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A self-consistent Hartree approximation for the random Ginzburg-Landau model is used to calculate the
susceptibility, the magnetic specific heat, and the critical dynamics of a random magnet. The effect of the
quartic interaction on the above properties is studied in relation to the Gaussian approximation. The main
features of the present calculation are in qualitative agreement with the experimental data on random magnets.

I. INTRODUCTION

The problem of random magnets has been active-
ly investigated in the recent years from both the-
oretical and experimental points of view.!™*

The category of random magnets includes sys-
tems with quenched disorder where atomic mo-
ments are randomly arranged in space. In amor-
phous magnets the moments are assumed to have
nearest-neighbor interactions and the disorder is
usually described by an Ising system with randomly
removed bonds. In a spin glass the randomly dis-
tributed spins are interacting via a long-range
oscillatory Rudermann-Kittel-Kasuya-Yosida
(RKKY) interaction. The theoretical approaches
for spin glasses were mainly concerned with the
existence and definition of an order parameter
which describes an onset of spin ordering.® In
spite of being successful in explaining the observed
cusplike susceptibility, the specific-heat behavior
predicted by these theories (cusplike or divergent)
seems to be in contradiction with the experiments.

A different theoretical approach which is mainly
concerned with the fluctuations of the order param-
eter is the one based on the Ginzburg-Landau (GL)
free-energy functional. The latter formalism has
been thoroughly studied via the renormalization-
group techniques to explain the nature of the phase
transition in random Ising model with quenched
disorder.*

In the present work we use the so-called random
Ginzburg-Landau model, originally suggested by
Larkin and Ovchinnikov® for inhomogeneous super-
conductors, and later adapted to amorphous mag-
nets by Shapero et al.? to treat random magnets
above the ordering temperature. The latter auth-
ors have found a cusp in the susceptibility, using
a Gaussian approximation which completely neg-
lects the effect of the quartic term in the free-
energy (GL) functional:

Flm]= fdax{A(?{)m()’()2+Bm(§)"

+C [Vm(%))?}, (1.1)

where the order parameter m(X) represents the
magnetization averaged over a region of radius

L surrounding the point X, where a <L <£(T), a
and £(T) being the lattice spacing and the tem-
perature-dependent (GL) correlation length, re-
spectively. B and C are the usual temperature-
independent (GL) parameters with C = £, &, being
the T-independent (GL) correlation length. In Eq.
(1.1) A(X) =A,+6A(X), where 8A(X) is a Gaussian
variable which phenomenologically represents
the local fluctuations of the spin-spin interaction.
This quantity 8A(X) is proportional to the fluctua-
tion of the local field 3¢(X) acting at the spin site
% and averaged in a similar way as m(X). In the
case of amorphous magnets, the A(X) fluctuations
are due to the effect of the structural disorder on
the short-range spin-spin interactions, whereas
in the spin glasses the magnetic-impurities dis-
order combined with the long-range RKKY inter-
action is the origin of 64(%).°

In our notation A,=7/T,,- 1=€, where T,, is the
transition temperature of the homogeneous model
(A =A,) which corresponds to a uniform distribu-
tion of the magnetic atoms of a given concentration
in the Gaussian approximation (B =0).

The results of our calculation, in particular the
persisting cusplike susceptibility associated with
a possible broad peak of the magnetic specific heat
point to ana posteriori justification for the appli-
cability of the suggested model also to spin glasses.

Although our main interest is in the static prop-
erties of a random magnet we present here a dy-
namic generalization of the model introduced in
Ref. 2 taking into account the quartic term. With-
in Hartree approximation which properly includes
the screening effect” on the random field 84 (%)
we calculate self-consistently the configurationally
averaged propagator of the order parameter. Us-
ing this propagator we derive the T dependence of
the relaxation rate of the critical slowing down TI",
and the magnetic specific heat C,,. Moreover, we
calculate the § =0 dynamic form factor which ex-
hibits a central peak and finally, the §-integrated
form factor related to the NMR experiment. The
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main new feature of our work is to investigate the
effect of the quartic term on the above quantities
relative to the Gaussian approximation.

The outline of the paper is as follows: In Sec.
II we define the general Hartree-random (HR)
model; Sec. III is devoted to the static (w =0)
properties of the HR model and the w dependence
is discussed in Sec. IV. The numerical results
are presented together with the analytical calcula-
tions in Secs. III and IV.

1. HARTREE-RANDOM MODEL

As a generalization of the random magnets the-
ory of Shapero et al.? the local time-dependent
susceptibility g(X,X’, t) obeys, in Hartree approxi-
mation, the fcllowing equation

{a/at+v[A(R) +2B(m(Xk,)®) +CV?]}g(X, %', 1)
=Tyd(X-%')6(1), (2.1)

where y =8T,, /m. Treating 6A(X) perturbationally,
and performing a configurational average on
g(X%,%’,f) we define an averaged translational in-
variant propagator G(X ~%', )

G(X=-%,1)=(g(X,%,1), (2.2)

which obeys the diagrammatic equation given by
Fig. 1(a). The full thin lines represent the dy-
namical propagator of the Gaussian-homogeneous
(GH) model (B=0,A =A,) which in (§, w) space has
the expression

Go(Q,w)=T(q%t2+e —id)™*, (2.3)

where @ =w/y.
The full dynamic propagator is written, as usual
in the (§, w) space, as
G4, w) =G (q,w) +Z(§, w), (2.4)

where the self-energy =({,w) is according to Fig.

Glx=x.t=0) ’5_
G 6o GOO 6 6 "é 6 %VG (a)
= + +
(1) (2) (3) (4)
/’if:\ TSN (b)

(1) (2)

FIG. 1. (a) Diagrammatic Dyson equation for the con-
figurationally averaged dynamic Green’s function G. The
thin full lines represent the GH propagator; the bold lines
are for the full propagators; the interrupted lines repre-
sent the frozen disorder correlation function; v contains
the screening correction. (b) Two typical self-energy
diagrams appearing in the averaging process for .

1(a)
2(§,w) =(B/T)G(X=%",t=0)

- T"32m)"3 fdaq'S(a -q')

XvA(q-9)G(q,w).
(2.5)

In Eq. (2.5) S(g) is the Fourier transform of the
correlation function of 84 (%),

(6A(X) 8A (X)), =(6T2), /TZ,)
X exp(—|% -%'|2/A?), (2.6)

where 6T,(X) is proportional to §3¢(X), and A is
the correlation length of the frozen disorder of
impurities sites. The screening of 84 (X) fluctua-
tions due to the interactions of m(X,t) (B term)

is taken into account via the quantity v(g). The
three-dimensional expression of v(q) was pre-
viously calculated by Ferrell and Scalapino’ and
its dimensionless form appropriate to our frame-
work is given below by Eq. (2.13).

In the process of configurational average we
discarded crossing diagrams [Fig. 1(b,)] relative
to noncrossing diagrams [Fig. 1(b,)] since even
in Gaussian case (B =0) Z,,/Z,, =(x/27) In(2e/k)
«1 in the critical region. The dimensionless
quantity k is related to the temperature-dependent
inverse correlation length k =£(T)"',, and is
defined as

K*=e +T3(0,0). @.7)

We calculate the quantity G(X=%’,¢=0) as follows:
- T
% 4=0)= —L 3 (m2.2, ,.2)-1
G(X=%",t=0) TE fd q(QPE2+k?)

=(T/2a%£3) (1 =7k/2), (2.8)

where in the integration process we used a mo-
mentum cutoff £;. Using the above result and Eq.
(2.5), the zero-momentum self-energy = (0, w)
Qbeys the equation

TZ(0,w)=(T/Teo)w(—k +2/m)

AT [ qPdge”* Mliy(g)?
2m2T2 )0 qPEE+e+TE(q,w) —id °

(2.9)

In Eq. (2.9) the parameter w, proportional to the
strength of the quartic interaction, is defined by

w =BT,,/21E}. (2.10)

This quantity is related to the so-called Ginzburg
critical width Ae;,Ae; =8w?2®

With the usual approximation Z({, w)=~2 (0, w) in
Eq. (2.9) we define a frequency- (w) dependent
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quantity z (w),

22=€+T20,w) -i®. (2.11)

In the w =0 limit z is obviously identified with the
dimensionless temperature-dependent inverse
correlation length k defined by Eq. (2.7). Using
Egs. (2.7), (2.9), and (2.11) we obtain the follow-
ing self-consistent equation for z(w)

22=w(T/T.,) (2/1 = k) +(e —id)

_ 20 J"“’ 2e=t?y(t; k)2
7172 A Z122/r?

dt, (2.12)

where » =2¢,/x and a =2((67T2),/TZ,)/r?. The ex-
plicit expression of v(t; k) is given by

v(t; k) =[1+@T/rT,,) tan™rt/2¢) /).  (2.13)

In order to solve Eq. (2.12) for Rez(w) and Imz (w)
for a given set of parameters w, v, a, and €, we
need the value of k =Rez(w =0). This quantity «
and another static (w =0) property of the Hartree-
random model will be discussed in Sec. IIL

III. STATIC PROPERTIES OF THE HR MODEL

Putting ® =0 and replacing z by k in Eq. (2.12)
we obtain the self-consistent equation for « which
should be solved numerically. Before this we
would like to discuss two simple limiting cases
which can be solved analytically.

A. Gaussian-random model (w=0)

In the absence of the interaction between the
fluctuations (B =0) the Ginzburg critical width
is zero and consequently v@ =0) =1, In this case
the self-consistent integral equation (2.12) becomes
simply algebraic

K2 =€ —a[1 =72 (ks /r) exp(k2 /r?) erfe(kg /7)],
(3.1)
where erfc(x) is the usual error function.® In order
to investigate the behavior of the «; solutions in

the vicinity of the ordering temperature, where
we expect k; «<1, we approximate (Ref. 9)

xe**erfe(x)~x(1 - 2x/1'2) + O (x?) .

Then Eq. (3.1) becomes quadratic with real posi-
tive solutions k, =S = ar (1'/2/2)/(r?+ 2a) for any
e =€, where

S=a[l-m/4)a/r?+2a)]. (3.2)

In any practical cases a/7%«1 and €§ ~@.'° In
the vicinity of €¢, k; behaves like

ko /K =1+[(e = €5) /(o — €5)]2. (3.3)

The exact numerical calculation of k; via Eq. (3.1)
shows that the value of k; at € =€¢ is finite and

very close to kS calculated above. The apparent
divergence of dx,/dT [see Eq. (3.3)] seems to be
an artifact of the approximation used for &’ erfe(x).
Since k;' is not divergent as in a real phase tran-
sition, neglecting higher terms in the e**erfe(x)
expansion is asymptotically incorrect. For any
practical range of temperatures, the behavior

of k; will be assumed to be given by Eq. (3.3), and
the “divergence” seen in the magnetic specific
heat, and the nuclear relaxation rate in the Gaus-
sian-random (GR) model should be taken within
the above assumption.

B. Hartree-homogeneous model (a=0)

Assuming a homogeneous distribution of the
magnetic impurities, the local field 3¢(X) does
not fluctuate and then 67, =0. In this case o =0
and the self-consistent equation for « in the Har-
tree-homogeneous (HH) model is simply quadratic

K2+ w(e+1) Kk, —[e +(2/mMw(e+1)]=0. (3.4)

This equation allows real non-negative solutions

k, >0 only for e =€ | where € =-2w /(1 +2w).
Therefore, for any finite w (critical width 8w?)
there is a different (negative) shift in the ordering
temperature. In order to see the critical behavior
of k, and other different static quantities as a func-
tion of the reduced temperature relative to every
T.(w) we define 7 =T /T, w) — 1 and easily obtain

T2 forw =0,

Ky(T) = (77_+2ﬂ> (3.5)
mw

7 for T« 1 and w #0.

Then in HH model the temperature-dependent
inverse correlation length always goes to zero at
T.w) as T - T,w) [except in the case w =0 (GH
model) when «~(T —T,,)*/?]. This fact leads to

a divergence of £(T) at T.(w), which is associated,
as usual, with a real phase transition. In Sec.

IIIE we shall see how the randomness affects these
results, i.e., the disappearance of the sharp phase
transition existing in the homogeneous case(s).

C. Critical slowing down

The relaxation rate of the critical slowing down
of the order parameter I' is calculated via Suzuki-
Igarashi!! formula

I '=[G(0,0)/yT][1 =y ToZ(0,w)/8Gw) |y .
(3.6)

The first factor on the right-hand side of Eq. (3.6)
represents the conventional slowing down I'_} |
and is proportional via G(0,0) to k2. Performing
the derivative of both sizes of Eq. (2.9) with

2(§q, w) replaced by = (0, w) in the integrand, and
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taking the limit w—0, we obtain the following re-
sult!?:

r 8, 20 J’“’ 2e~t?u(t; k)? > 3.7
Tco_ pad <1— T2y2 ) (k2 dat). (3.7)

Since k remains finite for any a+#0 (see below the
numerical results for w+#0 case), the conventional
relaxation rate of the order parameter T, =(8/
m) T.,k” is always finite in the random case.

As before, the w =0, ¢+0 case (GR model) can
be solved analytically and the I'; expression is
given by

Tg/Too=(4/m)k2{1+[(e — a)/kE]
+2[(e —k2)/r2]}. (3.8)

In the derivation of the expression (3.8) we used
the self-consistent equation for k; [Eq. (3.1)]. It
can be verified that, if @ =0, Eq. (3.1) gives k& =¢
and from Eq. (3.8) we have immediately T';/T,,
=(8/m) e, the well-known result of the GH model.

The 4 =0, w =0 configurationally averaged sus-
ceptibility (x(0, 0))., which is proportional to I';} ,
remains finite even at T =T, since k>0 at this
temperature. In Sec. III E we will see that for any
a+#0 we obtain a cusplike behavior for (x(0, 0)),,
even for very strong interaction between the fluc-
tuations of the order parameter.

On the other hand, in o =0,w #0 case (HH model)
the relaxation rate is given by the conventional one
and equals (8/7)kZ. Since k, =0 at T =T .w), the
relaxation rate I';, as a function of 7, approaches
zero with a zero slope, except for the w =0 case,
when the slope is finite and equal to 8/7. [See Eq.
(3.5)].

D. Specific heat

The configurationally averaged magnetic part of
the entropy {S,,). is calculated via the order param-
eter with the formula

3Ao

220 [ ax(m(@) (3.9)

(S’"}c =
where as usual we neglect a term proportional to
Jd*x{{F)), which is not “critical” in the vicinity
of T..'® Using, as before, a momentum cutoff
£;1 we have

(Smde =

go! 2
v T fo _g°dq _ (3.10)
(\]

T2 Teo gP eIk

The magnetic part of the specific heat C,, is cal-
culated easily from Eq. (3.10) with the result:
£3C = (T/4nTeo) [(k —2/7) + T(dk/dT)] . (3.11)

Replacing z by « and putting w =0, and taking the
derivative with respect to T of Eq. (2.12) we have

o 9K _ 1+w[(2/m) =k +(2a/r) Ii(k)]
eo aTr (2Kr/rconv)+w(T/Tco)[(8a/rz)Iz(K)+1] ’
(3.12)
with I'/T',,, given by the expression in the large

parentheses of the right-hand side of Eq. (3.7).
The integral expression for I,(k) and I,(k) are given
by

= 2te~t*tan~Y(rt/2«)

II(K) =17-1/2 J; t2+K2/72 [V(t; K)]adt ’
(3.13a3)
N tze_tz RYE
Iz(K) =g~/ J; (t2+K2/7’2) (t2+4K2/1'2) [V(t, K)] dt.
(3.13b)

As we pointed out before, in the w =0 case, dk/dT
~(T =T,)"'/2 as T~T, and the magnetic specific
heat C,, diverges with the critical exponent 3.*
The fact that, in general case (w, a#0), neither

k nor T" approach zero as T—~T,, will prevent the
divergence of C,,. Moreover we shall see in the
next section that the behavior of C,, changes from
a divergence in w =0 case (Gaussian) through a
cusplike one for w «1 to a broad peak behavior
when a strong interaction between the order-
parameter fluctuations is switched on w <1).

E. Numerical results

The numerical results for the magnetic specific
heat C, and the relaxation rate of the critical
slowing down as a function of ¢ for various values
of w are exhibited in Fig. 2. The calculations were

T
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T ]
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IOOE —0.
L ]
L N
075 —
- - o
oE L 1 ¥
~N
" o -
g - [
—o.

T T T T 1T

0.10 0.20 0.30
€
FIG. 2. Numerical results for the relaxation rate I’
(thin lines) and the magnetic specific heat C,, (bold lines)
as a function of € for different values of w. The inter-
rupted lines represent the Gaussian (w =0) results.
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done for =1 and « =0.2, values which we believe
are suitable for a random magnet. In particular,
it is reasonable to assume that the frozen disorder
correlation length A is comparable to £, giving
r~1. The value a =0.2 implies (672)*/?~0.317T,,
and corresponds to a partial smoothing out of the
discrete lattice structure characteristic for a GL
formalism. The I"' curves were obtained using Eq.
(3.7), after solving the self-consistent equation for
k. Using, for a given €, the « and I" values, and
calculating numerically the integrals I,(x) and
I,(k) given by Egs. (3.13), we obtain the C,, value
given by Egs. (3.11) and (3.12). In each graph,
the w =0 curves represent the GR model results.
As w progressively increases the behavior of C,,
and I" shows a drastic change relative tow =0
case. The I' curves show different nonlinear be-
havior and in particular the curves never reach
the zero value in contrast with the homogeneous
Hartree model (o =0) which shows a zero relax-
ation rate at T.. The magnetic specific-heat
curves change from a divergent behavior in GR
case, through a cusplike one, to a possible broad
peak as w~0.1. Relating the GL parameters A,
B,and C to the }7;;J;; S; S; Hamiltonian, it is pos-
sible to show that w~(d/£,)3(J,/Te,)?, where
Jo=27:;J4;, d being the mean distance between the
magnetic atoms. Since in the first order (d, £,)
and (J,, T,,) have the same concentration depen-
dence (c), we take w as ¢ independent, which uni-
versally describes the strength of the interaction
between the order-parameter fluctuations. Physi-
cal arguments show that due to the first-order
effects, for small concentrations (c <10%), T.,~c
and £3~c~1,'® a fact that gives a magnetic specific
heat C,, proportional to the concentration ¢ for all
temperatures considered, which has been found
experimentally. !¢

Solving Eq. (2.12) numerically for z (w =0) =k,
we obtain for every w =0 a positive solution for any
€=e.w)=T.w)/T,,—1, a solution which remains
finite even at T =T,(w). The fact implies the ex-
istence of a finite susceptibility at €.(w) even in the
Gaussian-random model w =0 case). The finite
value of £(T)=£,k"" at T .(w) corresponds to an
absence of a long-range ordering due to the ran-
dom positions of the spins together with the (pos-
sible) oscillatory nature of their interaction. The
curves of Teonv =(8/m) Took? and T,,{x (0, 00, =(T/
TZ,k%) as a function of € are exhibited in Fig. 3
for various values of w. This time we can see
that the minimum value of k [at T=T,@w)] is almost
independent of w and is very close to the Gaussian
value k;, given by Eq. (3.3). The cusplike behavior
of {x(0,0)), resembles the results obtained experi-
mentally for spin glasses like Mn in Cu or Fe in
Au.” The weak w dependence of {x(0, 0)), con-
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FIG. 3. Numerical results for the conventional relax-
ation rate Iy, (thin lines) and § =0, w =0 susceptibility
(bold lines) as a function of € for different values of w.
The interrupted lines represent the Gaussian (w =0) re-
sults.

trasts with the behavior of C,, and I", exhibited in
Fig. 2. This fact may explain the cusplike type
curve for (x(0,0)), and the broad peak in C,, curve
observed in the above-mentioned spin glasses. A
value for w ~0.05 seems appropriate for a glass
regime as also corroborated by preliminary NMR
results for the same glasses.”

We note that I' can be measured by studying the
dynamic form factor obtained in the neutron dif -
fraction measurements. For small values of
w,T . /T'>1 implying the existence of two dis-
tinguished time constants leading to the presence
of a central peak in the dynamic form-factor func-
tion. The central-peak problem and the relation
of the w =0 susceptibility to the NMR signal are
the main subjects of the next section.

IV. DYNAMIC PROPERTIES OF HR MODEL

In order to calculate the §,w configurationally
averaged susceptibility we have to solve first the
integral equation (2.12) for the complex quantity
z =x +iy. For the values of 7, o, and w used
above, we calculate the w dependence of x and y
using the already calculated value of k =x(w =0).
Defining {x(q, w). =G(§, w)/TZ, and approximating
again (g, w) by (0, w) in the G expression we
have

(@, whe =(T/T2,) (§2£2+22)7", (4.1)

where z is defined by Eq. (2.11). We note that
for the w =0 case the integral equation for z be-
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comes an analytic one
2% - (e —id)

+a[1=m'2 (2, /r) exp(e2 /r?) erfe(zg /7)) =0,

(4.2)

which can be solved, for x(w) and y(w), as a sys-
tem of two coupled nonlinear equations. Using the
Newton method, and starting for & «1 with x =«
and y =0 as initial guesses, the values for x(w),y(w)
are easily obtained. In the general case (w#0) we

have a much more difficult numerical task, to
solve two coupled integral equations.

A. 6= 0 form-factor function

Defining the dimensionless q =0 form-factor func-
tion as

F3ow) =T [Im(x(0,w). ] /w, (4.3)
with the definition (4.1) for (x(0, w)). we have
Frog@)=— — —2% (4.4)

w xZ+y?)2
The w =0 value of F3., is calculated with the same

method as T" using the fact that y(w)/w goes to a
finite value as w—0 and x(w =0) =k. The result is

Fg-olw =0)=(T/T)/k?, (4.5)

where T is the value of the relaxation rate of the
critical slowing down calculated before [see Eq.
(3.7)]. In order to compare our theoretical-

r=1.0
a=0.2

~n
T rrjrr1rryprrrrrrr1r 1T TT

FIG. 4. w dependence of the §=0 form-factor function
for the GR model (w =0, interrupted lines) and HR model
(w=0.1, full lines). The curves (agy, a), (by, d), and
(cg,c) are calculated for the 7 values 5x 10, 10~3, and
5% 1073, respectively.

numerical results with experimental data we chose
for w =0 and w =0.1 such values for € that the

real temperature will be situated relative to T (w
=0) and T (w =0.1), respectively, at the same dis-
tance. The curves for Fg_o(w) for 7=T/T (w) -1
equal to 5x107%, 1072, and 5x1073 are exhibited in
Fig. 4. In the Gaussian case (w =0) the central
peak rapidly becomes more and more pronounced
as the temperature approaches (from above) the
ordering temperature. When a strong interaction
between order-parameter fluctuations is allowed
(w =0.1) the change of the peak with the tempera-
ture is not so rapid and eventually the peak is
finite height and broadened, even at T.(w =0.1),
due to the finite values of I" and k. Moreover,
away from the transition the form-factor curve
for w #0 is above the correspondent one for w =0
due to the fact that the I" value in w #0 becomes
smaller than that in the Gaussian case at the same
7. We point out that the curves are not simply
Lorentzian and look like a combination of two
Lorentzians with different time constants.!®

B. Local susceptibility

The nuclear spin-lattice relaxation rate due to
the electron-spin fluctuations is related to the im-
aginary part of the local susceptibility

x(@) =3 X(q, whe. (4.6)
q

Taking the imaginary part of Eq. (4.6), and using
Eq. (4.1), we transform the § summation to a
three-dimensional q integration, and after a con-
tour integration in the complex g plane we obtain
the simple result

£3Imy(w) =~ (T/4nTZ)y. (4.7)

The §-integrated form-factor function is defined

14 A}
- \ 10~
\0.0

o Ll

Lol Lol Ll Lt
107 108 104 1073 1072 107!
T=T/T -1
FIG. 5. Logarithmic plot of the 7 dependnece of the
g-integrated form-factor function in the limit w—0. The
curves are labeled by the values of w. Insert: the same,
in a linear 7 scale.
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F(w) =T%[Imy(w)] /w (4.8)

which in the limit w—0 gives
1 -3
i =— . 4.9
lim F(w)=gr-&; k(T /T) (4.9)

The nuclear relaxation rate (1/T,) is proportional
to the expression (4.9). Since I'g~(T ~T.)'2 the
rate 1/T, diverges with the same critical exponent
as C,, 3.'* The £5F(0) curves as a function of 7
in a logarithmic scale for various values of w are
presented in Fig. 5. The fact that the w#0 curves
level off for such small values of 7 indicates that
we are not dealing with a real phase transition.
Recalling that the Ginzburg critical width is in
fact 8w?2, we can see that the leveling off for each
w #0 starts around 7 =8w?2. For 7>1072 the w de-
pendence is very weak. Evidently, it is experi-
mentally impossible to approach so close the
transition temperature and we present in the in-
sert of Fig. 5 the same data in a practical reason-
able linear 7 scale. Recent measurements on
CuMn glasses'” show that the 1/T, enhances not
more than twice when the relative temperature
approaches the ordering temperature from above.
This fact indicates that a value for w like 0.05 is
appropriate for a spin-glass regime, which is also
corroborated by the results on the magnetic speci-
fic-heat measurements.

V. CONCLUSIONS

We have discussed the static and the dynamic
properties of a random magnet above its order-
ing temperature within a Ginzburg-Landau forma-
lism which accounts for the quartic interaction
between the order-parameter fluctuations. The
possible long-range interaction between the im-
purity spins—via the conduction electrons—Ileads
to a collectivelike “quasi-critical” behavior of
the q =0, w =0 susceptibility. The randomness,
taken into account phenomenologically via the GL
A term, combined with the fluctuations of the
order parameter m(X,¢), leads to short-range
order effects like in the magnetic specific heat
C., the relaxation rate of the critical slowing
down I', and the central peak.'®

In addition to the concentration- (c)dependence
effects onthe homogeneous- (Gaussian) transition
temperature T,,, the present model shows com-
petitive second-order [in 8A (X) fluctuations] ef-
fects on the ordering temperature: the random-
ness shifts T, to higher temperatures, whereas
the interaction between the order-parameter fluc-
tuations (the quartic term) leads to an opposite
shift. A mean-field-approximation treatment
shows that the structural disorder in a Heisenberg

ferromagnet—via fluctuation of the exchange in-
teraction—decreases T, ?° but an analysis of small
random clusters of localized spins on the same
model?! shows an increase in 7,. Therefore, one
would expect changes of T, in both directions, the
actual direction of change being governed by the
details of the structural disorder included in the
parameter 7 and «, and the corresponding changes
in the exchange interactions represented by the
quartic term B via the parameter w.?* The pro-
posed model accounts for the main experimental
features that there is a persisting cusplike peak in
the susceptibility associated with a broad peak in
the magnetic specific heat. The different w de-
pendence of C,, and {x(0, 0)), is present already

in the homogeneous models: The Hartree-approxi-
mation results which are eguivalent to the so-
called spherical model give a divergent suscepti-
bility and a cusp in the specific heat, while in the
Gaussian approximation both quantities are diver-
gent at T,.2® We believe that the corrections be-
yond Hartree approximation are small, this fact
being corroborated by the recent calculations
based on the screening approximation by Bray?*
for inhomogeneous superconducting films.

In the context of the general central-peak prob-
lem at the phase transitions®*'®* we would like to
emphasize the importance of the self-consistency
in obtaining the correct dynamic form factor ex-
hibiting a central peak. This fact may be of im-
portance in the related problem of a central peak
in the so-called model C of Halperin et al.?” In
the latter the order parameter is coupled to an
entropy fluctuation which is a dynamic generali-
zation of our static fluctuations of T.. Using the
renormalization-group technique the problem of
central peak of the C model has been discussed in
the “4 — d= € expansion.”?® The diagrams of the pres-
ent self-consistent scheme are obviously of any
order in € [see Fig. 1(b)], and hence beyond the
€ -expansion results. This fact makes us believe
that the central peaks experimentally observed in
structural phase transition may be explained using
the C model within a self-consistent scheme.

Finally, we point out that the present calculation
can be also applied to an inhomogeneous super-
conductor. In view of the smallness of the Ginz-
burg critical widths in a three-dimensional super-
conductor the values of the parameter w to be
used should be very small and the Gaussian results
are expected to be valid in any practical range of
temperatures.
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