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We consider superparamagnetic particles with cubic anisotropy where the anisotropy constant is negative. It is
found that in the limit of a high barrier for a magnetization reversal, three (and only three) time constants
are needed in order to describe the relaxation rate of an ensemble of such particles. It is further shown that
their ratios tend towards 1:2:3. Asymptotic expressions for this limit are obtained theoretically that depend
exponentially on the barrier height. Numerical computations in a limited region of barrier height give
reasonably close results for all practical purposes. But the asymptotic conditions of a high barrier are not as
yet realized in the region where the computations are carried. Still, the 1:2:3 ratios between the time constants

seem to be confirmed by the numerical results.

I. INTRODUCTION

This study deals with the asymptotic behavior
of the time constants associated with superpara-
magnetic particles with cubic anisotropy where
the anisotropy constant is negative, i.e., the easy
axis is along {111). This paper uses the same as-
sumptions and techniques used in the previous
paper® (to be denoted by EA from now on) which
dealt with a positive cubic anisotropy, i.e., the
easy axis along {100). Moreover, the same nota-
tions will be adopted throughout except when other-
wise stated. In particular, Secs. I, II, and IITA
of EA are followed very closely in the present
paper. In the following we shall take the anisot-
ropy energy density F(6, ¢) to be given by

F (0, ¢) = — 1 K(sin?20 + sin? sin®2¢), with K>0.
(1)

Note that with this definition the p,’s and @ [Eqs.
(6) and (7) of EA] are positive.

The same correction of the numerical calcula-
tions made in EA is applicable here too. The re-
sults of similar computations are plotted in Fig.
1, where the reduced time constants u,, p,, uj,
and Re(p,) are shown as functions of the param-
eter . At @ =12, p, becomes complex (with pg
as its complex conjugate) and it is not plotted for
larger values of &. On the other hand, n,, w,,
and p, are real in the region considered, and they
seem to behave according to the same law. The
computations were carried out up to @ =23, since
larger a@’s require excessive computer time. In
the following sections we shall derive asymptotic
relations between the u,’s and asymptotic expres-
sions as @ -, For this, the same assumptions
as in Sec. IITA of EA will be used.

II. ASYMPTOTIC RELATIONS BETWEEN
TIME CONSTANTS

Considering F(6, ¢) of (1), the minima and max-
ima of the anisotropy potential have exchanged
places with respect to the potential used in EA.
We now have eight equivalent minima situated
along the directions

=1(qQ=1/2
91=COS (3 / )} ¢=%", %Tl’, %,n,’ %TT, (2)
O0,=m7-0,

It is convenient to view them as residing at the
corners of a cube and to divide them into four
groups as shown in Fig. 2: M,—any one of the
minima that for convenience is taken along the
[111] direction; M,—the three minima nearest to
M,; M,—the three minima next nearest to M,;

M ,—the farthest minimum from M,. In this pic-
ture it may be said that the maxima of F sit at
the centers of the cube faces and the saddles at
the middle of the sides.

Considering, as in EA, an ensemble of » uni-
formly magnetized particles with their n represen-
tative points on the unit sphere in the limit a - «,
we denote by #n,, n,, n,, and n,, the fotal number
of representative points in each of the groups of
minima M,, M,, M,, and M,, respectively. We
require that at any time ¢,

Ny + Ny Ny +N, =0, (3)
and impose the initial conditions

n,(t=0)=n, (4a)

ny(t =0) =n4(t =0) =n,(t=0)=0. (4b)

Let v be the probability per unit time for a point
to pass from one minimum to any one of the three

1285



1286 I. EISENSTEIN AND A. AHARONI 16

saaia

L
5

10 15 20
Qa

FIG. 1. Reduced numerically computed time constants
Wy, Mg, 3, and Re(y,) [Eqgs. (6) and (2) of EA] as func-
tions of the reduced barrier energy o [Egs. (7) and (ib)
of EA] for superparamagnetic particles with cubic an-
isotropy whose energy density is given by (1). For «
212, y, is complex. For a—« it is just u;, p,, and y,
that determine the relaxation rate.

surrounding nearest minima. As in EA, we as-
sume that a direct transfer to a farther minimum
is not possible. This leads to the time-rate equa-
tions:

Ny =3vn,—vn,, (5a)
Np=VUN, +3 VN —Vn,, (5b)
Ny=VUN +5 VN, —Vng, (5¢)
Ny=3Vng~vn,, (5d)

where because of (3) one of them is dependent on
the others.

A solution to Egs. (3)-(5) that is of the form of
(2) in EA is

ny=5n(1+3e?1t 4 3e P2t L P 3t) (62)
ny=3n(l+et - etat _ gbat) (6b)
ny=3n(l - e?1t — g2t 1 ebat) (6c)
n,=5n(l = 3¢t 4 3e7b2t _ obat) (6d)
where
O
Notation

@ -minimum M,
O - minima of group M2
@ - minima of group M3
@ minimum M4

FIG. 2. Schematic picture of the minima of the anisot-
ropy potential F(8, ¢) [Eq. (1)] as residing at the corners
of a cube that is bounded by the unit sphere. The sub-
division of the minima into four groups is also shown.
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FIG. 3. Numerically computed ratios of the parame-
ters up of Fig. 1.

P1=§V, p2=2p,, p3=3p,. M

In other words we have the prediction that as o

—~ o, three (and only three) time constants are
needed in order to describe the relaxation process
and that the ratio between them is as given by (7).
Still, as in EA, the remanent magnetization de-
pends on time through p, only. In Fig. 3 we show
the ratios p,/u,(=p,/p)), us/k,(=ps/p,), and
ps/u,(=p,/b,), as computed from the numerical
results. The first two ratios seem to converge
to (7), while the third one keeps growing up as
predicted here.

III. ASYMPTOTIC CONSIDERATIONS o = o
A. Coordinate transformation

In the following we shall exploit the method used
in EA for obtaining asymptotic expressions for
time constants as @ —«, For this it is convenient
to transform by rotation from the (xyz) coordi-

Z/
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FIG. 4. Transformation from the (xyz) to the (x’y’z’)
system [Sec. IIIA]. It is accomplished in two steps, (a),
a rotation by an angle of %w about the z axis that trans-
forms (xy) into (x"y*), (b), a rotation by an angle of
cos™!(3-1/2) about the y” axis that transforms (x"z) into
(x’2’) where y’ =y”.
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nate system into a system (x’y’z’) where the z’
axis coincides with the old [111] direction and the
x’ axis lies in the old x =y plane. The transforma-
tion shown in Fig. 4 is accomplished in two steps:
(a) a rotation by an angle of 7 about the z axis
that transforms (xyz) into (x"9”2”), as shown in
Fig. 4 (z" =z); (b) a rotation by an angle of
cos™(3-1/2) about the y” axis that transforms
(x"9”z”) into (x"y’z’), as shown in the figure (y’
=9”). The matrix of the complete transformation
equals the ordered product of the matrices cor-
responding to the individual transformations.
However, we are interested in the inverse trans-
formation that, after carrying out the calculation,
reads

—~ = —~ =N

1 -1 1 o

x = = =X x
V6 V2 V3
1 1 1

S A ®

1

z vz 0 = z’

- - s ‘]§J < J

Let us denote by @], a;, and aj the direction
cosines of M in the (x'y’z’) system (@} along x’,
etc.). Then the same matrix of Eq. (8) gives their
law of transformation to the direction cosines

a, a, and ¢, of M in the (xyz) system. Writing
the anisotropy potential F [Eq. (1)] in terms of

a,, ¢, and 04,

F=-K(a%o2+ala2+ala?), 9)
we use (8) to express it in the new primed system

F=-2'2Kalaf (3042 - a?) +5(1 - al?)?+ 50/,
(10)

Here and in the following F will denote the aniso-
tropy potential and not a special function in a cer-
tain coordinate system. However we shall use
notations like F (8, ¢) that show the system in which
F is expressed.

Denoting by ¢ and X the polar and azimuthal
angles, respectively, in the primed (x’,y’,z’)
system, we have

a! =siny cosy , (11a)
oy = siny siny , (11b)
af=cosy. (11c)

Substituting (11) into (10) we obtain an expression
for F in terms of § and ¥,

F @, x)=-K[(2'/2/3) sin® cosy cos3X
+1sin%+ 3cos¥p). (12)

The locations of the minima of F as arranged ac-

cording to the groups of Fig. 2 are at the following
(¥, x) values:

(M): =0, x=0;
(M,): $=2sin™(37/%), x=0,5m,57; |
(M): Y=2cos(3/?), x=4u,m, in;
My): Y=m, x=0.

The locations of the saddles between the groups of
minima are at:

(M, =M, ): Pp=sin*(3/?), x=0,%m, ir;

(13)

. _ 4 _ 1. 3 5 7 9 1lo .
(Mz‘M3)~ ‘p—-z‘fl’, X—g",gﬂ,;’",gﬂ,gﬂ,;"',

(M, -M,): p=m -sin(3"1/?), x=3m,7,37,(14)

and the locations of the maxima are at
-1(q-1/ _1 .
Yp=cos™H(3™V?), x=3m,m, 37; (15)
p=m-cos™(31/?), x=0,%m, in.

B. Asymptotic expressions o > o

As in Sec. III of EA we assume quasistationary
conditions with a divergenceless current density
J between the minima, namely,

9

gﬁw(smw,nﬁ;ﬂﬁo. (16)
(Here and in the following we use expressions from
EA where the polar and azimuthal angles 6 and ¢
there should be replaced by ¥ and X here.) Inte-
grating over X from —37 to %ﬂ, and using the
three-fold symmetry of the system and of the ini-
tial conditions about the 2’ axis, we obtain

a3 1/3 . /3
W -'/3J°SInZPdX=-Jx _'/3=0. (17)
Hence,
/3 N
J,sind dx =31=const., (18)
-1/3

where I is the total current of representative
points flowing out of minimum M,, or

I=-n,. (19)

As in EA, we use the following relations, implied
by (12):

F@,x)=F@, -x), (20a)
oF oF
a—x(zp, X) = 'W(‘p’ -X), (20Db)

and the symmetry of the initial conditions. We
shall also assume that
W@,x) =W, -x) (21)

in order to drop the term
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“lio=1/2
/3 oF F bonta I fz sin” " (3 )
— = =—— H{)d
L/g 3y W dx =0 (22) @ W)| e = - 5 6@ [ W) dy,
which appears in (18) by virtue of the expression (30)
for J, [Eq. (14a) in EA]. Finally we obtain where
r/3 9
-6:7 =- f e-BF@(eBFW) sinpdyx . (23) 0<&<2sin(3V2), ¢,=t®,) (31)
(4]
Using the mean value theorem of integral calculus and
[see Egs. (33) and (34) in EA], £-sin"}(371/2) for a-o, (32)

I N s

EET = - SlanEE(eBFW)b, xﬁgj(; e BFdX s (24)
where

0=¢=t@=sm. (25)

Substituting (12) in (24) and carrying out the inte-
gration we get

)
—2—%,— =7 sind 5 (ePTW) y, yr expla (i siny + 5 cos®)]

1/2
X 10(“23 sinﬂzpcoszp) ,0s¢<1in (26)

where I, is the modified Bessel function of the first
kind and zeroth order. Rearranging terms and in-
tegrating over ¥ we obtain

by, Elb2) I b2
@W) | e = = £ CWHW A, @7
where
CW) = exp(3a2!/2 sin®) cosy) 28)

" siny I (302172 sin%) cosy) ’
H@®) =exp[ - @ (322 sin®% cosy + § sin®) + 3 cos™)] .

(29)
In the limit @ -~ « we choose ¥, close enough to
zero and ¥, close enough to (and smaller than)
2 sin"!(3-!/2) [that is, close to the minimum M, at
=0 and the minimum of group M, at (¢ = 2 sin"*(3-*/2),
X =0), respectively] such that a thermal equili-
brium obtains in (0, ¢,) and in @,, 2 sin"}(3"1/2);
X <¥,). Still, ¥, is assumed to obey e-*1
>> ¢ BF 8, X) 5 0-8F3 where F, and F, are the
values of F at the minimum M, and at the saddle
separating ¢, from ¢,, respectively. Analogous
assumption holds for ¥,. Now for a small argu-
ment, I,(z) ~exp(z)~ 1, and for a large argument,
I,(z) ~e®/(2m2)*/2, Hence, H(y) changes much more
rapidly than G(¥) in (¥,,9,) as @ ==, Moreover,
most of the contribution to (27) comes from the
vicinity of the maximum of H(¥) at ¢ = sin™*(3-1/?)
(where a saddle of F exists at x=0). Since H(y)
>0 and G(¥) is continuous in (¢,,¥,), we use the
mean value theorem of integral calculus to take
G () out of the integral sign, and only then approx-
imate %, ~0 and ¥, ~ 2 sin"*(3"1/2). We obtain

In order to evaluate the integral in (30) we note
that

H(¢) =e-BF($.X=O) (33)

so that the path of integration over ¢ with the
limits (0, 2 sin~}(37}/2)) corresponds in the original
coordinate system to a path of integration over 6
with the limits (cos™(3"!/2), —cos™(3-'/2)) and with
¢ =im. This can be readily seen by looking at
Figs. 2 and 3. Formally we can make the trans-
formation

¥ =6 +cos }(3-1/2), (34)
substitute it in H(y) [Eq. (29)] in (30) and obtain

U2, & 1
(eBFW)l wl.tlz == WG(E)
1t/

=-Ccos
x f expl - 2a(sin26+ sin6)] db
cos-1 (3-1/2)

(35)
which can be brought to the form
(eBFW)IZi't:Z=_1T_2'-G(g)e-a/3

-cos™l(3"1/2)
Xf expl $3a(1/3 - cos?6)2]d6 .
/2
(36)
Defining a change of variable,
u=(3 - cos?)?, (37)
we obtain, after some manipulations,
(W) 218 = - s G()ee?
1/9 34

(38)

where
D)= (5 +u"/2)M2/(G +ul/ 22, (39)

We again use the mean value theorem of integral
calculus in order to take D(x) out of the integral
sign in (38). Doing this and carrying out the inte-
gration over the remaining term, we obtain
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T2 - S COD() ™ 52, 60)

where

Osw=3:. (41)

Actually, in all our manipulations from (27) on we
could have kept G(¥) under the integral sign and
take it out only now together with D(x). (So that
only now the integration limits would have been ap-
proximated by their final values.) If we take this
course, then £ and w are not independent but are
related through (34) and (37),

w={3-cos?t+cos(3"1/2)] 2. (42)

When a—«, we use (32) and find

w=¢ fora—w, (43)
This is consistent with (38) and (40) since in the
limit @~ «D(x) is nearly a constant compared
with the remaining term in the integrand in (38),
and most of the contribution to the integral comes
from the vicinity of u= 1.

In order to evaluate the left-hand side in (40) we
look at times ¢~ 0 so that W(,, £,)~0 (that is, n,
~0). We replace I by —n, [Eq. (19)] and use the
same method used in EA to evaluate W(®,,¢,). We
find

2a

(*TW)| 212 =~ 5= ne/s, t~0. (44)

Substituting (44) into (40) we obtain

2y = 8k’ exp(- @)
"‘"'<3nc(g)p(w(g)) IGa) >"1- (45)
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FIG. 5. Ratio of the numerically computed time con-
stant y; [Egs. (6) and (2) of EA] to the asymptotic ex-
pressions (a), (16/9r x2!/2) Io(;?a)exp(—%‘ﬂl)/e)(p(;—,a Mo(ha)
[Eq. 47)], (b), (2/2x2/3r)e-a/12 [Eq. (48)]. The curves
are plotted as functions of the reduced barrier energy «
[Eqgs. (7) and (1b) of EA].

Comparing (45) with (5a) at £ =0, we see that the
expression within the curly brackets in (45) should
equal v =(3/2)p, [by (7)]. Using the relations [Eqgs.
(6), (15), and (16) of EA]

p= @M /v K, K =v/2M8B, (46)
and substituting (32), we obtain

16 I @) exp(-z0)

~ 47)
M1 020m73 expEe) 1,(Za)
Using I,(z),=, e?/(212)"/* we get further
1/2
b o2 X:,,i e/t (48)

This expression resembles Eq. (50) of EA in that
the preexponential factor does not depend on &,
unlike the uniaxial case. The analog of (53) of EA
is

py o [4x 22/30 (ylM  + 1/ynM )] exp(- L)

(49)

that was also independently derived (with a differ-
ent preexponential factor) by Smith and de Ro-
zario.? In Fig. 5 we show the ratios of the numeri-
cally computed p, to (47) and (48). As in EA they
may oscillate before converging into their asymp-
totic value.

IV. DISCUSSION

The discussion at the end of EA related to the
validity of the asymptotic formulas already at the
region of @ considered there apply here too. In

C Cubic
L Negative anisotropy
constant /
r Positive anisotropy
-l constant /
10 | E
T2
s 10°E 3
— F ]
] F
i L Umaxial
<3
107 E
o? | 1 L
0] 5 10 15 20

FIG. 6. Ratio p;/(2/a) as a function of « for the an-
isotropies as marked on the figure.
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particular it may be concluded that in the region
considered here, the approximations a - « and

£ =sin"!(3-*/2) are not as yet a priori applicable
though they give reasonably good practical results.
This causes part of the large deviation of the
curves in Fig. 5 from the value 1, but part of it is
certainly due to the assumption (21). As in EA,
(49) can be obtained by assuming 1> 1/y,M, instead
of (21). The numerical results, however, are ob-
tained for n=1/y,M_.

Considering the expression for E ; [Egs. (1) in
EA], it is obvious that for a given value of @,
asymptotic conditions are realized much earlier
for a uniaxial anisotropy than for cubic anisotropy,
and in the latter case, much earlier for a positive
anisotropy constant than for a negative one. For
example, a value of @ =24 corresponds to E,
=24kT in the uniaxial case and to E,=6 and 2kT
in the cubic cases.

An indication to the applicability of the approxi-
mation @ - © may be the departure from the valid-
ity of the approximation?

Hy oo 2/a (50)

for all three cases. In Fig. 6 we show the ratio
©,/(2/a) for the three cases. It is seen that in
case of a cubic anisotropy with a negative constant
this approximation is excellent up to @~ 10. For
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a positive constant, such a good agreement is ob-
tained only at <3 and for the uniaxial case (50)
is valid only below a¢=0.1.

The difference in the rate of approach to the
asymptotic (@~ =) expressions between the uni-
axial case and the cubic cases does not lie only
with the barrier height. The asymptotic expres-
sions in the cubic cases do not only assume a high
barrier but also assume that the current of repre-
sentative points on the unit sphere is limited to the
very bottom of the potential valleys that connect
the minima through the saddle points. In the uni-
axial case there is no such a limitation. This fact
too gives its contribution to the slow rate of real-
izing asymptotic conditions in the cubic cases.

We may also add that the different arrangement
of the minima in each of the three cases is the
reason for the different number of time constants
that should be taken into account for a higher bar-
rier. It is only one for uniaxial anisotropy and it
is two and three for cubic anisotropy with a posi-
tive and negative constant, respectively.
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