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Recent lattice-renormalization-group calculations have investigated the effect of placing arbitrarily large
numbers of spins into blocks, via Monte Carlo numerical methods. These calculations indicate that, in the

thermodynamic limit, the fixed point of the recursion relation converges to the exact critical temperature,
even though the recursion relations themselves become nonanalytic. It is the purpose of this note to explain

why this occurs.

I. INTRODUCTION

A major unsolved problem in lattice-renormali-
zation-group theory is to understand the nature of
the truncation involved when only a finite number
of spins are used to generate approximate recur-
sion relations. Clearly, the first question in this
regard is whether critical temperatues and ex-
ponents, say, obtained in a truncated calculation,
converge to exact values as more spins are includ-
ed. No rigorous answer has ever been given to this
question, even for the two-dimensional Ising mod-
el, although the numerical evidence' makes one
extremely optimistic. In general, of course, the
answer must depend on the specific transformation
one has in mind; if there is a nonempty set of
"good" transformations, one would like to know
rates of convergence so as to be able to give error
assignments to predicted exponents.

How does one include more and more spins in a
typical (cluster} lattice calculation? In principle,
there are two choices: either one introduces
more and more blocks of spins, or one places
more spine into a given (finite} number of blocks.
The first choice is the canonical one for a large
variety of good reasons, such as the maintenance
of analyticity in the recursion relations and the
iterability of these relations necessary for their
interpretation. In the second choice, blocks could
become arbitrarily large and, hence, critical.
This is definitely against the spirit of the whole
approach as first conceived by Wilson, Kadanoff,
and Niemeijer and van Leeuwen. Nevertheless,
it is the second scheme that we consider here for
two reasons: (i} Hecent Monte Carlo calculations
by the author, and by Friedman and Felsteiner, g

suggest strongly (in two dimensions, anyway} that
critical temperatures do, in fact, converge to
exact values in the limit of including an infinite
number of spins. There is also suggestive, al-
though weaker, evidence for the convergence of
exponents. Because the Monte Carlo approach' to
these calculations is so trivial to perform and

labor saving, this peculiar way of obtaining accu-
rate results could well become commonplace and
so one is forced to consider it seriously. (ii)
There are simple arguments by which one can un-
derstand this convergence of critical tempera-
tures, in marked contrast to the canonical
schemes. Thus, one hopes that this particular
"pathological" type of renormalization may shed
some light on the usual schemes and the unan-
swered questions that we raised earlier.

In Sec. II we present some numerical evidence
indicating this convergence of critical tempera-
tures discussed above, and in Sec. III we discuss
why things work out the way they do. We conclude
with some unanswered questions and speculations
in Sec. IV.
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where the sums range over all sites i c Q(N) and
all nearest-neighbor vectors 6, each bond counted
once, and periodic boundary conditions are used
at the surfaces of Q(N).

The transformation from the site spin Hamilton-
ian of Eq. (1) to a block spin Hamiltonian, defined
on two block spins s, = +1, s, =+1, is made by a
transformation kernel T (s„s„for)}. We parame-
trize T by the following functional form:

(2}T(s„s2;(o-,]}=4[1+s,f(m, })[1+s,f(m2)],
where f is an odd function of its argument, to be

II. NUMERICAL EVIDENCE

The class of renormalization-group transforma-
tions that we want to consider are defined on an
Ising-model partition function. We consider a
finite system A(N) consisting of two neighboring
hypercubes, each consisting of N~ spins v-. =+1,

I
situated on the sites i of a simple hypercubic lat-
tice in D dimensions. The two hypercubes are
called block 1 (B1) and block 2 (B2). The Ising
Hamiltonian is
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The partition function sum is then

Z&&&&= — T s s a e
8g=& S2=+l (ty)

(3)

Now, if one does the sum over (o] first in Eq. (3),
a function of s,s2 must result. This function is
generally written in exponential form, so as to sug-
gest a block spin Hamiltonian. That is we have

Z„~)= g Q C„(K)exp[qK„'(K)s, s,],
Sg--kl $2M1

where the two functions C„(K) and K„'(K) are
uniquely defined once we specify q. One wants to
interpret Ks(K) as a new nearest-neighbor coupling
for the block spins; q represents the ambiguity in
assigning "boundary" conditions to this two-block
system. In our numerical work, we take q =1;
Friedman and Felsteiner' take q =2D. %e show,
in Sec. III, that the convergence of critical tem-
peratures is unaffected by one's choice of q, as
long as it is a positive number. Thus, for the
moment, let us leave q as an arbitrary parameter.
Then, one obtains the recursion relation from Eqs.
(2) and (3)

K„'(K;q) = (1/q) arctanh (f(m, )f(m, ))„ (4)

where the thermal average is the usual canonical
average with respect to H„~&. Shown in Fig. 1 are
numerical results obtained for the function
K„'(K; 1), where D= 2 and the function f(x) corre-
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FIG. 1. Recursion relation K~(K;1) for various odd
N, and fixed point values K& plotted vs N '. These re-
sults are for the two-dimensional Ising model, but
similar plots for Kz are obtained in any dimension D
~2.

specified, and we restrict ourselves here to argu-
ments that are the magnetization operators for the
blocks. That is,

1 1
m~ =~ 0'~ and m2 =~ 0'».

sponds to the majority rule: f(x) = sign(x). One
sees that for each N = 3, 5, 7, . . . there is a fixed
point K„*, defined by K„'(K„*)=Kg. Heuristic argu-
ments (see below) suggest that one should plot
K„*vs N ' and this is shown in the same figure.
These results were obtained by the standard Me-
tropolis Monte Carlo method to evaluate the therm-
al average on the right-hand side of Eg. (4); thus,
there is a statistical error in all of the plotted
points shown that is, we estimate, roughly twice
the size of the data points. A straight line drawn
through the fixed point values is seen to intersect
the K* axis near the exact Ising critical tempera-
ture K, =0.44068. . . . Moreover, one can define a
thermal eigenvalue v(N) via dK„'/dK ~rw =N'~ "'"',
and very slow convergence toward v(~) = 1 is sug-
gested by the data (not shown). Friedman and Fel-
steiner' report similar findings with the following
notable difference: their choice of q =2D produces
much more rapid convergence toward K, and they
report values of K„* accurate to four figures, in
contrast to the roughly two-figure accuracy here.
[They suggest (lnN) ' convergence of v(N). ] No ex-
tensive data are available for D = 3.

From the figure, one sees that the recursion re-
lations, Eq. (4), may be tending toward, as N-~,

I0 K&K, ,
'-("q)=l-K K

C ~

where K, is the exact critical value. This is a
loss of analyticity indeed t

III. UNDERSTANDING THESE RESULTS

In this section we want to present heuristic argu-
ments for the above specific results for the ma-
jority rule transformation, and what one might ex-
pect for more general transformations. First,
one expects K'(K) =0 for K&K, for a wide class of
transformations because the correlation length is
being resca)ed by N under a single iteration of Eq.
(4) when N is finite: $'=$/N. Thus, if K&K„
then $ is finite and so $'-0 as N- . So, the new
block system is characteristic of zero correlation
length and this means K'= 0. For K&K„ things
are more subtle. For the majority rule, anyway,
one is seeing a single iteration map the system
to its completely ordered zero-temperature state
and this is K'= ~. So, one way to think about the
above results is that a single iteration of the re-
cursion relations, for very large N, roughly re-
produce the result of a large number of iterations
of the recursion relations for small N, albeit with
a shifting of the fixed point value toward K, .

The rate of convergence of these fixed point val-
ues K„* toward K, is consistent with what one might
expect from the usual4 argument that nothing spe-
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Z„'(q) = Z, +x,(q)N-'j ", (6)

where the sign distinguishes convergence from be-
low or above. Since v= 1 for D =2, Eq. (6) is a pos-
sible explanation for my data. [For Friedman and
Felsteiner's data, apparently xo(2D) = 0, and a
larger power of N ', ignoring possible lnN be-
havior, governs convergence. ] If more results
were available in three dimensions, where v&1,
then Eq. (6) could be tested more critically.

The numerical resu". ts have been for the majori-
ty rule f(x) = sign(x). However, let us now generalize
to any odd function f(x) that is, at most, discon-
tinuous in a finite number of places. We would
like to conjecture that in the thermodynamic limit,
N-~, Eq. (4} becomes for K»K,

cial happens until the correlation length reaches
the edge of the system. More specifically, one
makes a finite-size scaling ansatz for the correla-
tion length, appropriate when N» 1 and Iz -K,

~

«1, via

(„(K)-Ne(~z-z, ~N&~")

where the function 4 (x) may depend on the sign of
K-K„and should be analytic near x=0 and fall
off like x " at large x. Then, postulating that the
fixed point K„*(q) occurs only when the correlation
length is some nonzero percentage of N, say
c(q)N, where c(q) &0, one solves

c(q) =C (iz„(q) K, iN'j ).
If there exists a positive xo(q) of order unity such
that 4(x,)=c, then we have, as N- ~,

correct, it has a number of interesting consequen-
ces. First, one sees that no analytic function pro-
duces the convergence of fixed points; i.e.,

lim K~~(q) WK, .
N ~as

To see this, take the linear transformation, for
example, f(x) =x. If there is a nonzero fixed point
of Eq. (7), it will be strictly greater than K,. Any

other analytic function behaves in the same way.
In fact, if we require f(x) to be nondecreasing
in the interval -1» x» 1, then the "correct" be-
havior of Eq. (5) can only be realized by f(x) = sign(x).
Also, one sees for this particular function why

one obtains Eq. (5) for any positive q.
We do not have a rigorous proof of Eq. (7), but

we do have the following heuristic argument.
First, we restrict ourselves to analytic odd f(x),
which may be used to approximate piecewise dis-
continuous functions arbitrarily closely (in the
sense of some idea of closeness that we do not
specify. ) Then, we automatically have f(0) =0,
and we may also expand f(x) in an odd power
series, and we argue for a sort of "factorization"
of correlations term by term; that is, we would
like to be able to show

lim (m", m~2)„&x& ——[m, (K)]"~

for odd integers r and s. For example, take r=s
=1. Then, because we have a sum of correlation
functions with an even number of spine (two), the
function (m,m, ) is even in h if we add a magnetic
field term

K'„(K;q}=(I/q) arctanhf[ f(m, (K))]'), (7) hg o-,

where m, (K) is the spontaneous magnetization, and
one defines f(0) = 0 for those odd functions, such
as the majority rule, that are discontinuous at the
origin. [Iff is discontinuous elsewhere, take the
Eq. (7) to be true everywhere except where m, (K)
equals these discontinuity points. ] If Eq. ('I) is

to the Hamiltonian. Because it is even in h, it is
plausible that this correlation function will be con-
tinuous as h-0, after N- ~, even if K&K,. As-
suming this is correct, we may evaluate the origi-
nal function via this particular limit; i.e.,

&) (&j
"I I &))-&&()j&(&&"I g«)), j& & &&()j»
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(8)

where the thermal averages on the right-hand side
of Eq. (8) are now with respect to the Hamiltonian
augmented with the above magnetic field term.
Now the second double sum in Eq. (8) can be ex-
pected to go to zero like A (K}N o, where A(K) is
finite for K4K„because of the exponential decay
of the correlation function (oIol) —(o7}(o;)at large
separations g- j ~, KIK, . This leaves

Iim (m,m, )„(„&-[m, (z)]'

from the first term alone, again with K4K, . For
higher powers of r and s one can add and subtract
terms to produce the connected n-point correla-
tion functions. Then, under identical assumptions
about (i} continuity at h =0 for even correlations,
and (ii) exponential decay of the connected corre-
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lations, one achieves the above "factorization, "
which would establish Eq. (7} [for analytic f(x),
anyway7.

IV. CONCLUSIONS

%e have presented heuristic arguments which ex-
plain the convergence of critical temperatures in
certain renormalization group transformations in
the thermodynamic limit, under plausible assump-
tions. One interesting result was that for a fairly
wide class of transformations, given by Eq. (2),
only the majority rule produced convergence to the
exact critical temperature, if Eq. (7) is correct.
One wonders if the canonical schemes can be as
restrictive in the admission of "good" transforma-
tions. One might also speculate that Eq. (6}, for
the rate of approach of critical temperatures,
could also have wider applicability where N would
be interpreted (in the usual schemes) as the width

of the entire (finite) cluster. This is possible be-
cause, even in the canonical methods, there are
always (small) couplings which sample the collec-
tive behavior of the entire system. Finally, it is
clear that the above arguments for Eq. (7}could
equally well be applied to the slighly more general
situation of an arbitrary finite number of blocks,
as the size of the smallest block tends to infinity
in a thermodynamic way. This would then suggest
the convergence of critical lines (hypersurfaces)
to exact values in systems with additional coupling
constants. An open question is the nature of the
convergence of critical exponents in these
schemes, and, of course, a more rigorous treat-
ment of the issues we have considered here.

ACKNOWLEDGMENT

I would like to thank M. Nauenberg for discus-
sions and his comments on the manuscript.

*Research supported in part by a grant from the NSF.
'Th. Niemeijer and J. M. J. van Leeuwen, in Phase

Transitions and Critical Phenomena, edited by
C. Domb and M. S. Green (Academic, New York, to be
published), Vol. VI.

2Z, Friedman and J. Felsteiner, Phys. Rev. B (to be pub-

lished).
3S. K. Ma, Phys. Rev. Lett. 37, 461 (1976).
4M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28,

1516 (1972); A. E. Ferdinand and M. E. Fisher,
Phys. Rev. 185, 832 (1969).


