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It is shown that the relaxation rate of superparamagnetic particles with a positive cubic anisotropy is
determined by two (and only two) time constants, in the limit of a high energy-barrier. Their ratio in this
limit tends towards 3/2. These findings are confirmed by numerical calculations that correct for an error in

previous ones. In addition, theoretical expressions for the time constants are derived, which show an

exp(E~/kT) behavior when E~& kT. Here Eff is the barrier energy, T is the absolute temperature, and k is
Boltzmann's constant. The numerical computations give reasonably close results to the theoretical expressions,
but an asymptotic tendency towards them is not as yet identified with full confidence, in the limited region

E~ g 20k T, where these computations were carried out.

I. INTRODUCTION

Small ferromagnetic particles have a uniform
magnetization M that in the absence of an applied
field is directed along some easy axis where the
magnetic anisotropy energy is at a local minimum.
Thermal agitations effect continual fluctuating
changes in the orientation of M and eventually the
flip of M from one such minimum to another,
overcoming an anisotropy energy barrier with
height E~. Here,

1/r p ~f e-Es/NT (4)

since p, «p, . Here T is the absolute temperature,
k is Boltzmann's constant, and

P (P ( ~ ~ ep ( ~ ~ ~

are the eigenvalues of this differential equation.
For a uniaxial anisotropy the differential equa-

tion has been solved numerically, ' and for E~ » kT
it has been found that" the physical system is
governed by only one constant

E~ =KV for uniaxial anisotropy, (1a) fo = 2Kyo(KV/wk T)' ~'/M (5)

&~=-,KV for cubic anisotropy, with K& 0,
(lb}

Es =-' ~K
~
V for cubic anisotropy, with K( 0,

(lc)
where K is the anisotropy energy constant and V is
the particle volume. An ensemble of such par-
ticles is characterized by a relaxation time w with
which the distribution of orientations of M ap-
proaches thermal equilibrium. If w is smaller
than the measuring time of the experiment, the
particles are termed "superparamagnetic. '"

In a spherical coordinate system with 8 and fI)

as the polar and azimuthal angles, respectively,
let us denote by W(8, p, t)dQ the probability that
(at time t) M is oriented within the element of
solid angle dA= sin8d8dp centered at (8, p). Using
the theory of Brownian motion, Brown' has shown
that W is the solution of a certain differential
equation and has the form

W(8, P, t) =A, (8, y)+ Q A„(8, y)e ~~',
n= 1

where A, (8, g) is the Maxwell-Boltzmann dis-
tribution describing thermal equilibrium and
where

where M, is the saturation magnetization and yo
is the gyromagnetic ratio.

The relaxation time associated with large (i.e.,
Es» kT) superparamagnetic particles with cubic
anisotropy has for some time been the subject of
premises only. In the absence of an asymptotic
formula to describe r as Ee/kT- ~, most authors
used the expression (4) for this case too, with f,
taken as a constant or as given by (5). This has
been done in the face of some indications~' that
(4) may not be appropriate for this case.

In this paper we derive an approximate expres-
sion for v' for the case of a cubic anisotropy with
K) 0, namely when the easy axis is along [100].
This expression justifies the use of (4} with a
constant f, when Ee/kT is large enough and seems
to be consistent with a numerical solution of
Brown's differential equation which corrects for
an error that fell in previous calculations. " It
will be shown, however, that one should take into
account P, as well as p„since the assumption
p, » p, does not hold here, although p, » p, still
holds.

II. NUMERICAL CALCULATIONS AND RESULTS

In the numerical calculations, the reduced time
constants
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u =(2M.b~p [Re(i,)& Re(i,) tf a&I] (6}

were computed as functions of the parameter

n =KVIkT,

which is proportional to the barrier energy E3
[Eqs. (1)]. The method of computation has al-
ready been described before" and we shall repeat
it only to the extent needed to correct for the error
that fell in the previous work. After the anisotropy
energy density

IO

IO

F(8, P) = —,
' K(sin'28+ sin48 sin'2P) (6)

is substituted into Brown's differential equation, '
the equation is converted into a time-independent
eigenequation whose eigenvalues are

IO
I 10 l5 20

These are found by expanding the corresponding
eigenfunctions 4, (8, g) according to

e,. (e, y)=p „.z;(t:oae)e'- (10)

and using matrix algebra. Here, the P, are the
associated Legendre functions of the first kind
and the c„are complex constants. The error
in the previous calculations consisted in limiting
the values of m to the range

0 —m —l,
whereas the range

0 —l, —l —m —l (12}

III. ASYMPTOTIC BEHAVIOR, n~-
A. General

Consider an ensemble of uniformly magnetized
particles whose magnetization vectors M (with

should have been taken, as is done here. In Fig. 1
we show the results of computing p,„p.„and
Re(p, ). Whereas p, and p, are real, p, becomes
complex above n = 5 and Re(p,,) becomes much
larger than p, as n grows up. (Note that the
matrix diagonalized is real so that its complex
eigenvalues occur in complex conjugate pairs).
On the other hand, p., and p., seem to obey the
same law. The computations here were carried
out up to n = 20, since for larger values of e an
excessive computer time would have been needed.
It should be noted that for small values of n the
previous results" do not differ much from the
present ones. Thus, at e =1 there is only a
0.25% deviation. But at n =10 and n =20 the
deviations are already I and 30%, respectively.
This fact leaves the conclusions of Krop et al.'
unchanged.

FIG. i. Reduced numerically computed time constants
p&, ~, and p3. [Eqs. (6) and (2)] as functions of the re-
duced barrier energy n [Eqs. (7) and (ib)] for superpara-
magnetic particles with cubic anisotropy where the an-
isotropy constant is K & 0. For e ~ 5, p& becomes com-
plex and Re(p3) is instead plotted. For o. » i, only p& and

~ determine the relaxation rate.

M, constant) can be represented by points on the
unit sphere. These points move under the in-
fluence of the cubic anisotropy potential F(8, p)
[Eq. (8)] and of thermal agitations, against
dissipation forces characterized by a constant g.
They describe a Brownian motion whose statistics
is governed by Brown's differential equation that
can be put in the form of a continuity equation'

W +V ~ J=O.
8t (13)

Here J is a surface current density of points on
the unit sphere whose components are'

Jg = — h' —— . —W-k' —,, 8F g' 8F, 8W
88 sin& 8(t} 88 ' (14a}

with

I/Po+ rPM', '
yoqM

'
p

(15)

P=VjkT . (16)
In (13) the operator V is expressed in spherical
coordinates with the radial term omitted. In (14)
the terms containing g' constitute a gyromagnetic
current density and in the following we shall as-
sume the dissipation constant q to be given by'

, 8F h' 8F k' 8W
J~ = — g' —+ . —W — . —,(14b)88 sin8 8$ sin8

where



1280 I. EISENSTEIN AND A. AHARONI 16

0=1/y, M, ~k'=g'=y, /2M, .
In the limit a —~ (i.e., Es» kT) we assume that
a quasistationary state prevails. ' More specifical-
ly, we assume that most of the representative
points on the unit sphere are concentrated at the
energy minima of the anisotropy potential where
they are under conditions of thermal equilibrium
and where W coincides with the Maxwell-Boltz-
mann distribution. Only a small fraction of the
points is outside the energy minima allowing a
small diffusion current between them that mani-
fests the nonequilibrium conditions. However, we
assume that the state is quasistationary in that
betueen the energy minima

aw—=0.
8t

Hence, by the continuity equation (13),
v.Z= 0. (19)

In the following we shall use (19) to obtain asymp-
totic (i.e., o —~) expressions for the p, 's that are
important in the relaxation process. In order to
see what these are we shall repeat here, for com-
pleteness, a calculation that was misinterpreted
in Ref. 5 due to the wrong numerical results.

B. Relations between time constants

Considering the anisotropy potential E(eg) [Eq.
(8)], there are six minima. Two of them are at
8=0 and 8=m, and will be denotedbyM, and M,
respectively. The other four minima. are at 8
= —,'m with /=0, &m, n, &n and will be denotedby
M, . Let n be the number of points in the ensemble.
Since we assume n - ~, practically all points are
concentrated at the energy minima. Their numbers
in the minima M, and M, will be denoted by n, and
n, respectively, and their total number in the four
minima M, by n, . Since the number of points in
the ensemble is constant, we require that at any
time t

is because o. being large and the current density
small, the outgoing points are channeled into the
nearby minima by the shape of the potential.
Taking into account the symmetry of the minima
and of the initial conditions (21) (noting, in par-
ticular, that the net transfer of points among the
minima M, themselves vanishes), we obtain the
equations

~ ]
n~ = 4 vn2 —vnj y

1n = 4Vn —Vn3 .4 (22b)

n, =-'n(I 3+e "'+2e '2'),

n, = —'n(l —e ~~'),

n =-'n(1 —3e ~&'+2e ~2')
3

where

(23a)

(23b)

(23c)

(24)P&
—vr Pp ——,Px

In other words, (23) and (24) predict that as n —~,
theo (and only two) time constants are needed in
order to describe the evolution of the system with
time, and that the ratio between them is as given
by (24). These predictions seem to be fulfilled by
the numerical results. In Fig. 2 we show the
»ttos p, /V, (=P,/P 1 and Re(p )/p f = &e(P )/P 1

as functions of n. Whereas the first ratio seems
to converge to the value —,', the second one keeps
increasing rapidly. Hence, as a» , the terms

F~~/i

The corresponding equation for n, is obtained by
differentiating (20) with respect to f and using (22).
Equations (20)-(22) have a solution of the form (2)
that reads

n~ + n2 + n3 = n (20)

and we shall further impose the initial conditions

n, (t=0) =n,

n, (f=o) =n, (f=o)=0.
(21a)

(21b)

Let v be the probability per unit time for a point to
pass from one energy minimum to any of the four
nearest ones. We shall assume that a point ar-
riving at a farther minimum (separated by an
angle of w rather than —,'v, e.g. , from M, to M, )
must first pass through a nearby minimum, par-
ticipate in the thermal equilibrium there, and
only then may go to the following minimum. This

IO 20

FIG. 2. Numerically computed ratios p2/p& and p3/p&
as functions of n. The p. s and n are the same as in
Fig. i.
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with i &2 in Eq. (2) decay very rapidly to zero and

do not influence the relaxation process.

C. Asymptotic expressions n~-

Returning to Eq. (19), we write it in the form

1 8 1 8—(sin8J~)+ . —J~ =0 .
sin8 88 sin8 8$

Integrating over (t) from ——,'n to —,'m, we get

(25)

r/4
J~ sin8dg. = —J~88 /4

e

g=r/4

C =-r/4
(26)

but since the system and the initial conditions are
symmetric under a rotation of —,'m in the azimuthal
plane, the right-hand side of (26} vanishes, and
we have

~

~

r/4
J, sin8df =-,'I = const.

r /4
(27)

Here I is the total current of points flowing out of
minimum M„namely,

I=-n (26)

w(8, y) = w(8, 4 } . (30)

This assumption will be further discussed in Sec.
IV.

On the other hand, (8} implies

—(8, 0)= ——(8, —0)
ez aZ

(31)

so that

Using (14c), (15), and (16), Eq. (27) becomes

8F aW P el
P —W+ —— . —W sin8dg .4k', / &8 8 sin8 &p

(29)

Since E(8, p) and the initial conditions are sym-
metric under the transformation (t) - —p, we shall
assume that W is also symmetric under this trans-
formation, namely,

this region so that we may use the mean value
theorem of integral calculus in order to write

, = —2 sin8 —(e W)~ o ~ ~
BF

r/C
e srdg, (34)

where ( is a function of 8 and must exist in the
region

0( g( ~~ (35)

Substituting (6) in (34), defining a variable u
=- sin'2p and integrating over u one obtains

I
4k' 88

= ——, vsin8 —(e W), ~

e„e-ne, &

(e"w)
8j, g= $(eg)

82
G(8) exp(-,' a sin'28)d8,

7f g

where

(38)G(8) = exp(-', n sin~8)/sin8I, (-', a sin~8),

and where we look at 0& 8, ~ 8 8, & —,'71. Follow-
ing Brown, ' 8, and 8, are chosen close enough to
0 and ~m, respectively, so that a thermal equi-
librium exists in (0, 8,) and in (8„-,'v, p & 8,) (that
is, in minimum M, and the minimaM, ). Still,
when a —~ 8, is assumed (by choice) to obey
e 8~&00~»e ' "~"»e ' 2 where', is the value
of E at the saddle point (8= —,'w, P =0) separating
8j and 8, . Analogous as sumption holds for 8, .
The mean value theorem is again applicable and
we have

82, g(8 )(e"w)
8q, C(8~)

, G(() exp(-,'o. sin'28)d8,2''
8g

x exp[ ——,
' o.(sin'28+ —,

' sin'8) ]I,(-', n sin'8),

(36)

where I, is the modified Bessel function of the
first kind and zeroth order, and where a use has
been made of (7} and (16}. Rearranging terms and

integrating over 8 we have

r /4 —W d(t) =0 .

Hence,

(32} where

8 mfa 8

(39)

(40)

I
4k'

eE 8W
a8 e8P —W + —sin8 dp

r/4
= —2 e e"—(e~~w) sin&de.88 (33)

Now, W coincides with the Maxwell-Boltzmann
distribution inside the potential minima and is
small between them. We shall assume that it is
a well-behaved function so that S(ee~w)/88 is con-
tinuous in the region 0» p ~ —,'w. Also e ~~&0 in

82, f2
(e'FW )

where

I= —4, G(() exp(-', o.)I,(-', o.), (41)

g,. -=K(8,.) and 0 & $ & —.
'

v .

Fo." a small argument, I,(e) -e*-l, and in the

(42)

With due care to the singularity of ]./sin8 at 8=0,
we shall now impose 8y 0 and 82 z7f Carrying
out the integration
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limit of a large argument, I,(z) - e'/(2wz)' ~', so
that when a —~, G(8) changes much more slowly
than exp(-,'o, sin'28) in (8„8,). In this limit, most
of the contribution to the integral in (37) comes
from the region near 8= —,'e [where exp( —,'a sin228)
has a maximum that corresponds to the saddle of
E(8, P) at (8 = —,'w, P =0)] so that we expect $ to
approach —,'w as n -~. In order to evaluate the
left-hand side of (41) we consider times I-0 (al-
though this assumption is not essential for the
derivation) so that W(8„(,) -0 [Eqs. (21)]. For
0 » 8~ 8„W coincides with the Maxwell-Boltz-
mann distribution

8

1.5

O

E
I

I

10
I

I5 20

~a 4
(e'~w) = —c, (44)

W(8, y)=CexpI, p[F(8—, $) —F(0, 0)]], 0~8~8, ,

(43)

where C is a constant. Hence,

FIG. 3. Ratio of the numerically computed time con-
stant p& [Eqs. (6) and (2)] to the asymptotic expressions
(a), (4/7r x 2)i/2)10( i n)/exp(&5m)I(}(I&a) [Eq. (49)], (b),
(4/7t)2' e [Eq. (50)]. The curves are plotted as func-
tions of the reduced barrier energy o. [Eqs. (7) and (1.b)].

n, =(v/n)C . (46)

Using (28), (41), (44), and (46), we have

n, = —[(4k'n/w)/G(t) exp(-,' n) I,(-,
' n)]n, .

Comparing with (22a) at I=0 [i.e., using (21)], we
see that the coefficient of n, in (47) equals v (=p,}.
Hence, by (6), (15), and (16),

(47)

&1 =(4/~)/G(&)exp(8o)IO(eo), «h& ~2~, (48)

and by (24),
302=a Pg-

With the same justification discussed after Eq.
(42), we first approximate (48) by taking t' = -,'v.
After substituting from (38),

p,, ~„(4/v x 2' ~')I,(a/32)/exp(, &)I,(-', o1),

(49)

or, using Io(z)-e'/(2wz)'~' for z- ~,

(4/7r)2' 'e ' 4 (50)

since F(0, 0}=0 [Eq. (8)]. Now, by (43)

8~ 2T

n~ = d8 de}C exp —p E 8, (II)
-I' Q, Q sin8,

0 0

(45)

where PF contains o. as a factor [Eqs. (7), (8), and
(16)]. As a - ~, the exponential function in (45)
decreases rapidly as 8 grows above zero. A good
approximation is then obtained for the integral if
for a given p we expand I in a Taylor's series
about 8= 0 up to the 8' term, replace sin8 by 8,
and 8, by infinity. The integral obtained does not
depend on P and we get

This is different from the asymptotic formula for
a uniaxial anisotropy,

i1,,(uniaxial) ~„4(n/w)'~'e ", (51)

in the different values of Ez [Eq. (1)] in the ex-
ponential function and in the preexponential factor.
The ratios of the numerically computed p, , to the
expressions (49) and (50) are shown in Fig. 3 in
curves (a) and (b), respectively. We see that
although the ratios are rather close to 1.0 al-
ready at a-5, there is some overshoot, and they
do not quite seem to converge to this value at the
vicinity of a =20. But when one is interested in
the order of magnitude only, which is very often
the case, the approximations (49) and (50) are
more or less equivalent and hold down to a
as low as 1. If (15) is not assumed, then

k' = q/P(1/y', + q'M2),

so that (50) transforms to

(52)

p, ,~„[8 x 2' ~'/x(y, q M, + 1/y, rgb, ) ] exp(- -,' a) .
(53)

IV. DISCUSSION

The underlying assumption that leads to Eqs.
(23), (24), and (41) is that n is large enough in
order that our ensemble is under quasistationary
conditions [ with (41) augmented with assumption
(30)]. This seems to be justified already at o. =20
by the numerical results as mentioned in Sec. IIIB
[ Eq. (24) and Fig. 2] . It is consistent with the
case of a uniaxial anisotropy since at a =20,
Ez/kT = 5 [Eq. (lb}] which corresponds to n =5
in the uniaxial case where the above assumption
was shown to be well justified. ' The passage from
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(41) to (48) can also be considered as justified by
the uniaxial analogy' since the same approxima-
tions are used successfully in that case.

However, the derivation of (49) and (50) contains
another approximation related to the shape of the
anisotropy potential. Whether the approximation
g = 4w is good enough depends on whether the max-
imum of the term exp( —,'a sin228) in (37) is high
and sharp enough relative to the other terms in
the integrand. Due to the G(e) term that comes
through the g dependence of F [see Eqs. (33)-
(38)], these requirements are not as easily ful-
filled as in the uniaxial case. Although by Fig. 3
the approximation is rather good, the curves
probably overshoot the value of 1 and only then
(or through further oscillations) approach it
asymptotically. Another cause for the deviation
of (50) from the numerical results is probably
assumption (30) that amounts to dropping the
gyroscopic contribution to the total polar cur-
rent. Thus, instead of (30) one can assume g'
«h' (or q» I/y, M,) and obtain (53) after minor
changes in the calculations. The numerical re-
sults, however, were obtained for g'=h' and ac-
cording to Fig. 3 it is seen that the difference is
not large. Moreover, dropping (30) does not
change the dependence of p,, on e and thus cannot
make the slope of curve (b) in Fig. 3 approach the
asymptotic convergence. This can be seen in a
recent work by Smith and de Rozario that came
to our knowledge after completing our calcula-
tions. Using a different approach, they obtain the
same dependence on a with a different pre-ex-
ponential factor that formally tends to our result
for a large dissipation. Their results indeed show
that generally (30) is not fulfilled.

In Fig. 4 we show the value of $ for which the
relation (48) holds as a function of a. It so happens
that for each numerically computed value of p, (a)
there exist two values of $(a) that fulfill (48). One
value decreases rather quickly as a increases (at
a = 20 it is less than 25'), and the other one is
shown in Fig. 4. One cannot tell from the figure
whether it is going to converge to 4m.

Concerning the passage from (49) to (50), this
is certainly not justified a priori for n & 32. In-
deed we see that curves (a) and (b) representing
(49) and (50) in Fig. 3 do not seem to converge
into one another at 0. «20 as they should do for
e -~. This fact may show that we should not

75

65-

45
5

I

IO

I

l5 20

FIG. 4. Value of the angle $ that satisfies the formula
p f (4/x)1G {$)exp(-'n)IO(-'n) [Eq. {48)j as a function of
Here p& and ~ are the same as in Fig. (3), and G{$) is
defined in (38).

worry too much about their nonconvergence into
the value of 1 in the region considered. But at
all events the formulas give a reasonably practical
approximation in this region.

To conclude, we want to comment on the depen-
dence of the relaxation process on two time con-
stants rather than one [Eqs. (23)]. Consider an
assembly of small noninteracting ferromagnetic
particles with cubic anisotropy that is represented
by the ensemble discussed in the foregoing. Sup-
pose that all particles are aligned with their [001]
axes in the same direction and that they are mag-
netized in this direction by means of a large mag-
netic field. Suppose further that at time t=0 the
magnetic field is switched off and the remanent
magnetization M„ is measured as a function of
time. According to the discussion in Sec. III B,

M„=M,(n, —n )n,
and according to (23)I =~ e-~~~

8

(54)

(55)

which is independent of p, .
The second time constant p, can be measured if

an experiment is contrived which determines some
other combination of the n, 's.
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