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We show that a critical point of infinite type is in fact a special case of first-order transition between two
states: one perfectly ordered, and a disordered one. The analogy with exact models is pointed out.

I. INTRODUCTION

The concept of critical points of different type
or order was introduced at almost the same time
by Schulman® and by Chang et al.? In this paper,
we investigate the properties of a critical point of
infinite type, i.e., what happens if one considers
the limit of critical points of finite type ¢ as ¢
-, This question is not only of academic interest
since our main result is that some exact models
have critical points of infinite type, the best
known among them being the Slater potassium-
dihydrogen-phosphate (KDP) model.® The ferro-
electric models with the ice rule seem to be im-
possible to classify among the other models like
the Ising or Heisenberg models. Although Suther-
land* has mentioned that in two dimensions the
KDP model is characterized by 8=0, the F model
by 8= and the Ising model by B=%, taking an in-
termediate position, no systematic classification
has been proposed. Thus, we shall study the pro-
perties of critical point with == and discuss the
possibility of classifying the ice rule models
under a general classification.

II. DEFINITION

We recall briefly the definition of the type of a
critical point, as given by Schulman who used the
catastrophe theory.® A critical point can be
Seen as a catastrophe and consequently for phase
transitions involving one order parameter the
state of the system is described by a polynomial
of one variable. The type ¢ is defined by half
the degree of polynomial. Here we consider only
polynomials with even powers (symmetric
critical points),

t-1

F(u)=p* + ; Uyu?! . (1)

The variable u is related to the order parameter
and the U,; are functions of the temperature T
and of /- 2 fieldlike parameters. At the transi-
tion point, all the U,; coefficients vanish

U fT5Yy,...,Y,,)=0, j=1,...,t-1. @)

16

These determine - 1 hypersurfaces in the thermo-
dynamic space whose intersection is the critical
point of type ¢. Benguigui and Schulman® have
shown that a symmetric critical point of type ¢

is located on a line of critical points of type f-1,
at the point where the second-order transition be-
comes of first order.”

A critical point of infinite type may occur in one
of the two following cases:

Case I. The number of the Y, variables goes to
infinity and, following Eq. (2), at the critical point
all the coefficients of the polynomial (which is now
an infinite series) become null simultaneously.

Case II. All the coefficients of the polynomial,
as long as we can take it, become null accidentally
for a set of particular values of T and Y,. The
number of the Y; variables is finite in this case.
This situation bears some similarity to an es-
sential singularity.

One notes the advantage of Schulman’s definition
which gives a critica! point of infinite type even if
the number of the Y, variables is finite. This is
not possible in Chang’s definition since a critical
point of type ¢ is the point where ¢ phases become
critical.

III. TRANSITION WITHOUT EXTERNAL FIELD

We start with the Landau-Wilson Hamiltonian
for a critical point of type ¢:

3C=f[aP"’(5E)+ bP*(X )+ U(VP)?]d,V, (3)

with a= A(T - T,). In order to calculate the pro-
perties for {— <, we shall determine them first
for ¢ finite and only afterwards let { - », Formally
letting £ -« in the Hamiltonian is not readily sub-
ject to interpretation. The calculation of the
critical exponents for a critical point of type ¢

is a complicated problem.*® One can do an €
expansion® where €=2{/(t — 1) = d. The border-
line dimension dg=2¢/(f - 1) is such that for d
>d g the classical theory may be used. It is al-
ready known that for d=3, it suffices that >3

to get classical results. The important point is
that d=2 becomes the borderline dimension for
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t=%, Thus we have the important result that

the classical theory gives the correct results for
t=w, even for d=2. For d=dy, it is in general
necessary to include logarithmic correction. How-
ever for {=, this correction is meaningless
below T, and does not seem to exist for T>T,,

as can be seen from comparison with exact mo-
dels.

For T<T,, the classical result is obtained by
taking the following approximation. The exact
partition function Z < [e~**TDP(k) is replaced
by Z,,« e"*PO/RT where P, is the value of P which
minimizes (3). Following the usual procedure, we
get

Py= (- a/bt)/2¢V) or P o (T - T)24D  (4a)
for the order parameter;

Xt=-4a(t-1) (4b)
for the susceptibility;

C= [1/(t- 1)]A2(— a) (2-t)/(t-1)(1/bt)1/(t-1) ,

a'=t-2/(t-1) (4c)

for the specific heat.
Now if -~ we get

P=1, ie., B.=0, 6 =, B6=1,
x=0, C=0.

Since P=1, this means that the system is com-
pletely ordered and there are no spatial fluctua-
tions. Consequently we get x=0 and C=0. It is
interesting to note that y—~0 and C~ 0 for t -
because the amplitudes go to zero. By continuity,
one can say that the exponent v’ and a’ are both
equal to 1, although x=0 and C=0 can be inter-
preted as ’=0 and a’=0.

Above T,, P=0 and from the above results, we
see that the transition becomes of first order, but
without thermal hysteresis. The latent heat is
equal to AT,. The classical approximation above
T, consists of taking only the first and third terms
in (3) and we get the Gaussian model, i.e., y=1
and @=3. There is an asymmetry in the behavior
of the system above and below T,. In particular
for ¢ finite one expects that a’(¢)= a(f). The fact
that @ - 3 for £~ does not mean that a exhibits
a discontinuity. One rather expects a crossover
from a region where C behaves like (T, - T)™!/2
to region with C« (T, ~ T)"*®). For - «, this
region disappears.

IV. TRANSITION WITH AN EXTERNAL FIELD

For ¢ finite, the curve P(T) with E #0 has an in-
flection point. [Now, the Hamiltonian (3) contains
aterm EP.] Let be P, and T, the values of the
order parameter and of the temperature of the

inflection point (T;>T,). Clearly P; and T, are
functions of E. First we calculate d P/dT. We
get

dP _ AP 5)
dr " A(T-T,)+bt(2t - 1)P?*2 *

d*P/dT? is null if
2A(T-T,)+bt(2t-1)(4-2t)P?*"1 =0,

i.e., P; is given by

P;=[4A(T; - T,)/bt(2t - 1) (2t - 4)]V/ @V (g)
Now, if ==, P;~1. In order to calculate T;, we
use the relation

E= 22 =2A(T, - T,)P;+ 201 P}t (1

(G is the free energy).
Using (6), (7) becomes, if -,

E=2A(T;-T,). (8)
Now from (5), it is easy to see that if T~ T,_,dP/
dT~0, and if T~T,,,

dpP 1 2A

- ——

The schematic variations of P as function of T
are given on Fig. 1, for some values of E. Thus,
with an external field, the transition is no longer
a first order transition but a second order one:

P is now continuous, but has a discontinuity in its
derivative at T;. This temperature is the new
transition temperature.

V. COMPARISON WITH EXACT MODELS

(i) Bowers and McKerrell model.!® In this mo-
del, the Hamiltonian which describes an assembly
of N spins contains two-point, four-point,...,
2n-point interactions:

Ex0 Ee>E,
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FIG. 1. Schematic variation of P and T, for different
values of the external field if ¢ =,
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The interaction strengths J,, are independent of the
distance between the spins. For interactions up to
n one can get, using a special choice of the J,,,

a critical point of type {=n+1, with the same
critical exponents as those found above. For a
spin s =z, the interactions J,, must be equal to
J,/2r(r - 1). One gets a critical point of type ¢

= if n -, andJ,, decreases with the number
of spins involved. At the limit, the interaction
which includes all the spins (z=«) has null
strength. This model is an example of case I.

(ii) Crossed Ising chains. Jiingling and Ober-
mair model.!! This model describes horizontal
and vertical crossed Ising chains with different
interaction strength between spins of the horizon-
tal and vertical chains. If the distance between
the vertical chains increases infinitely but the in-
teraction strength of the spins of the horizontal
chain also increases infinitely, a first-order
transition appears between two states, a perfectly
ordered one and a disordered one. However,
above T,, the properties of the system are not
exactly the same asthe Gaussian model. This is
an example of case II.

(iii) Slater KDP model.® It is most interesting
that the Slater KDP model has exactly the same
properties found above for =<, without and
with external field. For the complete equivalence,
it is only necessary to choose A=3(#1In2). Thus
the latent heat is AT, =3 (k1n2) and d7;/dE =1/2A
=1/k1In2. This example of a critical point of in-
finite type belongs to the case IL

i10e e ering

VI. REMARKS

One can also define a first order transition of
type ¢, using the above remark that a critical point
of type {+1 is located, in the thermodynamical
space, on the line of critical points of type ¢,
where the transition goes from a second to a first-
order transition. The first-order transition is
also of type £. For first-order transition, the
classical theory can be used, in the absence of
an external field.’> Thus the free energy per unit
volume is

G=aP?+cP? 2, pp?t,

It is easy to show that the discontinuity in P at
the transition temperature 7T} is equal to

P0= [_ 2a(t— 1)/c]1/2(t-2) ,

which goes to 1 when {—~«. The transition tem-
perature T/ in lower than T,, but goes to it when
t—. Thus the difference between the first and
second order transition disappears for -, This
explains why the second order transition becomes

of first order at -~ o,

The results of the preceding sections show that
the KDP model with the ice rule can be included in
the classification of critical points of different
type. The question is, can one also include the op-
posite model with the ice rule, namely the F
model. This can be done but formally, by putting
t=1 in the formulas (4). We get B=>, y==, or
Y=o and a’=- «, The derivatives of P also have
an infinite exponent. This is qualitative agreement
withthe exact results.?

Py (T, - TV *{ exp[- g/(T, - )]},
x= (T, = T){exp[r*/2(T, - T)V2]},

G < exp[- 7%/(T,- T)*'?] .

VII. CONCLUSION

In the case of a critical point of infinite type,
it is possible to use the classical theory and to
let £~ to get the correct results. Thus the pro-
perties of a critical point of infinite type are:

(i) The transition is a very special first-order
transition, without hysteresis and the order pa-
rameter jumps suddenly, at T,, from 1 to 0;

(ii) the latent heat is given by #=AT,; (iii) below
T,, the susceptibility X and the specific heat C
are null (as a result of the perfect ordering); (iv)
above T,,x and C diverge: xo(T,- T)™ and

Cex (T, - T)"M?; (v) with an external field, the
transition becomes also a special case of second-
order transition and the value of the new transition
temperature is linear in the field.

The KDP model is an example of a critical point
of infinite type. We conclude also that the pro-
perties of the KDP model are dimension indepen-
dent as are those of the classical theory. Con-
sidering the limits £—~1 and { - <, one can include
the ferroelectric models with the ice rule in a
general classification of critical points.

The main and most important property of the
critical point of infinite type is the sudden transi-
tion from a perfectly ordered state (P=1) to a
disordered one (P=0). The interesting question
is: what are the ingredients that must be incorpo-
rated in a particular model to get such a behavior?
From the three examples we quoted, it is clear
that it is necessary to include infinite interactions
(in number or in strength). This insures that, in
the ordered state, the system is perfectly ordered.
However, these interactions must have some kind
of opposition in order that a phase transition
occurs. Thus, in the Bowers-McKerrell model,
n- but J,,~0. In the Ising analog of the KDP
model the two-spin interactions go to infinity but
the four-spin interaction also goes to infinity.
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As it is known!* the two- spin interactions favor
ordering but the four-spin interaction plays an
opposite role. In the Jiingling and Obermair mo-
del the interaction strength in the horizontal chains
goes to infinity, but the distance between the ver-
tical chains also goes to infinity.
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