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The spin polarization of an electron moving nonrelativistically through a potential barrier V(z),

with also a constant uniform magnetic field (0,0,B) applied, is calculated using the WKB approxi-

mation for the z dependence of the wave function. It is found that, in a classically allowed region,

the polarization precesses at fixed angle 8 about the magnetic field, with phase angle the same as a

classical particle with a magnetic dipole moment. The particle penetrates through the barrier with

no change in the phase of the precession but with a discontinuity in 8.

I. INTRODUCTION

Several groups have recently made measurements
of the spin polarization of electrons that are field ernit-
ted from magnetic materials in the presence of an
external magnetic field. '~ This type of experiment
gives new and valuable information about surface and
bulk properties of the material.

Some aspects of the theoretical background for the
experiment are still under development. The change
of polarization as the electron moves through the
external electric and magnetic fields after leaving the
material is reasonably well understood. Eckstein and
Muller' made a numerical analysis of that problem for
electrons initially polarized parallel to the magnetic
field with consideration of off-axis variation of the
magnetic field. Also Schmit and Good treated that
problem analytically for arbitrary initial polarization
but neglecting the off-axis variation of the field. What
happens to the polarization as the electron passes
through the surface is not so well established; this is
the subject of the present paper.

As a reasonable model for first investigation of the
problem, one can picture the electron with a definite
polarization emerging from the bulk of the material
and impinging on a potential barrier at the surface.
There is thus a barrier penetration problem in the
presence of the external magnetic field. As shown
below, this situation can be analyzed completely using
the WKB approximation for the dependence on the
coordinate normal to the metal.

The results are as follows: In an allowed region the
electron polarization precesses at constant angle 8

about the magnetic field, with phase angle the same as
that of a classical magnetic dipole. The barrier pene-
tration takes place with no change in phase angle but
with a discontinuity in 8. With the electric and mag-
netic fields typically used in field-emission experi-
ments the discontinuity in 8 is small and the electron
jumps through the barrier with very little change of
polarization.

II. H AM ILTON IAN

The Hamiltonian for the electron in potential Vand
magnetic field B is

H= —m n+V+ —geo. B
2 4 f

where m =p+eA, g =2.0023..., and 0. are the Pauli
matrices. Units are chosen in such a way that factors
of m, c, and tdo not appear. The symbol e indicates a
positive number so the electron charge is —e.

The scalar potential is considered to be a function of
z, the coordinate normal to the metal, only and to
have the form indicated in Fig. 1. The magnetic field
is constant in space and time and is perpendicular to
the surface. It is of the form (0,0,B), where B may be
positive or negative, and a convenient vector potential

1
is (—2 By, 2

Bx, 0). With these specializations the
Hamiltonian becomes

0 = —,
'

p p+2 eB(xp, —yp. ) + —,e'B'(x'+y')

+ V(z) + —'geBo.,
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V(z] By introducing cylindrical coordinates (r, qh, z) in Eqs.
(9b) and (9c), one establishes the ranges of the quan-
tum numbers

n =0, 1, 2, ..., (10a)

incident

reflected

m = —n, —n+1, —n+2, ..., (lob)

and finds that the r, 4t) dependence of the wave func-
tion is of the form

FIG. 1. Potential model for the surface of the material. m/2e —P[2L ( )(p)e

III. INTEGRALS OF THE MOTION

The operators

[
xo = —x py/eB (3a)

where p- —,e]8]r' and LJ ' is the associated

Laguerre polynomial in the notation of Magnus,
Oberhettinger, and Soni. 9 All that remains is to get
the z dependence and for it Eqs. (7), (8), and (9a)
lead to

po = 3' +p /eB
I (3b)

commute with the Hamiltonian of Eq. (2) and lead to
a separation of the variables in the problem. These
operators were originally introduced by Johnson and
Lippmann' and their usefulness in constant-magnetic-
field problems is well known. ' We will also make use
of the operators

8$ 1 1

F22
+2[E —V(z) —e ~8](n +m + —) v geB]iII=—0

2 4

(12)

where the upper (lower) sign is for spin up (down).

IV. BARRIER PENETRATION

Rp xp +pp2 2 2

A = rr[(x —xo)'+ (y —yo)']

Lz =xpy —ppx

(4)

(5)

(6)

The standard WKB result, connecting a wave in-
cident from the left to a wave transmitted to the right
(as in Fig. 1) is'o

They commute with 0 and are connected by the rule

A = nRoz + (2ir/eB)L,

The classical interpretation of these operators is as
follows: Consider the XY projection of the orbit of a
classical particle governed by the Hamiltonian of Eq.
(2), the spin term disregarded. All the above quanti-
ties are constants of the motion. The projection is a
circle with center at (xp,yp) and with area A. If L, =0
the circle passes through the origin, if L, /eB )0 the
origin is inside the circle, if L,/eB ( 0 it is outside.

The Hamiltonian has an especially simple form in
terms of the area operator

H=(e282/2rr)A + —p, + V(z)+ geBa, . —(8)

The operators H, Rp, L„and o, all commute with
each other so we can consider simultaneous eigen-
functions of all of them. Let

(9a)

Pa '

1 [
b

exp —i Jl p(z') dz' exp — ]p (z') ]dz'
Z . Jp a

Z i

x exp J p(z') dz' . (l3)

In this application p is given by

p(z) = {2[E—V(z) —e]8](n + m + —,)

'geB] ]'"— (14)

the positive root to be taken in the classically allowed
regions. Here a and b are the left and right turning
points, such that p(a) -p(b) -0. There is also a
reflected wave on the left-hand side which is disre-
garded in Eq. (13).

An expansion for small values of + —ge8 will be
made in order to isolate the spin effects in the prob-
lem. One finds, for example, to first order that

Ro i]i = [(2n + 1)/e )8]]i]i
L,y=m(8/[Bl)q,

(9b)

(9c)

(9d)

f Z Z Z I

p dz' = p dz' y -ge8
b b 4 b p

where p is defined by

(15)
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p(z) = {2[E—V(z) —e!8!(n+m +-, )]j' ' (16)

and b is the turning point for p, such that p(b) = 0.
Although p, a, b are different for different spin orien-
tations and might be given a subscript, p, a, b are
independent of spin eigenvalue. The above expansion
is justified because, in the present units and for a field

of 10~ 6, —geB is about 10 '0, whereas E —V(z),
corresponding to an energy of a few eV, is about 10 '.
This kind of expansion of p(z) itself would not be
valid near the turning points but Eq. (15) applies well

as long as z is far from the turning points since then
the expansion is governed by the ratio of —geB to a

representative value of p
' far from the turning points.

With this type of expansion made for all the integrals
Eq. (13) becomes

exp Jl p dz'~i geB
p

z z p

exp Jr I
pld*' , gea--f

&exp i Jl p dz'~i „geB—Jl . (17)
f", . 1

t" dz'

b 4 b p

The difference between p and p is disregarded in the
p

' ' factor.
This result holds for spin-up and spin-down states,

(0) and (1), say. A state of arbitrary polarization but
definite energy E and quantum numbers n, m can be
formed by taking a linear combination of the spin-up
and -down results with coe5cients e and P. The con-
nection for such a state is evidently

t a
exp i J!" p d—z'

p

r T' dz'
aexp i4geB

p

a

pexp i ,
'

geB—J—l

b ' ' z

exp —J !p!dz' exp i pdz'
P

'!

~ exp ——geB exp —i—geB
dz' . 1 f z dz'4,— 4

t 'I

pexp geB —exp i geB Ji-b dz 1 f dz
4 a — 4 b

(1g)

For the complete wave function one must also include
as overall factors, e '~' and the function of r and P
given in Eq. (11).

I

As a convenient notation, let (8„$,) and (8„$,) be
the polarization directions of the incident and
transmitted beams and let

V. CONNECTION BET%KEN POLARIZATIONS

As is well known, any two-component state

(19)

is polarized in a specific direction s where the spherical
polar angles (8, qb) of the unit vector s are given by

i tttp

p/a = tan —Hae

The results for the polarization are

8, 80

4 -4o ——,geB
1 dz

p
t

tan —8, - tan —80 exp —geB
1 1 1 dz'
2 2 2 a

(22)

(23a)

(23b)

(24a)

tan —,ge'~- Qz/P~

The state is polarized in the sense that

(20)
$, =$0+ —,geB Jl

fz dz'

p
(24b)

s

From the ratio of the components in Eq. (18) one can
find the direction of polarization on the two sides of
the barrier.

Interpretation of these results is as follows: As the
electron moves in the positive z direction in an al-
lowed region, the polarization keeps a constant angle 8
with the magnetic field and precesses in the right-hand
sense about the field with phase angle @ given by
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—,geB Jtdz'/p. In the transition through the barrier

the phase angle does not change, P;(a) $, (b), but

the angle with the field changes according to Eq.
(24a).

VI. DISCUSSION

The precession of the polarization in a classically al-

lowed region coincides with the precession of a classi-
cal electrically charged magnetic dipole. For such a
system the internal angular momentum varies accord-

ing to

x +y -e'8' [( x—xp) ' + (y —yp) ']

=e'8'A /e, (30)

where A is the area of the XY projection of the orbit.
Equations (29) and (30) combine to give

~ 2
z p

where p(z) is defined as in Eq. (16) except with A in

place of the eigenvalue (2w/e IB I) (n +m + —,). The

time is therefore given by Jl dz/p and the phase angle

by

do. ——ge crxB.
dt 2

(25)
I dz-geB

2
P

This means that 0 keeps a constant angle 8 with the
magnetic field and precesses in the right-hand sense
about B with phase angle

in agreement with the quantum-mechanical result.
An estimate of the importance of the discontinuity

in 8 can be made by considering the triangular barrier

—geBt .i

2
(26) l

—Vp for z & 0,
V(z) = —e~z for z & 0' (33)

x —eyB, (27a)

The position of the dipole is determined by the equa-
tions Here e is the size of the electric field applied outside

the metal surface. The integral is found immediately
to be

y' =ex8, (27b) ' dz' (2@)'" (34)

dV
z =

dz

First integrals of the system are

x - eB(y ——yp),

y eB (x —-xp),
—(x +y +z)+V E,

(27c)

(2ga)

(2gb)

(29) (35)

where 4= —E and the 8 term inside p is disregarded.
The exponent in Eq. (24a) amounts to (8/p) (24)'~'.
Typically in a field emission experiment B, e, and 4
correspond to 10 6, 10' V/cm, and 5 eV, in which

case the exponent is about 10 '. The formula

8, 8; + —geB sin8;
I' dz'

' 'Irl
where xtl, yp E are the integration constants. Evi-
dently x +y is also an integral and

is the first-order approximation to Eq. (24a) when the
exponent is small.
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