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The classical planar Heisenberg model is studied at low temperatures by means of renormalization theory

and a series of exact transformations. A numerical study of the Migdal recursion relation suggests that

models with short-range isotropic interactions rapidly become equivalent to a simplified model system

proposed by Villain. A series of exact transformations then allows us to treat the Villain model analytically

at low temperatures. To lowest order in a parameter which becomes exponentially small with decreasing

temperature, we reproduce results obtained previously by Kosterlitz. We also examine the eA'ect of
symmetry-breaking crystalline fields on the isotropic planar model. A numerical study of the Migdal

recursion scheme suggests that these fields (which must occur in real quasi-two-dimensional crystals) are

strongly relevant variables, leading to critical behavior distinct from that found for the planar model.

However, a more exact low-temperature treatment of the Villain model shows that hexagonal crystalline

fields eventually become irrelevant at temperatures below the T, of the isotropic model. Isotropic planar

critical behavior should be experimentally accessible in this case. Nonuniversal behavior may result if cubic

crystalline fields dominate the symmetry breaking. Interesting duality transformations, which aid in the

analysis of symmetry-breaking fields are also discussed.

I. INTRODUCTION

A. Planar model

We wish to examine the low-temperature prop-
erties gf the classical planar Heisenberg model
of ferromagnetism in two dimensions. Thus, we
consider a reduced Hamiltonian or "action" of
the form

A[8] —= = —g K(1 —cos[8(r) —8(r') ]j
& ver'&

+ g P k~cos[p8(r}],

where the sums over r index the sites of a two-
dimensional lattice, the symbol (r, r') indicates
a sum over nearest-neighbor lattice sites only,
and

K= JjksT.
The quantity J is an exchange coupling entering a
nearest-neighbor interaction between fixed length
spine on the lattice of the form ZS(r} S(r'}, and
8(r) is the angle the spin S(r) makes with some
arbitrary axis. The second term in (1.1} involves
a sum over possible symmetry-breaking fields h~

indexed by a positive integer p.
With all symmetry-breaking fields h~ set to

zero, the Hamiltonian (1.1) has been studied quite
extensively. Although evidence from high-temp-
erature series expansions' ' suggests that the
susceptibility of the planar model diverges at
some finite T„ the lack of long-range order at
any temperature has been proven rigorously. ' '

Wegner' and Berezinskii, ' and later Zittartz, '
have produced "spin wave" theories for the planar
model which should be accurate at sufficiently low
temperatures. This class of theories leads to a
power-law decay of correlation functions at all
temperatures, suggesting that the model has a line of
critical points with continuously variable critical ex-
ponents. Taken literally, the spin-wave results
suggest that this line extends out to infinite tem-
perature.

Kosterlitz and Thouless" and Berezinskii" sug-
gested that the spin-wave theories should be mod-
ified in an important way by the presence of vor-
tex excitations in the model. Below a certain cri-
tical temperature, bound vortex-antivortex pairs
should populate an "ordered phase, " coexisting
with the spin-wave excitations. Above T„ these
pairs are expected to dissociate. Kosterlitz"
subsequently produced a quantitative analysis
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which makes this picture concrete. He constructed
a simple renormalization-group transformation
which contains a line of fixed points, correspond-
ing physically to a line of critical points term-
inating in a finite T, &~."

In this paper, we focus especially upon the re-
gion T& T,. Two methods of attack are developed
here. First, the planar model is examined direct-
ly via a lattice recursion scheme introduced by
Migdal. ' When applied to fixed-length spins in
2+ & dimensions, this scheme is known to yield
results equivalent to those obtained in a more
sophisticated theory'"' to first order in &. Sec-
ond, we argue that there is another model —a gen-
eralized Villain"s" model —which has exactly the
same symmetry properties as the planar model
but is easier to analyze. The original Villain mod-
el makes the Kosterlitz-Thouless decomposition
into spin waves and vortices particularly simple
because the spin waves are described by a purely
Gaussian (and hence soluble) interaction. Our gen-
eralized Villain model includes (in addition to the
coupling strength K) a parameter y which deter-
mines the strength of the coupling of vortices into
the spin-wave system. In the low-temperature
region, one can gain very useful results by ex-
panding in the additional parameter y.

Our plan of attack will be to use the Migdal ap-
proximation to understand in a semiquantitative
fashion the planar model's behavior. We will argue
that this approximation gives recursion relations
which become more and more quantitively correct
as the temperature goes to zero. Unfortunately,
some of the apparent qualitative features of the
exact problem —in particular the existence of a
fixed line —are not correctly given by the Migdal
scheme. But, the fixed line is almost" present
so that one can gain useful insight from this ap-
proach.

Then, armed with this insight, we pass from the
Midgal approximation to the generalized Villain
model. This interaction will very naturally lead
to a perturbation scheme. This scheme will be
very similar to the Kosterlitz-Thouless decom-
position into spin waves and vortices, followed
by an expansion in the vortex variables. We shall
argue that this expansion converges for all tem-
peratures lower than the Kosterlitz- Thouless
transition temperature T, at which the vortices
can become unbound.

From the theoretical point of view, our major
result will be that the Gaussian spin-wave theory
is quantitively exact for predicting the large-dis-
tance correlation functions of the planar model at
any temperature below T,. In particular the cor-
relation function for cosp8(r) is given by the spin-
wave result

(cosp8(r) cosp8(r')) -( Ir y' l~ '" I«) ' (1.3)

for all values of p equal to integers. This result,
we argue, is true for large

~
r —r'

~
for all the

models in question whenever the symmetry-break-
ing terms [defined by h~ in Eq. (1.1)]are zero.
The models differ in that K,«depends differently
upon K for the various cases. But in all cases
K„, K, as K- ~(T-0). As the temperature in-
creases, K decreases and so does K,«—albeit in
a model-dependent fashion. This decrement in

K,«continues until

2n'K, = 4,
whereupon we observe an unbinding of the vortices
and a transition to an entirely different mode of
behavior.

B. Symmetry-breaking fields

From the experimental point of view, our most
important results relate to the effect of symmetry-
breaking fields like h~. In recent years, it has be-
come possible to study experimentally critical
phenomena in crystals which are effectively two-
dimensional. Indeed, Birgeneau et aL "have
measured critical exponents for the Ising-like
quasi- two-dimensional antiferromagnetic K,Ni F4
which are strikingly similar to those expected for
the two-dimensional Ising model.

One might hope that similar substances with the
XY symmetry of the planar model could also be
studied experimentally. " However real magnetic
crystals are subject to symmetry-breaking crys-
talline fields in addition to an isotropic exchange
coupling. Thus, one must consider the more gen-
eral Hamiltonian (1.1) with at lea, st one of the h~'s
nonzero. In practice, we expect to encounter crys-
talline anisotropies with p= 2-4 and 6. The effect
of an applied external magnetic field is given by
p=1.

Although Eq. (1.1) is difficult to analyze directly,
we may form conclusions about the h& perturba-
tions both from the Migdal scheme and also from
the generalized Villain model. The Migdal scheme
implies that as T-0 all h~ perturbations are
strongly relevant variables. Recursion by recur-
sion, an h~ perturbation will grow and grow finally
forcing the system into a state of broken symmetry
in which one of the directions 8= 2wnlp, n
= 0, 1, . . . ,p —1, is especially preferred. Thence
any h~ perturbation will force the system away
from a planar model behavior if T is sufficiently
small.

The generalized Villain model then gives a pre-
cise meaning to "sufficiently small" T. If this
model lies in the same universality class as the
planar model, then a small perturbation with in-
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dex p will be relevant if

SmK, iq&p . (1.5) ea Tg (~6)

If this inequality is satisfied, the planar model
system will be unstable against ordering via h&-

type perturbations. Equations (1.4) and (1.5) then

imply together that the Gaussian spin-wave be-
havior of the planar model (and its universality
"cousins") is stable against symmetry-breaking
perturbations and destruction via vortices pro-
vided

4& 2%K «&4p .

There is no such stability region for uniaxial
perturbations (p= 2) or triangular perturbations
(p= 3). The square perturbations have a vanishing
stability region. But a real planar system with
hexagonal perturbation may be expected to show
typical critical planar model behavior for

4& 2wK,«& 9.
We hope that experimentalists will attempt to find
and study such a system.

Phase diagrams for p= 6 and p=4 are shown in
Fig. 1. The lines of asterisks at h~= 0 indicate the
Kosterlitz-Thouless line of critical points with
continuously variable exponents. On lowering the
temperature of fixed h~+ 0, one first crosses an
upper critical temperature T,(h,) into a planar
model "phase" of critical points with continously
variable exponents. There is a second transition
at temperature T,(he) into a discrete planar or-
dered phase, where the system orders into one of
the six preferred directions selected by the sym-
metry-breaking perturbation. The susceptibility
diverges exponentially fast [Le. , as in Eg. (5.7)]
on approaching T,(h,) from above or T,(h, ) from
below', and remains infinite between these tem-
peratures. For the Villain models considered
here, we find q= & as T goes to T,(h,) from below
and q= -', as T tends to T,(h,) from above.

The predictions for p=4 are also rather strik-
ing. The three lines of critical points shown in
Fig. 1(b) correspond to three distinct lines of
fixed points t Thus, they are denoted by asterisks
to show that all three display continuously vari-
able exponents. The second-order phase transi-
tion into an ordered four-state phase for &440
should display conventional power law singulari-
ties, but with nonunivexscl critical exponents. Al-
though we find g= 4 at the confluence of these cri-
tical lines, we have not completely reconciled
this result with the predictions of Luther and
Scalapino" (see Sec. V).

The stability of various h~ perturbations was
analyzed previously within spin wave theory by
Prokrovsky and Uimin, "while Kosterlitz and

(a)

(b)

FIG. 1. Phase diagrams in the h&-T plane for p =6
and p =4. The asterisks denote critical points with con-
tinuously variable critical exponents.

Thouless have shown how this analysis is modi-
fied by vortices in a recent review article. " Both
sets of authors suggested that there would be two
phase transitions for p&4. In Sec. V C, we pre-
sent a nonlinear recursion analysis which refines
and considerably sharpens this picture. The re-
sults lead directly to the phase diagrams shown in
Fig. 1, and allow detailed predictions to be made
about the associated critical behavior for small

We have been unable to ascertain the small h~
structure of the phase diagrams for p=2 and p=3."

As pointed out by Kosterlitz and Thouless, "iso-
tropic planar behavior should be very difficult to
see experimentally in quasi-two-dimensional mag-
netic systems, because of an unusually strong
crossover to three-dimensional behavior. Hope-
fully, experimental analogues of the models studied
here can be found elsewhere in nature, perhaps
in systems exhibiting nonmagnetic phase transi-
tions.

C. Outline

In Sec. II we discuss various transformations on
the action (1.1) which are useful both in the con-
text of the Migdal approximation and in the analyt-
ic treatment. Section III describes the results
which can be obtained from the Migdal recursion
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II. TRANSFORMATIONS OF THE ACTION

A. Fourier analysis and the Villain model

The planar model has a coupling between near-
est-neighbor "spins" of the form

V(8 —8') = -K[1 —cos(8 —8') ] . (2.1)

Of course a periodic function like this can always
be written in a Fourier series

@
V(e) ~ &gse+V(s)

S~oe

where the Fourier coefficient is given by

(2.2)

"2r a
+P(s) u8 +-fse+V(8)

0 277

The coupling (2.1) has V(s} given in terms of a
Bessel function of imaginary argument

e""'=e «I (K)

(2 2)

(2.4)

In the limit of large and small couplings this re-
duces to

�

«& ) (1/s )(sK)
&

K 0
&

e-~'/2«/(2«K) &/ &
(2.5)

For small K the sum in Eq. (2.2) converges quite
rapidly with only the s = 0 and +1 terms contribut-
ing. However, for large K the summation con-
verges very slowly. To get a more rapidly con-
verging result, we use the Poisson summation
formula, which in its simplest form states that the
sum over s of any function g(s} can be written

relation, both with and without symmetry-break-
ing perturbations. In Sec. IV we demonstrate ex-
plicitly that the generalized Villain model collapses
readily into the Coulomb gas system treated by
Kosterlitz and determine the first correction to
the Berezinskii results in a cumulant expansion.
Finally, in Sec. V we rederive results obtained by
Kosterlitz, and present a more detailed analysis
of symmetry-breaking perturbations. We also
summarize our conclusions and speculations about
the isotropic planar model at this point. Appendix
A shows how symmetry-breaking fields can be
treated within the spin-wave approximation, and
Appendix B discusses a generalization of the Mig-
dal approach which allows for symmetry-breaking
interactions. Appendix C explains certain features
of the cumulant expansion of Sec. IV, whereas Ap-
pendix D proves a duality transformation result
given in Sec. VB.

sum over m as
V(8) ~ evo(8 2gtg)

where V, is given as a Fourier integral

(2.7)

Vo(8) dy eV(y)+)ye

At low temperatures the sum over m in Eq.
(2.7) will converge quite rapidly. In fact, the in-
tegers m in this formula will describe the quan-
tum numbers of vortices in the system, while the
integration variable P in Eq. (2.8) will represent
the spin waves.

Notice that the summation over m in Eq. (2.7}
automatically enforces the periodicity of V(8).
Hence, V, may itself be a nonperiodic function.
The simplest choice of Vo was made by Villain"
who took

V,(8) = —,'K,8', (2.9a)

(2.8)

which implies the simple Gaussian form for V(P)

V(y) = -y'/2K„. (2.9b)

KF=f(K).

A comparison of the interaction form for weak and
strong couplings show them to be identical if

f(K) =

~j [2ln(2/K)] ' for K-O.
(2.11)

In Sec. III we arrive at the Villain coupling in a
different way. The Migdal procedure starts from
any interaction function between nearest-neighbor
spins —say the interaction (2.1)—and replaces it
with a new interaction function V'(8 —8'} generated
from an approximate decimation renormalization-
group transformation. After a few iterations of
this procedure, we find that any interaction func-
tion at reasonably low temperatures appears to
generate a new interaction of the form

e VV (8-8') e-KV (8-8~2tm)2/2 (2 10)
tS~

with Kv=K This correspondence is important be-
cause (2.10) is the model proposed by Villain, "
which does have some properties which are much
simpler than those of the original planar model.
The Migdal-style analysis suggests that the two
interaction models can indeed have very similar
critical properties.

In particular, we suggest that the critical prop-
erties of the two models will be identical if we
choose Kv to be some function of K:

gg(s}= g ' kg(p)e "'
S~so lite

(2.6}

Hence, Eq. (2.2) can be rewritten in terms of a

B. Duality transformations

We can make use of the tricks described in Sec.
IIA to perform a duality transformation on a pla-
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FIG. 2. Five vertices of
a square lattice populated
with "angle" variables 8(r).
Four integer variables s
populate the bonds connect-
ing to the central vertex.
The arrows suggest our
convention for ordering ad-
jacent 8 variables in the
Fourier transform of the
nearest-neighbor potential.

nar model with arbitrary nearest-neighbor inter-
action. That is, we consider an action of the form

A[8]= P V(8(r) —8(r'))
& r& r'&

entering a partition sum

(2.12)

Z= d e e""'= eA(e) (2.13)

h(r =&
Osl 0828 1' 0 2asO

(2.15)

Thus, Z reduces to a sum over bond variables
S(r, r') with a set of & function symbols at every
site:

6= g lie(r))exv g V(S(r, r')). (2.)6)
{S (rsr'))

For definiteness, imagine that the sums run over
the sites of a square lattice, although the trans-
formations described below are easily generalized.

The first step is to write every term in A[8] as
an expansion of the form (2.1). In writing (2.1) for
a particular lattice bond, we shall always choose
8 to be either to the left of or below O'. These
substitutions yield a partition function which de-
pends both on the angle 8(r) at a lattice site and on
integers S(r, r') which populate the lattice bonds:

re (SC)

Z=
[

d[8] II g exp(V(S(r, r'))+iS(r, r')
4

(rsX") S(r,r')=~

x [8(r) —8(r')]). (2.14)

The 8 integrals can be performed immediately.
A typical integral is represented by Fig. 2. The
e"~ terms just give Kronecker 6 functions re-
stricting the sums over s. For example, the case
shown in Fig. 2 gives

S(R). With this in mind, we choose a new set of
integer variables S(R) defined at the centers of the

cells of the old lattice. A set of four cells is
shown in Fig. 3.

Now make the ansatz that ea,ch S(r, r') can be
written in terms of differences of the S(R):

0 1 A BS Os2 B C& (2.17)

1as0 D Cy 2 eO A D'

With this new set of variables, the N&(r} con-
straints are satisfied automatically, and the 2N

sums become N unconstrained sums over the vari-
ables S(R) populating the dual lattice. The function

V(S(r, r')) now becomes a nearest neighbor cou-
pling V(S(R}—S(R')) between these new variables.
We are left with the problem of evaluating

Z[S]= g e P V(S(R) —S(R'))),
{s(a)}

(2.18)

C. Dual transformations on correlation functions

Similar tricks can be used to transform corre-
lation functions, e.g. ,

where each S(R} is summed over the set of inte-
gers. "

Equation (2.18} is an exact rewriting of the par-
tition function. Unfortunately, we do not have much
experience in statistical mechanics in evaluating
sums of this kind. Furthermore, we do not expect
the sums in (2.18) to converge very rapidly at low

temperatures. Both difficulties can be eliminated
by performing the transformation (2.6) on each
S(R) sum to obtain

66(R) eev( Z v(6(R) -6(R'))
(%8%)

~Q 2 )re(R)6(R)).

(2.19)
Equation (2.19) is our final result for the parti-

tion function. As we shall see, P(R) describes the
spin-wave degrees of freedom, while m(R} is a
quantum number for a vortex excitation. In the
limit of low temperatures, the sums over m(R)
should converge quite rapidly.

For a lattice of N sites, there are clearly 2N
summation variables and N restrictions repre-
sented by the d(r)'s. The restrictions can be
thought of as requirements that the net S(r, r')
"flowing" into any site vanish. This "zero diver-
gence" condition can, in fact, be met by choosing
the S(r, r') field to be the "curl" of a new field

so

SI,Q
6 L
'e v

1

SC

SA

S Z,o
O Sot

JR 2

FIG. 3. Representation
of the bond integers variable
by integer variables on the
dual lattice whose "curl"
automatically satisfies the
divergence condition.
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g~(r -r') =Z'/Z, (2.22)

FIG. 4. Bonds entering
the representation of the
correlation function
g~(r —r'}.

r2) —(e»tee& ee &-&) (2.20}

where p is an integer. The expectation is to be
taken in the ensemble specified by the action (2.12}.
With p=1, the real part of (2.20) is just the aver-
age of the vector product of two spins located at
sites r and r'. The other values of p are related
to various symmetry-breaking perturbations, as
we shall see.

First, imagine we wish to determine Zg&(r —r'),
where r and r' are nearest-neighbor sites. Dual
transformations on this object carry through ex-
actly as before, except that the bond connecting
r and r' has a new statistical weight, namely

&& (86) 8&)) &&O&)8) &(r'))&fpt:&(r) 8(r')I

=Q exp(is[8(~) -8(r')]+ V(s —p)).
S

(2.21)

Thus, the effect of the factor e'~'~"' @+'~ is to
shift the argument in one of the V by an amount p.
The conclusion is that in the nearest-neighbor case

0 if the path does not
cut the bond RR',

&+1 if R lies just to the left of the

path and R' just to the right,

-1 if R' lies just to the left
of the path and R just to the right.

(2.25)

Or employing the Poisson sum formula once again,
we obtain our final result

where Z is given by (2.18), and Z' has a similar
form,

R'= E eep( E V(2(R) —2(R') -222.2)). (2.22)
(S(%)) +Ps )

Here &)2ii, is a "projection operator" which is unity

on the dual image of the special nearest-neighbor
bond and zero everywhere else.

Now consider correlations over longer distances
An expression such as (2.20) can be written as the

average of a product of nearest-neighbor terms
e' "' ~'+'~~. For example, the correlation shown

in Fig. 4 can be represented as a product

z ——(eef I I t ll) R lleef t 4 t4 )3) (2 24)
f M

Consequently, a path can be chosen running from
r, to r„as shown in Fig. 4, and the Z' of Eq. (2.24}
can be calculated as in the nearest-neighbor case.
The result is that Z' has the form (2.23) but with
the projection operator ~ g. , given by

OO

2 (2 —P) = 2'(ll 42(R) Z 422 Z 2(2(R) 2(R ) 222 2) ~-22(E'(-R)2(.R)
(if' Q)} &%,%' )

(2.26)

III. MIGDAL APPROXIMATION

A. Isotropic planar model recursion relation

The Migdal recursion scheme" has recently been
reviewed and rederived by a potential-moving
technique. " It is this potential-moving point of
view we will take here.

We first review the decimation recursion rela-
tions for the isotropic planar model (1.1} (with all
h~'s set to zero) in one dimension; that is, we ex-
plicitly integrate out the angle variables at every
other site in alinear chain. It is easily shown"'"
that the Fourier components of an arbitrary near-
est-neighbor potential obey an exact recursion
formula

V'(s}= 2V(s),

V'(s) = b V(s). (3.2)

The Migdal approach can be viewed as a pro-
cedure for bootstrapping equations like (3.2) into
higher dimensions. " The basic ideas are sum-
marized in Fig. 5. First one moves the vertical
bonds in every row of a square lattice, as shown
in Fig. 5(b). The spine indicated by an x in Fig.
5(b) are then removed by a one-dimensional deci-
mation to give Fig. 5(c). Finally, the lattice is ro
tated by 90 and the entire operation is repeated.
We refer the reader to the literature for a de-
tailed discussion of the validity of this procedure.

where V'(s) represents the new Fourier compon-
ent obtained after decimation. If b —1 out of b sites
are summed over the resulting interaction is
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d~ V(g) ~ 2f
= etc) ~ — dec" (p e" e e ')dl 2m' „Q

(a)

'I WWVANVI'AWVlhAV I

(b& where

xln g e&»~e»&
S2

(3.5}

(3.8)

I IhhhMNIAI ~I

(c)

is the logarithm of the change in length scale. A],

though it is isotropic, this set of equations is ra-
ther difficult to work with. Equations (3.3) (with
integer f&) are easier to treat with high precision
on a computer. The bulk of our numerical calcu-
lations were done on Eq. (3.3b), with f& = 2, which
can be rewritten as a single. summation

FIG. 5. One half of the Migdal transformation on a
two-dimensional lattice. New vertical bonds are ob-
tained by moving every other vertical bond on top of a
remaining bond. New horizontal bonds are then ob-
tained by decimating out the isolated vertices.

2
Vy4) ~ V3)(8~ )~V (g~~ )

+x

B. Numerical analysis and fixed points

(3.7)

For any b& 1, this interpretation of the Migdal
scheme introduces anisotropic horizontal and ver-
tical couplings, even if these are initially iden-
tical." Thus, it is necessary to consider recur-
sion relations for both x- and y-direction nearest-
neighbor Fourier components V,(s) and V„(s).
These recursion relations are

e 2ge»= —
~

d8e &&e g e&s,eeb ~4&&
2s Q

S~

(3.3a)

y s& d8 e-&@8 Q e&s&&ev 4~& (3 3b)2w Q

The new interactions in real space can be re-
covered by summing a Fourier series

v& (e) z&~e~ v'„(s) (3.4a}

v'„(e) &ge v„(s) (3.4b)

Note the symmetry between the recursion for-
mulas for the g and y bonds: To obtain the x re-
cursion (with, say, f& = 2} we first double the in-
teraction in Fourier space, and then double the
interaction in real space. To obtain the y recur-
sion, we perform these same operations in the re-
verse order.

The Migdal recursion relation becomes isotropic
as f& 1, so it is of interest to consider (3.3) in
this limit. On expanding in b —1 =lnb, we obtain
recursion relations for a single isotropic set of
Fourier coefficients

Given functional recursion relations such as
(3.3) or (3.'I), we want to follow the progress un-
der repeated iterations of various initial interac-
tion functions. Of course, fixed points are ()If par-
ticular interest. An infinite temperature fixed
point would correspond to an interaction indepen-
dent of 8, V(8) = const Aze. ro-temperature fixed-
point function would be infinite everywhere except
at 8= 0 or 2», on a scale chosen such that V(8= 0)
=0.

Figure 6 illustrates what happens to an initial in-
teraction

V,(8}= K(1 —cos8). (3.8)

After three or four iterations of the transformation
(3.7), a limiting function is apparently reached
which depends on the initial coupling K in (3.8).
Limiting fixed-point functions are shown for K
=0.5 and 0.8. These functions are periodic in 8,
although certainly not cosines, and are approached
for all K& 1. For K ~1, any initial function tends
toward a high-temperature fixed point. Very simi-
lar behavior was found for (3.3a) with 5=2. These
qualitative properties of the transformation (3.3)
were first discovered by Migdal. "

If the planar model had a conventional critical
point in two dimensions, we would expect a single
isolated unstable fixed point, in addition to the
zero- and infinite-temperature fixed points. How-
ever, the behavior described in the preceding para-
graph suggests that the planar model has a line of
fixed points at low temperatures. This indicates
the existence of a line of critical points, with con-
tinuously variable critical exponents. Clearly, it
is important to investigate this point further.

To help visualize what is at issue, we have sum-
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~ 0
~ 0

~ 0
~ 0

~ 00~ 0

r
r

~ +

(3.10)

(3.11)

into Eqs. (3.3a) or (3.3b) and approximating the
sums by integrals, we obtain

v &"=constx e ' /'&v. (3.12)

B= T,«[V(8=0) -V(8=m) j.

For the interaction (3.8), T «=Z '=kBTlJ, and
B= 2.0 initially. The renormalization flows in

(T,«, B) space are shown in Fig. 7. Initial interac-
tions with B=2.0 and T,« ~ 0.8 iterate rapidly to
an apparent fixed line. For Teff ~ 0.8, the itera-
tions eventually bend toward high temperatures and
low barriers along a universal trajectory.

Let us try to guess the approximate fixed-point
function which is approached for Te« ~ 0.8. It turns
out that the Villain model is an extremely good
guess. On substituting the ansatz

~v(s) ~-s /2Ev

0 0 0.2 0.4
I

0.6
I

0.8

FIG. 6. Invariant interaction functions V„(8) ap-
proached by the Nigdal transformation for initial inter-
action strengths K '=0.5 (dots) and K =0.8 (circles).
The initial interaction functions are proportional to 1
-cos8 (dashed line).

marized the properties of the interaction functions
at each iteration by just two parameters, an ef-
fective "temperature" Te«and a barrier height B
given by

Absorbing the constant into a redefinition of the
free energy, we see that the s dependence of the
new interaction is identical to the old. In Fig. 8,
we compare various apparent fixed-point functions
found by iterating (3.7) with the Villain model for
an appropriately chosen Kv. The Villain model is
a rather accurate representation for all T,ff

~ 0.8,
corresponding to the apparent fixed line in Fig. 6.

Unfortunately, the Villain model does not actually

T 1 +V( ) ~ Ss+V{s) 7 &V(s)
eff dg2

8 )e0 s s
(3.9)

5.00

4.50—

4.00—
z
LIJ

3.50—

K
K
g ~.00-

I

1.50

I

I cI

9 I I /

I I
/

/ /
I / /

I I I I
/ / /g(

2.50— I I I I
I / / /

/

I I I / / r
I /

200 . i I ~ g a
0.0 0.50 1.00 2.00

Tef f

FIG. 7. The Migdal transformation parametrized by an
effective temperature and barrier height. The circles,
triangles, etc. , indicate iterations of the b =2 transfor-
mation from the line of barrier height =2.0.

0=—
0 0.2 0.6 0.8

FIG. 8. Comparison of apparent fixed-point functions
found with the Migdal transformation, and an appro-
priately chosen Villain model for K = 0.5 (dots) and
X = 0.8 (circles).



RENORMALIZATION, VORTICES, AND SYMMETRY-BREAKING. . . 1225

2.00 dT "=79.4e "' «
dl

(3.15)

1.50—

4 eff
4)

1.00—

at low temperatures, suggesting that dT,zz/df is
positive for all nonzero temperatures and that there
is no phase transition.

This conclusion, that there is almost, but not

quite a fixed line within the Migdal approximation,
was reached previously by Wilson, "who showed

analytically that

dT"' - exp(-4zz'/ST, «) (3.16)

0.50— 0
0

0

0
0

o.o
0 1 2

FIG. 9. Change in effective temperature with iteration
dTyf f/cgl for the Migdal transformation. This quantity
is almost identically zero until T&& —-1.0.

e V' &s) ~ s /ICy~ (s s ) /Ky

represent a family of exact fixed-point functions of
the Migdal transformation. We can see this, for
example, by calculating the error introduced at
low temperatures in Eq. (3.7) by approximating the
sum by an integral

at low temperatures. The number —', m' is very
close to 13.2.

It is interesting to contrast the Migdal approxi-
mation to the planar model, summarized in Fig.
10 with the corresponding quantity for the two-di-
mensional Ising model, shown in Fig. 11. Within
the Migdal scheme, it is known analytically that" "

dT~z T'.«tanh(1/T, «) ln[tanh(1/T, «)]
dl "' 1 —tanh'(1/T„, )

(3.17)
where T,«= ksT/J in this case. The Migdal trans-
formation does predict rather bizarre behavior
for the planar model at T= 0. Given the form (3.15)
it is possible to show that the susceptibility di-
verges as the exponential of an exponential as
T 0,

X- exp(AT'e ~ ), (3.1&)

OO +00

de} ~-~fz /&y& (s 0) /&y&2rkm4
~ ~co

lft zs ~ e

= (~zzzffv)'&e ' ~' v[1+ 3 cos(zzs) e "zzv~']

(3.13)

where A and B are constants. Similar behavior has

10

The Villain model fails exponentially to be a fixed
point.

To see if there really is a one-parameter family
of fixed-point functions (which is presumably
"close" to a family of Villain models), we investi-
gate very precisely changes in the effective tem-
perature with iteration. Consider the quantity

-5
10

-10
10

dT,«T~~ —T,«
d/ ln2

(3.14)
I-

-15
10

for the transformation (3.7); this should be iden-
tically zero along a fixed line. In Fig. 9 we have
plotted dT~z/dl along the apparent fixed line ver-
sus T,ff The change in T «appears to be identi-
cally zero until T,«= 1.0, which would be consis-
tent with a fixed line. However, appearances can
be deceiving. In Fig. 10, logzo(dT~z/df) is plotted
against 1/T„,. The "differential" change dT„z/dl
decreases exponentially in 1/T„, over at least 20
decades! To a good approximation,

-20
10

10

1/ T6ff

FIG. 10. Plot of dTeff/dl vs 1/T eff~ The graph is
linear over about 20 decades in dT,ff/dl.
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0.50

dT

dg

0.0

0.50

1.00 I I I I I

0.0 0.50 1.00 1.50 2.00 2.50 3.00
eff

FIG. 11. Differential recursion relation dTegg /dl ob-
tained from Migdal's recursion formula for the two-
dimensional Ising model.

been found in the correlation length of a "truncated
tetrahedron" Ising model.

We do not yet know if we should believe the de-
tailed predictions of the Migdal theory. Although
the rapid approach of an initial interaction to some-
thing resembling a Villain model is probably quali-
tatively correct, we shall suggest in Sec. IV that
the approximation does not treat vortices properly
along the apparent fixed line. In any event, it is
clear from Fig. 9 that the Migdal approach simu-
lates a fixed line remarkably mell, as first ob-
served by Migdal himself. "

these fields may become irrelevant (X~&0) at suf-
ficiently high temperatures. The h&'s mould then
become smaller with iteration, and would not af-
fect the isotropic planar model behavior. The
borderline between relevancy and irrelevancy of
a particular field h~ occurs at a temperature

klT =8vZ/p'. (3.21)

(3.22)

gives X~& 0 for all p and T„,. Combining (3.22)
with a bond-shifting transformation, as described
in Appendix B, we obtain the eigenvalues X~(T) for
P= 1-4 and 6 shown in Fig. 12.

2.00

1.80

At T= T, the eigenvalue is marginal (X~=0).
We first want to calculate the X~(T) in the frame-

work of the Migdal theory. The spin-wave approxi-
mation is certainly suspect at higher temperatures,
although it does suggest that X,(T} is more likely to
become irrelevant than X,(T). The second aim of
this section will be to investigate the critical be-
havior which occurs if the X&(T) are relevant. We
have done this numerically, and have relegated the
necessary generalization of the Migdal scheme to
Appendix B.

The characteristic behavior of X~(T) in the Mig-
dal approximation can be seen by carrying out a
one-dimensional decimation with h~& 0 for some p,
approximating V(e) by a Gaussian -82/2T, «and
expanding to first order in h&. The result

h'= k(1+ e + s«~ ) for b = 2

C. Symmetry-breaking interactions

We now investigate the symmetry-breaking per-
turbations displayed in Eg. (1.1). In Appendix A we
deduce the renormalization-group eigenvalues of
these fields along the fixed line in the spin-wave
approximation. A small field h~ should obey the
recursion law

1.60

1.40

h'=b n' hpt

with

X~(T}= 2 (keT/4v J)p'. -

(3.19)

(3.20)

1.20

Apparently, the h~ variables should be strongly
relevant at low temperatures (A~& 0). An initially
small crystalline field w'ill grow rapidly, leading
to behavior quite different from that found for h~
= 0. However, (3.20) also suggests that some of

1.00
0.0

I

0.50
I

1.00
Tef f

I

1.50 2,00

FIG. 12. Eigenvalues A& (T) of various symmetry-
breaking perturbation along the apparent fixed line in
the Migdal recursion relation.
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0.10—
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0
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80 ~ 0
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-15
10

-0.20—
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0
0

-20
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-25
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EO $0

!
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eff

FEG. 14. Differential recursion relations for discrete
planar models with p= 6 (circles) and p =12 (dots) states.

FEG. 15. The critical exponent v&' for a p-state dis-
crete model obtained from the Migdal approximation.

T, ~ for the discrete models is defined by V(0)
y(2w/p) =- 2v'J/p'T, «, which becomes equivalent

to the previous definition(3. 9) in the limit p-
All models with p ~ 2 appear to have a conventional
second-order phase transition at a finite T,. For
p ~ 8, dT,«/d/ was found to agree closely with the
result for the continuous model (Fig. 8) at all
temperatures above T,. Effects of the discreteness
of the models were only apparent below T,. This
result is suspect at large p, because it is known
that the Migdal transformation fails to predict the
first-order character of the transition of s-state
Potts models with large s. The critical exponent
v(p) for these models (which is just the reciprocal
of the slope of dT,«/dl through its nontrivial zero)
are shown in Fig. 15. As p-~, v diverges, which
is not surprising since we should recover an iso-
tropic planar model in this limit. " From Fig. 15
we find that v~ e' " for p ~ 10.

IV. LATTICE COULOMB GAS AND LOW-TEMPERATURE
ANALYSIS

A. Generalized Villain model

We now turn to a more direct and systematic
analysis of the low-temperature properties of the
planar model. For simplicity we will deal with
the Villain model, taking the Fourier-transformed
interaction to be

V(s) = s'/2Kv —R ln(2'„) . (4.1)

The normalizing constant part of (4.1) is chosen
for convenience; we will henceforth drop the sub-
script on K~. Recall that the interaction appearing
in (1.1) became very similar to the Villain model
after a few iterations of the Migdal transformation.

With the choice (4.1), the expression (2.19) for
the planar model partition function becomes"

=z n ) exp —Q (((R)- R(R'))'+ Q ee' (R)R(R)) .
(Q R'&

(4.2)

This exact representation of the partition sum is
the result of a dual transformation on the zero-
field (all hR=0) Villain model. Notice that the
quadratic coupling term in (4.2) is multiplied by
K ', in contrast to the original problem in which

the coupl. ing was proportional to K at low tempera-
tures. This mapping of a strong- coupling problem
into a weak-coupling one (and vice versa) is typi-
cal of a, dual transformation.

For large K, each (j)(R) in (4.2) undergoes small
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fluctuations, and the terms with various m(R)'s
different from zero are suppressed. If all the
m(R)'s were zero, the mathematics of evaluating
(4.2) would be identical to that described in the
simple spin-wave analysis of Appendix A. In a
limit where finite rn excitations can be ignored,
we would expect the line of lom-temperature fixed

points found in spin-wave theory to be essentially
correct. However, if the terms with )n(R} non-
zero led to important changes in the form of Z, we
would expect the spin-wave analysis to be qualita-
tively incorrect.

To control the size of fluctuations in m(R), we
introduce a new parameter y, in Eq. (4.2), writing

z(y, )= E 11 )exp --, » E [((R) —(l»')]* E [)m, *(»)~ 2» ()()('()()).
[m(%) ) (5, R'& R

(4.3)

We have now converted the part of Z quadratic in
(t)(R) to exactly the spin-wave form of Appendix A
by rescaling every P(R) by K. The parameter y,
controls fluctuations in m(R). Although our origi-
nal problem requires y, =1, fluctuations become
quite unlikely in the limit y, -0. We call the mod-
el represented by Eq. (4.3) the generalized Villain
model.

It is easy to analyze Eq. (4.3) in the limit of
small y, . In this limit, terms with m~= 0 dom-
inate, and the terms with m„= + 1 can be regarded
as a small correction. Thus

m(R )-"-&
exp[lnyo m'(r) + 2vi Km(R) Q(R)]

= 1+2y, cos[2wKQ(R) ]
e»»o &08 tz» K(()(R) 3

and (4.3) becomes in the small y, limit

»(),)=f»f(l~w - » 7 I('(Ã) 4(»')] )&Q 8'&

peratures higher than (4.8).] But it is typical of
dual models to be in a broken symmetry state when
the original problem is in its disordered phase, and
vice versa. This information is summarized in the
"phase diagram" shown in Fig. 16(a). If we can
use some renormalization technique to move from
y, = 0 to y, = 1, we shall know the properties of the
Villain model.

B. Reduction to a Coulomb gys

Villain» has shown. that the model he proposed
decomposes exactly into the decoupled spin-wave-
vortex system treated by Kosterlitz. " We want to
show that this representation also follows from the
dual transformed Villain model (4.3), as a first
step toward a systematic treatment of its low-
temperature properties.

Villain Model

x exp 2y, cos2mKQ R
R

(4.5)

But this is exactly the spin-wave problem we set
for ourselves in Appendix A, in the presence of a
"symmetry-breaking field" of the form cos(P,«8),
with

0.5—

tt ttt tt., )Ill
1.0 2.0 3.0 QQ 5.0 (27I K)

(o)

P,qf = 2@K. (4.6)

As discussed in Sec. III and in the Appendix, the
eigenvalue of such a perturbation is

(T) = 2 —Pzii/4vK= 2 —vK.

We are lead to the conclusion that finite m(R) or
"vortex" excitations will alter the spin wave re-
sults at small yo only for

(4.7)

K '=Ks T/J & z v. (4.8)

Above this temperature, the y, perturbation will
break the symmetry [The neglec. ted terms in the
sum (4.4} also produce symmetry-breaking cou-
plings, but these break the symmetry only at tem-

Vil I oin Model

(b)

I +— I 4 I

1.0 2.0 3.0 4.0 5.0

FIG. 16. (a) The Villain model (dashed line) in the
space of couplings 271K and y(). As suggested by the
arrows, the variable yo appears to be an irrelevant per-
turbation to the fixed line at yo-—0 for 27tK& 4, but is
relevant for 27(K &4. (b) The Villain model (dashed line)
in the space of couplings 27tK and y. In this repre-
sentation, the Villain model comes exponentially close
to the spin-wave-theory fixed line at low temperatures.
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Z(y, ) =Z, Z, (y,), (4.9)

where Z,„is the spin-wave partition function cal-
culated in Appendix A, and

I
Z (y ) eA&;Em& R}&

c 0
(m(a) )

with

A, [ &R)] =Q m'„ lny,

+ P 2»Km(R)G'(R —R')m(R') .
pairs

(4.10)

(4.11}

The symbol g in (4.10) is a sum over sets of
m(R) such that

The spin-wave variables p(R) may be eliminated
entirely from (4.3) by the usual techniques of
Gaussian integration. The result is

depending on whether approximation (4.13a) or
(4.13b) is used.

Clearly, the parameter y plays the role that yp
played in our discussion of corrections to spin-
wave theory in Sec. IVA. As y tends to zero, the
Coulomb partition function Z, goes to unity and
we recover the spin wave results. Figure 16(a)
can be redrawn in terms of y as Fig. 16(b), where
the Villain model [as defined by (4.14)j becomes
exponentially close to a simple spin wave theory
at low temperatures.

For future reference, it is useful to display the
vortex-vortex correlation which follows from
(4.14) in the limit y -0. Because the dominant non-
zero configuration in this limit consists of single
excited vortex pair, we find, for R w 0,

(m(0)m(R}) =-2y'e "
m(R) =0, (4.12) =-2y'/(R/a, )"» (large R). (4.16a)

while G'(R- R') is a spin-wave lattice Green's
function with a subtraction, defined in Appendix
A. The sum over pairs in Eq. (4.11) counts each
pair with RwR' exactly once.

Following Kosterlitz and Thouless, "we observe
that G'(R) is given to quite a good approximation
by"

G'(R) = 1n(R/ao)+ ~ ln(8e ") (4.13a)

G'(R) = 1n(R/ao)+ ~z &&, (4.13b)

which is exact at R =ap and off by a small additive
constant as R- ~. On inserting either (4.13a) or
(4. 13b) into (4.11), the partition function (4.10)
becomes equivalent to the partition function for a
two-dimensional Coulomb gas, with action

A,'[m(R) j =Q m2(R) lny

+ g (2»K)' ' m(R) ln(jR R'(/&& )
pairs

x (2&&K)' 'm(R') . (4.14}

for all R, where @is Euler's constant and ap is
the lattice space of a square lattice. Alternatively,
we could approximate G'(R) by

When R = 0, we find

(m2(0)) 2y2+ e-2r»&&' &R&'I
(4.16b)

Physically, m(R) represents the quantum num-
ber of vortex. Equations (4.16) express the fact
that a pair of oppositely oriented vortices can ap-
pear in the system with a probability proportional
to y2. They are attracted to each other with a
logarithmic potential of strength 2'.

We are now in a position to develop a sort of
"low-temperature series expansion" for the Vil-
lain model. To produce a low-temperature series
for the Ising model in two or three dimensions,
one first imagines a configuration of totally up or
down spins. Corrections to this dominant con-
figuration at low temperatures are calculated by
overturning 1, 2, 3, . . . spins at a time. ' Here,
we expand about an ensemble of states taken into
account by a simple spin-wave analysis. Cor-
rections which form a power series in y corres-
pond to the various possible vortex excitations.
These ideas will be made explicit by the cumulant
expansion described in Sec. IVD.

or

e-r In(se ")K/2
Pp

y y e & K/22

(4.15a)

(4.15b)

The charges are (2»K)'~' x (0,+1,+2, . . . ) and the
chemical potential for the production of a charge
at a site is

C. Correlation functions

Before developing a low-temperature cumulant
expansion, we describe how to express the cor-
relation function g~(r —r') between e'~~&"& and
e '~~'+) in the Coulomb gas language. According
to Eqs. (2.26) and (4.1), the relevant correlation
in the Villain model is
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g (r 2')=g'( Z II J'
2 g exy eric rx()[)y(R) —

xg I [y(R) —y(R') —ily, -.y]'j, (4 (2)
(~(R)) s 8 2K &g. R

where we remind the reader that the projector operators q"„R, are only nonzero on bonds in the dual lat-
tice which cross a previously chosen path from sites r to r . It is convenient to rewrite (4.17) in terms
of new functions [7'(R) and g "(R}:

g ( - r') = g 'I f 2 Q exy 2 i Q (R)y(R) —
xg g [ y(R) —y(R')]'

fm(R) ) R &R, a &

p'
yx-, 4 g g y(R)[e'(R}- 2'(R}]).

R
(4.18)

Here, ]I'(R) is a function which is+1 at all points
on the left hand vertex of a bond which crosses
the path from left to right and zero everywhere
else: q'(R) equals unity on the right-hand edge
of these bonds and is zero everywhere else (see
Fig. 17).

The next to last term in (4.18) counts the
number of dual lattice bonds crossed by the path.
The mysterious functions g'(R) and ]7"(R) in the
final term just give rise to the lattice version of
the line integral along the path of the derivative
of Q(R) perpendicular to that path.

As in the case of the partition function, the in-
tegral over the (j}(R) is easily calculated, with the
result

g~(r- r') g~'"(r- r')g~~(r- r').
The "spin wave" contribution to g~ is

gP(r —r') = exp —(PR/2K)X(r —r'),
where

(4.19)

(4.20)

g(r- ')=$2'-„-„.—Q [2'(R) —2"(R)[G(R-R')
R»

x [r} (R') —]7"(R')] . (4.21)

The vortex contribution is

(see Appendix C) that

u(R) = 8(r - R) —8(r' —R), (4.25)

where 8(r) is the shift in orientation of 8(r) pro-
duced by a vortex at 5, = 0:

8(x) = tan '(y/&), r= (x,y). (4.26)

Note that if a single uncompensated vortex ap-
pears within a distance of order

~
r r or r and

r', u(R) will change by roughly w. As r —r'~- , the probability of "destructive interference"
of this sort increases, and the correlation function
will tend to zero.

D. Fluctuation corrections to the correlations

As an example of the sort of low-temperature ex-
pansion possible within this reformulation of the
planar model, we calculate the vortex correlation
(4.22) to lowest nontrivial order. If the major
contribution to (4.22) comes from pairs which are
tightly bound, fluctuations in Zs m(R)u(R) will
be rather sma1.1. Consequently, we employ a cum-
mulant expansion, which gives to lowest order

g(r ') = ,(-e-x*gay( (R) (R'))
+R~

g, (r-r')= exy 'Ie ())) ()())),
R

(4.22)
x u(R)u(R') (4.27)

where the expectation is to be calculated in the
vortex ensemble (4.11), and

(R)=QG'(R —R')[2'(R'} —2'(R')] . (4.23)
+

Although the expression (4.21) entering the "spin
wave" part of g~ looks rather formidable, it is
shown in Appendix C that (4.21}and (4.20) combine
to give the standard spin-wave result (A5): (a) (b)

gp(&) = exp[- ((}}'/2vE)Gr(r)] (4.24)

The vortex contribution is, of course, not so
simple. However, if (r —R~ and ~rg —R~ are large
compared to a lattice constant, it can be shown

FIG. 17. Definition of the functions g'(R) and g"(R) for
a particular path. The function q'(R) is +1 on dual lat-
tice points marked by a cross in lattice (a), and is zero
everywhere else. Similarly, g"(R) is nonzero only on
the crosses shown in lattice (b).
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To evaluate the sum in (4.27), take R'=R,
+ 2 rpa„R = R, —2 rpa„and assume that aprp is
small compared to )R,—r( and (R, —r'(. This
amounts to the assumption that tightly bound vor-
tices dominate the sum for large r and r'. Ex-
panding each u(R) about R„and making use of the

charge neutrality condition Z-„m(R) =0, we obtain

y —Y
u(R) =

t r-RI
y' —Y

f
r' —Rl

a x X x X—u(R) =
Ir —Rl /

r' —R' )

But it follows from (4.25} and (4.26) that

(4.29a)

(4.29b)

Ing~r(r- r') =+ —,
' p' p (m(5)m(a, r,)}

Bp &p

x a', [(r, ~ Va }u(R)]'. (4.28)
in this limit. Upon averaging over various orienta-
tions, (4.28) can be rewritten

Ing~(r —r') = —' p'g(m(0) m(aor )}a',r20$ V- [G'(Ro- r) —G'(R —r')] V„[Gg(RO-P) —G'(Ro —r')].
18

Rp

(4.30)

(4.31)

%e can evaluate the sum over Rp immediately by
integrating by parts and observing that

"G'(R) =-2v5~0/ao .

contribute equally, in contrast to (4.37). Hence,
it is inevitable that K,« - 0 after many interactions.
From (4.37) we see that K,«approaches a finite
nonzero limit provided

Qur result is then that 2@K&4. (4.38)

gr'(r)=exp(- rl'G'(r)Q:( (0)m(,er)}).
rp

(4.32)

This result for the vortex part of the correlation
can be combined with the spin-wave contribution
(4.24) to give finally

e 'C (rr)/2r-rg*f (4.33)

where

K,,', =K ' ——,
' HQ t, (m(tt)m(a, r,)) . (4.34)

rp

Apparently, the fluctuations in m(R) have pro-
duced a renormalization of K just as in the Migdal
approximation of Sec. III. However, the nature of
the renormalization is entirely different.

To see this let us look at the contributions from
different ranges of rp. The low-order calculation
described at the end of Sec. IV B gave

(m(5)m(a r )}=-2y'e 2'rc'(go'o'. (4.35)

(4.36)

Thus the nearest-neighbor part of (4.34) just gives
a contribution to K,,', -K. ', which is

4g2y2e o' E

The contribution from r, ~ ap dominates in this
case.

V. RECURSION RELATIONS AND DUALITY

y 3-2r Ke«
K 1 K 1+2~3y2

ap Cp
p

(5.1)

For K,«&2/v, the integral diverges and our
theory breaks down. To study this further, write
out the perturbation series obtained by solving
(5.1) iteratively,

"dr r 32«
K ' =K '+2w3y'

Qp Qp
(5 2)

A. Isotropic recursion relations

Qur results and conclusions can be usefully sum-
marized in terms of recursion relations, which
are readily derived from the results of Sec. IV.
Equation (4.34) for the effective coupling can be
turned into a lattice integral equation by noting
that, in an improved self-consistent theory, it is
K,«and not K which should enter the expression
(4.35) for (m(5)m(a, r,)}. In an approximate con-
tinuum form, this integral equation takes the form"

drp (4.37)

However, other ranges of rp contribute with quite
different weights. In fact, the contribution from
higher range of r, takes the form

Now divide each integral into two parts,

dr = dr+ dr,
ap Cp hap

(5.3)

In the Migdal approximation, all ranges of lnrp
with 0& lnb «1. One can combine the small-r
parts of the integrals into a new bare coupling
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FIG. 18. Renormalization trajectories for the planar
model at low temperatures. Two separatrices, which
flow in and out of a fixed line at y =0, divide the parame-
ter space into three regions.

(K ')', and rescale the large-r integration vari-
ables so that the integrals again run from a, to
In, the limit of small lnb, the integral displayed in
(5.2) makes the dominant contribution to (K ')'.
The rescalings can be absorbed into a redefinition
of y.

On resumming the series obtained in this way,
one obtains a new integral equation of precisely
the same form:

dt'
K,'„= (K ')'+ 2«sy"

ao ao

where

(K ')'=K +2« y lnb,

y'=b' '«y =y+(2 —«K)y lnb.

(5 4)

(5.5)

Apparently, elimination of the short-wavelength
part of the integral equation has produced a Cou-
lomb gas problem with parameters (K ')' and y'.
A continuous family of such problems is obtained
by iterating this transformation. The differential
changes in E ' and y are given by

dZ-i
=28' ydl

—= (2- m'K)y,
dy

(5.6b)

where l = lnb. Except for minor differences, these
are precisely the equations obtained previously by
Kosterlitz. "

Figure 18 shows the renormalization trajectories
obtained from (5.6) (this is a low-temperature ver-

sion of Kosterlitz's Fig. 1). The spin-wave theory
fixed line of Berezinskii is given by y =0. The pa-
rameter space divides into three regions, parti-
tioned by two separating lines (separatrices) which
lead in and out of the fixed line. The fixed line is
stable to vortex perturbations in region I, as was
suggested by the arguments of Sec. IVA. Actions
initially in regions Q and IQ iterate toward large
y, outside the range of our small-y theory. The
locus of initial Hamiltonians for the Villain model
is shown by the dashed curve in Fig. 18. Formula
(4.33) for gs(r) applies to the Villain model only
when it is in region I.

It is tempting to associate T, with the intersec-
tion of the Villain locus and the left-hand separa-
trix of Fig. 18 as was done by Kosterlitz. " Cer-
tainly, a very plausible assumption is that both
regions Q and IQ ultimately flow into a high-tem-
perature fixed point. Under this assumption,
Kosterlitz showed that the correlation length, in-
finite below T„diverges as

~ (T) coast/ l T- Toit ~ s
(5.7)

as T T, from above. '~ A second consequence" is
that the critical exponent g obtains a unjversal
value

(5.8)

at Tc.
Unfortunately, Luther and Scalapino's recent

solution of a planar model" casts doubt on this
simple picture. Their calculations suggest that
the value of g at T, is nonuniversal, depending on
the details of the particular planar model. This
would require another marginal operator (in addi-
tion to K ') in the theory. The only such operators
we have found (other than trivial ones) are associ-
ated with symmetry-breaking fields.

However, there is one way out. We showed in
Sec. IVA that the leading vortex perturbations to
spin-wave theory could be viewed as a symmetry-
breaking operator cos(p, «lb) with ps«= 2«K.ss The
vortex perturbations become relevant at precisely
p,«=4. One might speculate that, for large y in
region Q, the model goes over into a system with
an infinitely strong symmetry-breaking field with
p, « —-4. It is not difficult to show that this would
be an Ashkin- Teller model. The planar model
could possibly have the continuously variable ex-
ponents of spin-wave theory in region I, the ex-
ponents of the Ashkin- Teller model in region II,
and a high-temperature phase only in region QI.
Conceivably, this could happen in a way consistent
with the Luther-Scalapino results.

In region I, where the physics is presumably
well understood, it is of interest to calculate the
eigenvalues of various symmetry-breaking fields.
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B. Duality results

To proceed further, we quote a duality result
which is proved in Appendix D. So far, we have

considered the partition function of the Villain
model with coupling K, and an extra parameter y,
introduced into the dual model in Eq. (4.3). In

addition, we have been interested in the effects of
field terms, expressed as contributions to the ex-
ponentiated action of the form given in Eq. (1.1)

-l.0—

-2.0—

-5.0—

n ehp cosfp8 (r))

r

It is only a small change to replace A by

A' = g g exp{fp8(r)n(r) + Iny~[n(r)]').

(5.1la)

(5.11b)

FIG. 19. Eigenvalues Xp(T) for symmetry-breaking
fields applied to the Villain model obtained by taking
vortex corrections to spin-wave theory. %'e cannot cal-
culate the Xp (T) beyond 2k&T~J =0.9, which may actually
correspond to the critical temperature of the model, .

This was done by Kosterlitz only for p= 1. From
Fig. 1, we see that these eigenvalues are deter-
mined simply by the mapping (5.6} of the Villain
model onto spin-wave theory. According to (4.33},

g (r)- I/r"~'~, q (T) = p'/2vfC„, , (5.9}

at large r. Because (see Appendix A)

If yp- 0, only the terms n = 0 and +1 contribute,
and A' goes into A provided

1
&p= »p ~ (5.12)

If y~- I, then 8(r) is forced to take on the values

(2 /Pv)q(r); q(r}=0, 1,2, . . . , p 1,
appropriate to the P-state model. Hence yp-1 is
just like hp- ~.

Imagine a problem which contains in the 8(r)
picture a term like lnA in its action and is other-
wise identical to our generalized Villain model.
This problem is defined more explicitly in Appen-
dix D. There it is proven that the partition, func-
tion of this model Z(2 ri. , y„y~) "obeys the duality
relation

A~(T) = 2 —gr!~(T), (5.10) Z(2vfC, y„y,) = Z( p'/2vfC, y„y,) (p/2vfC)". (5.13)

X~(T) follows from an approximate calculation of
K,«. These eigenvalues are shown in, Fig. 19.
They are calculable within this approach only up
to the border of region II, where 2ksT/wJ=0. 9.
Each X~(T) varies smoothly from 2 to 2 ——,'P'. The
important point is that X,(T} goes negative at suf-
ficiently high temperatures, above which h, is ir-
relevant. Above this temperature (but below the
Koster1itz- Thouless T,), planar model behavior
should be experimentally accessible in quasi-two-
dimensional crystals dominated by hexagonal an-
isotropies. The eigenvalue A.,(T) goes to zero at
precisely the transition temperature marking the
border of regions I and II. In Sec. VC we show
that cubic perturbations, which are marginal at
this apparent T„actually sweep out a new (Baxter-
like) line of fixed points. The critical behavior (if
any) when the X~(T) are relevant is impossible to
ascertain except within the untrustworthy Migdal
approach of Sec. III. Comparing Fig. 19 with the
results displayed in Fig. 12, we see that the Mig-
dal results may not be too bad for P = 1-3.

%'e know that the generalized Villain model has
a Kosterlitz- Thouless critical point at

2~K =4, (5.14a)

as yo-0 and y~-0. Equation (5.13) then directly
implies that this model also has another singularity
at

2' —gP (5.14b)

in the presence of a small h~ (or y~) type pertur-
bation. And the singularities in the free energy
must be identical! The transition (5.14b) is the
change from behavior characteristic of the P- state
model to planar model behavior. Thus the dua, lity
relation maps all these p-state to pl~i-'zr transitions
into the Kosterlitz- Thouless "point. " Since an in-
finite number of different transitions map into this
"point, "we have at least suggestive evidence that
this "point" contains quite a bit of structure. It
could conceivably represent a whole family of dif-
ferent universality classes, which would be con-
sistent with the t,uther-Scalapino picture.
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C. Recursion relations with symmetry-breaking fields

The duality relation quoted in Sec. VB can be
used to generalize Eqs. (5.6) to allow for symme-
try-breaking fields. Setting y =y,e ""~, we can
rewrite (5.6) in the form

dK —nfl' yoe (5.15a)

dyo = (2 —wK)y3, (5.15b)

where these equations are correct to leading order
in y3. By exploiting the duality relation (5.13) with
yp=0, these equations can be used to produce re-
cursion relations for K ' and yp with y, = 0,

dK '
P2 2K 2 P g-1/I 4

dl
= —gK yp e

dyp P'
dl 4m

2-—K" yp,

(5.16a)

(5.16b)

correct to lowest order in yp.
It is tempting to combine (5.15) and (5.16) into a

set of recursion relations which might be val. id for
both yp and y, nonzero:

dK '
1

dl
2v3y2e 2 // vp2y2 K 2e 2 E /3 (5 1 Vs)

3= (2 —vK)y (5.17b)

dyp P
dl 4w

2-—K y. (5.1Vc)

By construction Eqs. (5.17) obey the duality rela-
tion (5.13) and reduce to the correct limits when
either y, or yp tends to zero. Furthermore, no
additional terms can appear in (5.17) to lowest
order in y, and yp by symmetry. For example, a
term proportional to y, y2 cannot appear in (5.17a)
because the equations must be invariant under
yp-- yp. Similarly, terms proportional to yp or
y22 cannot appear into (5.17b): duality would de-
mand y, and y', terms in (5.1Vc), again violating
invariance under yp- —yp. We are led to the con-
clusion that Eqs. (5.17) are correct as they stand

For yo=yp= 1, we have a p-state version of the
Villain model. Villain" estimated that a phase
transition at P = ~ took place when

K —1/1.7.
Hence for large P, we expect the transition from
the p-state Villain model to the planar behavior to
occur at

K = [P'/(2v)']1. 7.

We expect this transition to occur provided P ~4.

to lowest order in yo and yp.
The differential equations (5.17) give strong evi-

dence for the phase diagram in Fig. 1(a) for P &4.
As the initial temperature is varied for fixed hp
= —,

'
y2 o 0, we find from (5.17) that a segment of the

Berezinskii fixed line is stable to both vortex and

hp perturbations. The vortex parameter y, be-
comes unstable and iterates toward large values
for T&T,(h2), while h2 becomes unstable and iter
atestoward large values for T& T2(h2). We are led
immediately to a phase diagram like that in Fig.
1(a), provided we associate the instability for
T & T, (h2) with a disordered phase, and the in-
stability for T& T2(h2) with an ordered p-state phase.

The critical properties for small y, and yp with
p=4 are controlled by three fixed lines. In addition
to the Berezinskii spin-wave fixed line (y, =y, =0,
K ' arbitrary), we find two new fixed lines in
(5.1V) given by

yp = +y4. (5.18)

Every point with y, = +y440 along these lines is
characterized by one marginal, one irrelevant,
and one relevant eigenvalue. The two new fixed
l.ines have two-dimensional domains of attraction
in the (K '- y3-y )-Hamiltonian space, and con-
trol the critical behavior for y, 40. It is straight-
forward to show that this description in terms of
three fixed lines leads to the phase diagram shown
in Fig. 1(b). All three lines display continuously
variable critical exponents with a conventional
phase transition across T,(h, )." Although the ex-
ponent 2)(h, ) remains fixed at & to lowest order in

h4, we find that the correlation length exponent
v(h, ) diverges,

v(h3) 1/
I
h

as h4-0.
For p&4 the entire spin-wave fixed line is un-

stable to either vortex or hp perturbations, and we
are unable to determine the critical behavior for
small h2 320. Presumably, two Ising (Potts) criti-
cal lines are present in the (h2-T) plane for p=2
(P=3). Further investigation is required to de-
termine how these lines connect up to the phase
diagram of the planar model for hp= 0.
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APPENDIX A: SPIN-WAVE THEORY

In this appendix we review the standard source
of low-temperature results for models with contin-
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uous symmetry, spin-wave theory. The usual
route to this approximation is to expand the inter-
action function in (1.1) to second order in 8(r)
—8(r'), so that it takes the form

@[8] ~K g [8(r) —8(r']2 + g h~cos[p8(r)].

n= 4, 6, . . . , produce interactions between spin
waves and corrections of relative order K '.
The extension of the range of integration to +~
eliminates vortex excitations, which are of rela-
tive order e "~ '""

The action which produces the spin wave approx-
imation can be written in the form

(A1) A[/]= —~K g &f&(r)G '(r —r')@(r'), (A2)

Then, the variables 8(r) (which can be chosen to
take on values in the region [-w, w]) are replaced
by variables P(r) which run over all real values. '8
In Sec. IV, it is shown that the dual representation
of the Villain models involves an action of pre-
cisely this form. In the hp-0 limit, all properties
of the resulting Gaussian action can be evaluated
quite explicitly.

As an approximation to (1.1), the spin-wave re-
sults are expected to be valid in the low-tempera-
ture limit. Neglected terms of order K[8(r) —8(r ')] ",

G"(r) =
'dq dq e-g- (8-F' ) / ao

X y

, 2w, 2w (4 —2 cosq, —2 cosq )"
(As)

Using (AS), it is very easy to produce the spin-
wave partition function, which is

where G(r —r ) is the lattice Green's function de-
rived from (Al) for h~=0. This Green's function
and its inverse may be written

e"'~'=exp -~ 0 "
2

' ln —4-2cosq„—2cosq„dp(R) „)~), ' dq,
' dq„K

R -r
(A4)

G'(r) = 2w[G(0) —G(r)] . (A8)

Note that the infrared singularity in G(r) produces
an asymptotic form for G'(r), which is

G'(r) = 1n(r/ao) + const, (A7)

as r- ~. Thus, the spin-wave correlation function
at large separations is

where 0 is the size of the system.
More interesting results obtainable within the

spin-wave approximation are the correlation func-
tions corresponding to the various hp perturbations
entering (Al). For example, it is straightforward
to calculate

Swor rli /e~p[e&r)-e(r ))q e-(p /2r&) c'(r-r ~ )Ap '1 I

(A5)
where

X~ = 2 —P /4wK.

a result which is discussed in Sec. IIIC.

(A10)

APPENDIX B: SYMMETRY-BREAKING FIELDS AND THE

MIGDAL APPROXIMATION

(1+a)h (1-a}h (1+a}h

The Migdal recursion scheme is fairly ambiguous
in its treatment of symmetry-breaking fields. As
shown in Fig. 20 one can imagine moving an ar-
bitrary fraction n of the field on each site in the
initial bond-moving step. A heuristic argument
which suggests what fraction should be moved is
summarized graphically in Fig. 21. Qne divides
each on-site field symmetrically between the four
connecting bonds, and then manipulates each bond-

GI~( I) (ir r/i/g ) 0 l2ww (A8)

In a standard scaling theory of critical pheno-
mena, we would interpret (A8) as a statement that
the action (A2) is at a critical point, and that the
perturbation e'~~'" (or, equivalently, cos[pp(r)]j
had scaling index

(1+a)h (1-a)h (1+a)h

x, =p'/4w K. (A9)

The corresponding field hp has a scaling index Ap,
which is Ap =d- xp, where d is the dimensionality.
Consequently we have

FIG. 20. Potential moving scheme for handling an on-
site interaction within the Migdal approximation. The
parameter n is, at present, arbitrary.
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i ( ) (Q pa i&"() p &)

FIG. 21. Scheme for partitioning an onsite potential
into four equal parts such that it can be treated by a
bond-moving approach. The enlarged vertices represent
the on-site potential.

plus-field component as before. " On a d-dimen-
sional hypercubical lattice, this would lead to the
requirement

where T, is determined from the spin-wave re-
sult. The requirement that the coefficients of
(T/T, ) in these expansions agree suggests that
we take

(B6)

The reader may view this particular route to the
result a = & as somewhat capricious. Similar
arguments, however, show that the choice e= &

is necessary to get the eigenvalues of symmetry-
breaking fields" correct for n «3 and d=2+ z. This
choice of 0. enables the Migdal recursion scheme
to get exponents correct, even though it under-
estimates T,(n, e).

APPENDIX C: MANIPULATIONS ON LATTICE PATH

INTEGRALS

(r = 1/d (Bl) We wish to evaluate

k s T,(n, e )/8 = 2ve /(n —2) + O(e'),

and from the Migdal approach,

(B2a)

ks T,(n, e )/J = 4e /(n —2) + O(e') . (B2b)

We can define a characteristic temperature scale
T, for the case of interest here (n= 2, & =0) by
taking a limit:

The Migdal approximation may be carried out
analytically at low temperature on the "spin wave"
action of Eq. (A1), with the result

X~(T) = 2 —g (1—n)) p ks T/J
= 2 —(1—a) p2(T/To), (B4)

where we have expressed our results in terms of
the temperature scale T, appropriate to the Migdal
approach. The result (A10} from spin-wave theory
may be rewritten in -the form

Z, =2 —,
' p'(T/T, ), (B5)

Once e is specified, our procedure for handling

symmetry-breaking fields in the Migdal approach
is straightforward and well defined. Because of
the importance of choosing n properly, we now

sketch an alternative argument which produces the
results a =-,' in 0= 2, in agreement with (Bl}.

It is well known that the Migdal approach'4 gives
results for the correlation length exponent v which

agree, to leading order, with the more complicated
spin-wave theories'"' in 2+ E dimensions for n-
component isotropic fixed-length spin models. It
does, however, produce T,(n, e) incorrectly, a
quantity which should be universal to first order
in a." The competing results are, from the spin-
wave analysis,

X(r r') =Q—)7'- -„,

g [q'(R)- q'(R)]G(r r )

x [)7'(R') —)7"(R')] . (C 1)

'The first term just gives the length of the path
from r to r /see Fig. 17(a)]. The definitions of
)7'(R) and g"(R') restrict both sums in the second
term to be in the neighborhood of this same path.
The quantities [)7'(8}—q "(R)] and [q'(R') —)7"(R')]
are operators acting on G(R- R') which generate
the discrete analog of a perpendicular derivative
along the path.

Equation (C1}can be rewritten in a convenient
continuum notation

dR dR'8~8~@ R
pLth youth

dR 8~& R- R'

dR dal 7'2g R RI 8'G R R'
path path

(C3}
~here 8„denotes a derivative along the path. Since
&'G(R- R') is zero except at R=R', the first term

x(r — ') f t)) fdRf m-'a, a,'(:(R )( )
path path

(C2)
where 8, and 8,' are perpendicular derivatives with
respect to R and R', respectively. The scalar sym-
bols dR and dR' represent line elements along the
path. It is straightforward to transform this con-
tinuum notation back into the lattice language, The
second term of (C2) can be simplified
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of (C3) reduces to the path integral of unity and

cancels the first term of (C2). We have finally
where

e(%) = tan-'(z/y) . (C10)

X(r- r') = dR dB'8 G R- R'
th path APPENDIX D: GENERALIZED MODELS AND DUALITY

dR dB'9„8,', 6 R- R'
path path

=-2[G(r, —r, ) —G(0)] = G'(I r —r' l)/(( 2

(C4}

which gives the desired spin-wave result.
The path integral

For the sake of completeness and also to make
contact with the gauge field literature, "we con-
struct a rather general form of the duality rela-
tions for our type of model.

Start from our generalized version of the Villain
model on the dual lattice, i.e. , Eq. (2.19}with the
extra lny, term of Eq. (4.3). Hence our expression
for the partition function reads

(((R) =Q G'(R- R')[(l'(R') q"(R')] (CS) Z(2 K,z„n)= I II f dd(R) ennd[$, ],2'
can be handled in much the same way. For large
separations lR- r'l and lR- rl this can be re-
written (again in continuum notation)

(R)=f dR' 2'ln([R —R'))
path

Let us regard ln(l R- R' l) as the real part of a
complex function ln(z —z'), z=R, +iR,', z' =R,'
+iR„', so that

(C6)

ln(l R- R' l) = Re[in(z —z')],

(z)= f dz' 2,' Re[in(* —2')] .
path

(C6)

and consider the path integral as occurring in the
complex z' plane:

with

A[/, m]= g [y(R) y(R )]'
&Ry Rz&

+Z (2((i p(R)m(R)+(InyR)[m(R)]Rj . (D2)
R

For future convenience, in (Dl} Z has been written
as a function of three variables —one of which is set
equal to zero. The "space" is being saved for a
symmetry-breaking field, which is being held to
zero at this point.

To understand this model, undo the dual trans-
formation. Wrote ef &-& / g&~o& &-q~

Fourier integral

This can be evaluated using the Cauchy-Riemann
relation

&~(I (R&-e (8' &) d~(R R } o (~ ((4 R
2m

«(z) = —f dz' 2,', )m[)n(z —z')]
path

= e(r —R) —e(r' —R), (C9)

i(l(me R')(2) (R)-2)(R'&) (D3)e

and substitute the result in Eq. (Dl). Thenthe (t)(R}
integrals can be calculated immediately to yield
a result directly analogous to Eq. (2.16), namely

Z(2«K«„n)= I' ( ll f 2' ) ll {))e n(R— Ine'K[2(R R')]*+I' (lnl')[ (R)]).
&RN'& &I, R &

(D4)

In writing Eq. (D4), we have evaluated the Fourier
transform in Eq. (D3). In (D4), n(R) is a 5 func-
tion essentially similar to the one in Eq. (2.15). In
particular, for the arrangement of points shown in
Fig. 22'

n(R) = 2((5($(R, R,) + Q(R, RR)

-$(R2, R) —(t)(R,', R)+2(((R(R)). (DS)

Just as before, one can "solve" the 5-function
conditions (DS) by writing {f)(R,R') in terms of
quantities which refer to the dual lattice. In par-

ticular, each nearest-neighbor bond on the dual.
lattice is cut by one and only one bond on the orig-
inal lattice. Thus, we can relabel each (()(R,R')
as a (td(r, r'). For example, p(R, R,) in Fig. 22 can
also be written (f)(r„r,). Given this relabeling we
can rewrite the 5 function (A6} as

n(R) = 2w5(P(r„r, ) + P(r„r,)

—(t)(r„r,) —P(r„r,) + 2vm(R)). (D6)

This 5-function condition can, in turn be satisfied
by



16 RENOR MA I, IZATION, UORTICES, AND SYMMETRY-BREAKING. . . 1239

Ry be equal to m(R). Equations (D7) and (D8) ensure
that the 5 function conditions are all properly satis-
fied. Then (D4) is seen to read

~ 3

R2 where the new action is
(D9}

~ r4

A[8, m)=-KK g [8(r) —8(r') —2vm(r, r')]2

+ Q (lny, }[S„(m)]'. (D10)

FIG. 22. Dual and original lattice points. Squares
represent points of the dual lattice, dots sites in the
original lattice.

(t)(r„r,) = 8(r, ) —8(r,) —m(r„r ) . (D7)

Here, the 8's are required to be in the interval
0& 8(r) ~2w and the integers m(r„r, ) are adjusted
to keep the 8's in this range.

One further condition is required. Equation (D6)
requires that the sum of the m(r„r, ) around the
loop, i.e. ,

S„(m) =m(r„r, )+m(r„r, ) —m(r„r, ) —m(r„r, ),
(DS)

Notice how the periodicity in 8(r} is reflected in
the action (D10). This action is invariant under
the "gauge transformation"

8(r) - 8r+ 2((n(r),

m(r, r') -m(r, r')+n(r) —n(r') .
(D11)

m(r„r, ) =n(r, ) n(r, ) . (D12)

Thence, the major contribution to Z as yp- 0 is

[Note that Sz(m) is invariant under (Dll). ] Hence
the result of the summations over m in Eq. (D9) is
a completely periodic function of each 8(r).

The reason that our analysis gave a very simple
y, -O limit can also be seen from these equations.
As y, -O, the only terms in the m sums which con-
tribute are those with S z(m) = 0 for all R. This
condition will in turn be satisfied if

2Kd8 r
)im z(22K, 2„0)=ll f Q 222 —g ,K(222(r) —2 2(r')]'. —

@ ~p n{r& &r, r'&
(D13)

where

2v(j)(r) = 8(r) —2mn(r) . (D14)

always adjust a sum of the form

~ {&ayp&fp{n&+&~np (D15)
But the sum over n(r) and the integral over 8(r)
combine to give a simple result to be an exponential like

ehp cosp8 (D16)

Hence in the limit yp 0 all effects of periodicity
in 8(r) completely vanish and we are left with a
linear spin-wave problem.

One can also incorporate the symmetry-breaking
terms with exactly the same analysis. Recall that
the action (1.1} contained terms like

g g h~cos[P8(r)].
r p

But, by suitably choosing a function f~(n) we can

For exampl. e, let us choose hp to be very small,
hp«1. Then take

yp= &hp «1

f (n) =n'. (D17)

With these choices (D15) and (D16) agree to first
order in yp.

Furthermore, if one chooses yp- 1, then the
sum (D15) vanishes unless 8 takes on one of the
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values appropriate to the p-state model. In this
case, expression (D15) reduces to

(D18)

In short (D15) can represent symmetry-breaking
fields as y~-0 and the P-state model as y~- 1.

For this reason, we consider the generalization
of Eq. (D9) which reads

z(2wx, l'„2' )= (ll J ) I I exn I v (B(r) —B(r) —2w (r, r'))+ g (lny, )f (sn( ))
(m(P, P' &} (n(P& } (r, r' &

+ g (Iny~)f~{n(r})+g in(r)8(r)p (D19)

This is a very general form of the action. For the case of interest to us here,

(D20)

Z(2wl(, y„y )= 11f dd(R)) I p exn I' V(B(R) —B(R') Bn(R, R'))+ I lny J',(wn(R))

{R(5f5 )} fft(%) &+ R'&

V0(8) =-RK8', f,(x) =f~(x) =x'.

We have, in fact, calculated the dual of each and every term in Eq. (D19). Instead of recalculating, we

simply present the result. After the dual transformation Eq. (D19) reads

g (lny )f (S,(ll))+ I' Bw' (R)B(R)) . (D21)

The (t) integrals can, if one desires, be extended
to infinity by making suitable gauge transforms of
the form

0(R) - 4(R)+P)I(R),

8(R, R') - rT(R, R') +n(R) —n(R') .
(D22)

In this way, we conclude that

~(»&,y. ,y,) = &(I '/2«, y„y,) (I/2«)",
(D23)

But, Eq. (D21) is quite sufficient for our pur-
poses. If one uses the Villain form for V„ i.e. ,
that in Eq. (D20), then

V((t)}= —{I/2K)(t)' —R In(2«) .

The difference in form between {D19)and (D21)
will completely disappear if one defines a new in-
tegration variable in (D21), namely

8(R) = (2v/P) P(R) .

with N being the number of sites. Equation (D23}
is the duality result which we sought.

Note added in proof. A superfluid layer provides
a possible experimental realization of the pure
planar model [see Doniach (Phys. Rev. Lett. 31,
1450 (1973)], and also private communications in
which he kindly points out this omission in our
thinking [an early theoretical calculation can be
found in W. Kane and L. P. Kadanoff, Phys. Hev.
155, 80 (196V)]. See also the experiments by
Reppy (to be published). In magnetic systems see
the experiments by Y. S. Karimov and Y. N. Novi-
kov [Zh. Eksp. Tear. Fiz. Pis'ma Red. 19, 268
(1974) Sov. Phys. -JETP Lett. 19, 159 (1974)].
W'e wish to thank V. Pokrovsky for pointing out this
last reference to us.

The reader may want to compare the results of
this Migdal style recursion calculation with that of
Lublin [Phys. Rev. Lett. 34, 568 (19'l5)], who ob-
tains a single nontrivial fixed point. Both calcula-
tions have similar defects in that they do not han-
dle vortex pairs in an accurate fashion.
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