor P-
eucryptite (LiAIS10, with the P-quartz structure).
It has a large ionic conductivity" which has recent-
ly been confirmed in single crystals, "and its

structure" and anisotropy of dielectric constant"
suggest that the conduction takes place dominantly
along 1D channels. Below about 460'C the struc-
ture further suggests inequivalent sites with n~

«nA = 1. We write the "hard-hop" A -B transition
rate as W„s = v, exp( 4„/-ksT), where 4„ is an ap-
propriate activation energy and v, is usually identi-
fied as an attempt frequency which is of the order
of an optical-phonon frequency. (The number of
vacancies in P-eucryptite is temperature indepen-
dent corresponding to p= ~. Thus questions of va-
cancy formation do not enter into consideration of

v, .) Raman scattering" has shown a line at 160
cm ' which was identified with the attempt frequen-
cy. This gives v, =4.8 &&10" sec ', a sensible opti-
cal-phonon value. The thermally activated single-
crystal conductivity" o =o, exp( 6'/keT-), however,
has a preexponential oo=3 x 10' 0 'cm ' at 400'C.
If mean-field theory holds, then 4'= 4„and 0,
=Ne'a'v, /QksT, which converts to v, = 10" sec ' for
the p-eucryptite lattice. There is thus a discre-
pancy of a factor of 200 between the Raman and

mean-field conductivity values of the attempt fre-
quency. This may be partially resolved by noting
that the correct expression from Eqs. (35) and (43)
would give 6'=24„and v, (conductivity) =2v,'~'/
W~„' for W»» W„~ if we assume now that the rate
W» which, for example, could occur by tunneling
without the need for thermal activation is only
weakly temperature dependent compared with the
thermally activated W„s. In the above v, (conduc-
tivity) is the attempt frequency which would be in-
ferred from analyzing the experimental conductivi-
ty with the mean-field formula. Since we expect
Wpg «vp as long as B is a stable equ ilibrium site,
the effect is in the right direction. The single-
crystal conductivity has an activation energy" &'
=0.83 eV, which would give v, /W„s =1.4 &&10' (4„
=-', 4') at 400'C, so it is possible to satisfy both

W~„«vo and W~„» W„~. Clearly it would be de-
sirable to have a Raman measurement of the acti-
vation energy to see if the prediction 4„=-',~' is
borne out.

NMR studies in P-eucryptite have revealed fur-
ther anomalies which are discussed in separate
publications" that make use of some of the results
presented here. Nuclear- relaxation times are
governed by Fourier components of time-correla-
tion functions at the NMR frequency co. Both site
and distinguishable particle correlations are in-
volved. For the latter we have seen that the char-
acteristic decay rate 5 if of the order of Dn„n~- W„s(W„s/Ws„) for long times and p= ~ with ns
«n„=1 [see Eqs. (43) and (76)]. Thus the NMR
correlation time can have an even greater enhance-
ment of the activation energy, by another factor of
1.5 if the temperature dependence of W» is ne-
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glected, than the conductivity has. This leads to a
very slow long time decay at the lower tempera-
tures, a fact which is utilized in Refs. 5 and 8.

It is well known that the slow decay of correla-
tions in 1D can produce anomalous magnetic-reso-
nance line shapes, linewidths, and frequency-de-
pendent relaxation times. " This is true even for
mean-field behavior where the correlations decay
as t ' '. The effect is all the more pronounced
here where the slower t ' ' decay is predicted by
Eq. (77). de Gennes'0 has previously noted that

such decay leads to an + ' ' dependence of the
longitudinal relaxation rate T, ' for ~-0, whereas
the behavior is co ' ' for a t ' ' dependence. In or-
der to observe this, however, the frequency must
be in the range to ~M ~b where t, is a character-
istic time for interchannel hopping which cuts off
the slow decay and b is the previously introduced
slow decay rate. If ~~tp the rate T,' levels off at
a large frequency-independent value, and if »b
only the short-time part of the decay contributes to

T,. Thus one must choose his frequency and tem-
perature range carefully, and it is unlikely that the
conditions have been satisfied in previous work on
P- euc ryptite.

The 1D hopping model with equivalent sites has
also been applied to NMR studies' of organic
charge transfer salts based on tetracyanoquinodi-
methane (TCNQ). A mean-field solution was used
whereby it was predicted that the correlations de-
cay at a rate proportional to 1 —p. The NMR re-
laxation rate for interaction with a density p of
hopping electrons would then have a density depen-
dence given by

(
1 to

cc p (g)t) &&2dt p(1 p)
T). MF p

in the e-0 limit for the mean-field value with a
cutoff time t, . The corresponding prediction here
is

to—cc p (gt) t~dt p (I p)Tl 0

with the dependence of h upon p given by Eq. (70).
In Ref. 9 it was tacitly assumed that t 0'~ 1 —p and
good agreement was thereby obtained with the p de-
pendence of T, for three TCNQ salts. Since t„ in
general, reflects hopping to a chain with different
density (except for p= —,'), the relation t, '~ 1 —p
may not be justified even in mean-field theory.
This combined with what we feel is the inadequacy
of MF may make the agreement found in Ref. 9
somewhat fortuitous.

Repulsion between carriers on different sites,
which canbe important in the ionic conductors
where there is less screening than in electronic
ones, has been neglected here. " It can lead to co-

operative effects which may play a role in the ap-
parent order-disorder transition in P-eucryp-
tite. '" However, the same-site repulsion (as-
sumed to be infinite here) has been shown by itself
to lead to novel effects which suggest new experi-
ments and reinterpretation of some old ones.
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APPENDIX: DETAILS OF MONTE CARLO CALCULATION

We describe how initial conditions are chosen,
how the steps in Eq. (7) are carried out in practice,
and how particles are kept track of when distin-
guishable single-particle properties are computed.

Initial conditions corresponding to thermal equi-
librium are of most interest since they are needed
for calculations of the various thermal-equilibrium
time correlation functions. A common practice in
Monte Carlo calculations" is to start with some
ordered configurations, say all A sites occupied
and all J3 sites unoccupied for p= &, and let the
system come to equilibrium through application of
the hopping equations over a large number of Monte
Carlo steps n. In fact the aim often is to find just
what the equilibrium state is. Here we know (Sec.
III) the static equilibrium properties, and we found
that a great deal of computer time was expended in
reaching thermal equilibrium from an ordered
state. Thus initial conditions were chosen as fol-
lows. For a given P and ratio P„s/Ps„= W„s/Ws„
the thermal-equilibrium state is assumed to be one
in which there are 2Nn„( 2Nns) particles distribu-
ted randomly on A(B) sites where n„s are given in
Sec. III. This state is obtained by generating a
random sequence of the odd numbers 1, 3, . . . , N —1
and then saying that the first N„=—,Nn„of these
numbers are sites for which Ps„= 1 (occupied) and
the next a N(1 —n„) have Pa„=0. The procedure is
repeated with the even numbers 2, 4, . . . ,N to put
N~ = &Nnr, particles at random on the ~NB sites.
Each run starts with a different initial condition
corresponding to the different random sequences.

The hopping Eq. (7) is applied at each "time" in-
terval n by setting each P; =P;, where P; is the
value after all hops at the previous time n —1 are
accounted for. The sites i =1 to N are then ex-
amined. If P; =0, the site is skipped over. If P,
= 1 the site is again skipped over if P; y

P
y

1
since there are no neighboring vacancies into which
the particle at i can hop. If P, =1, P„,=1, and P&,
=0, the random number R is called. If R is greater
thanP;;, the site is skipped over, but if R —P$ j
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a jump occurs and we make the changes P, -P, —1,
P, , -P, , y 1 and set the array element JL(f) = 1

which indicates that the particle which was at site i
jumped to the left. A similar procedure is followed
for Pc=1y Pi-i=ly Pi.i=0. If P&=l and both P„,
and Pg y are zero, a jump occurs if R ~ p;
+p« „and a second random number R' is called
to determine whether the jump was to the left or to
the right. If R'(q the jump is to the right and thus

P, -P, -1, P,„-P,„y1, JR(i}=1; and if R'~q the
jump is to the left with corresponding changes in
the P's and ZL(f) =1. Here we define

so that the probabilities of i i+1 andi i —1
jumps are in the ratio P; „,/P, ;,when both i+1
and i —1 are unoccupied. Note that q =

& in the ab-
sence of a field.

The above procedure is carried out for each of
the N sites in the fixed sequence i =1,2, . . . , ¹ By
using P, rather than P, at each site we avoid having
to call the sites in a random sequence at each time
n. That is, even if a jump occurred from i to i+1
at n, we still take i+1 as unoccupied when it and i
+2 are examined at time n. Thus the order in
which the sites are called does not prejudice the
results. Periodic boundary conditions are assumed
by taking i+1=1 for i =N andi —1=X for i =1.

The method does, however, create the problem
that, at the end of the sequencing, some sites can
be doubly occupied. If, for example P„,=P$

y 1,
P, =0 and JL(i+1)=JR(i —1) = 1 both the particles at
i+1 and i -1 will jump into i, giving P, =2. (When
a jump occurs to i we set P, -P, + 1 rather than P,
=1 or P, =P, +1 so that this effect can be detected
and corrected for. ) Correction is made by examin-
ing each of the sites for double occupancy. If P&

W2, the site is skipped over. If P; =2, the random
number 8' is called. If 8'~ q we say that the hop
to the right is allowed and the one to the left disal-

lowed and thus make the changes P, -P,. —1, P,„
-P,„+1,JL(i+I) =0. Similarly, if R')q, P, -P,
—1, P, , -P, , +1, ZR(i-1)=0. Note that, for ex-
ample, sending a particle back to i+1 does not

create the possibility of i + 1 now being doubly occu-
pied. This is because if an i+1-i jump occurred,
we had to have P,„=1which prevented ani+2-i+1
jump.

After all sites have been examined for possible
hopping and the corrections for double occupancy
have been made, we set P, =P, , JL (i) =JR(f) = 0 and

repeat the procedure for the next time interval n

+1.
Since impenetrable particles on a linear chain

cannot get out of order, once the particle labeled
e =1 is located the location of all others follows

simply by examining site occupancy. The array
L(a} is defined by L(a) =f where i is the site at
which the o. th particle resides If L. (1)=i„ it then
follows that L(2) =i, +s, = f„L(3)=i, is„etc.,
where s is the number of sites one has to move to
the right of i to find an occupied site, i.e. , P, = 0
fabri (i(i is, P, =1 fori =i +s . %'e therefore
only need to keep track of particle number 1. It is
initially located by the convention that it is at the
first occupied odd numbered 4 site. If L(1)=i af
ter time n —1, it is given after time n according to

i if JL (i }=JR (i ) = 0,
L (1)= i + 1 if ZR (i ) = 1,

i 1 if JL(i ) =1.
The computations were carried out on the CDC

7600 computer at Sandia. A typical set of runs
consisted of 4000 particles with the number of time
intervals n =1000 and the number of runs with dif-
ferent initial conditions equal to 40. It would take
about 1 h of central processor time to complete the
4000 x 100 & 40 = 1.6 x 10' individual Monte Carlo
steps, or about 20 p.sec per step.
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