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Critical properties of a two-dimensional planar model
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Recently, critical exponents in the continuum Baxter model have been calculated using an equivalence of
this model to the Luttinger model of a one-dimensional spinless fermion gas. We discuss here the extension

of this method to the two-dimensional planar model, using the Stoeckly-Scalapino representation of the

transfer matrix. This representation is shown to be equivalent to the spin-1/2 fermion gas in one dimension,

which further separates into a Luttinger model and the quantum-mechanical sine-Gordon equation. We

emphasize the role that soliton bound states play in determining the critical properties. We find that a

critical temperature T, exists below which the susceptibility is infinite but without long-range order. At T„
the correlation-function exponent g takes the values 1~ and decreases as the temperature is lowered,

consistent with low-temperature results. As in the Baxter-model calculations, we argue that these results are

exact for the continuum limit of the transfer matrix, and therefore provide a solution for the asymptotic

properties near T, . We discuss the correlation length and susceptibility, and sugget that nonuniversality is

responsible for the disagreement between different numerical calculations.

I. INTRODUCTION

There has long been speculation about the nature
of critical fluctuations in the two-dimensional sy-
stem with a continuous symmetry. In contrast to
the two-dimensional Ising system, these systems
are known to have no broken symmetry or long-
range order. ' Nonetheless, high-temperature
series" have indicated that there appears to be
a critical temperature and singular behavior in the
susceptibility which can be fit with power-law sin-
gularities as in the usual second-order phase
transition.

At low temperatures, the problem with rota-
tional symmetry in a plane, the planar model,
has been solved. 4 The "order parameter" corre-
lation function decays algebraically with an ex-
ponent that approaches zero as the temyerature
vanishes. Consequently, the susceptibility is
everywhere infinite in this temperature region,
and the "canonical" picture presumes the sus-
ceptibility diverges at a characteristic tempera-
ture T, as the temperature is lowered from in-
finity, remaining infinite everywhere below T,.
The behavior near this characteristic temperature
and the nature of any singularities are, until now,
unknown.

We have undertaken a study of this problem us-
ing the methods previously used to study the Ising
and Baxter models of a second-order phase transi-
tion. ' These methods involve construction of an
equivalerit one-dimensional fermion problem which
gives correct order-parameter equations of mo-
tion. Calculation of correlation functions with this

method circumvents the complications of evaluating
a determinant; the continuum limit of the fermion
problem can be solved using standard techniques
of field theory.

There are several proposals for the dynamic
variables in the planar model. Kosterlitz and
Thouless' have extended the spin-wave picture of
Rice and Berezinsky to include the vortex ex-
citations which are necessary to understand all the
degrees of freedom in this model. There is wide-
spread recognition that the resulting problem is
then equivalent to the backward scattering model
of the one-dimensional electron gas, "' provided
the interaction between spin waves and vortices is
neglected. A finite correlation length in this ap-
proximation would correspond to the solitons of
that one-dimensional quantum problem. ' Applying
a recent exact solution of the electron-gas prob-
lem, and using the relationship to the planar mod-
el, we can solve this approximation. This work
also solves the two-dimensional plasma, a prob-
lem known to be equivalent to the planar model
treated within this approximation.

The exact solution of these equations, "when
used at higher temperatures, is consistent with
the behavior proposed by Zittartz, "possessing a
temperature T, where the susceptibility diverges.
However, we are critical of the neglect of inter-
actions between spin waves and vortices, implicit
in this approximation, and believe these should be
included. It is physically plausible that vortices
are virtually indistinguishable from very-short-
wavelength spin waves, and when thermal excita-
tion of these states is important the interactions

16 1153



A. L UT HER AND D. J. SCALAPINO 16

between them should be included. This identifies
the exchange energy as the characteristic temper-
ature below which these excitations can be treated
independently. It is just this temperature region
where a "phase transition" could occur, and which
we wish to investigate.

This high-temperature region can be stupefied

within the framework proposed by Stoeckly and
Scalapino, "based on performing functional inte-
grations over one space dimension. There results
from this approach an equivalent spin-one chain
problem, whose eigenvalues describe the low-ly-
ing states of the transfer matrix. It is this spin-
one problem which is solved exactly. It possesses
a temperature T, where eigenvalue degeneracy
first occurs as the temperature is lowered from
infinity. Above T„ there is a gap in the spectrum.
Since this temperature is much lower than the
temperature T, identified in the low-temperature
approximation of Zittartz, "we conclude it is this
transition at T, which characterizes the high-tem-
perature behavior of the planar model.

At T„ the number of bound vortices presumably
becomes infinite and their binding energy van-
ishes. As the temperature is lowered below T„
a type of long-range order sets in with power-law
behavior, the vortex binding energy is finite, and
the number of bound vortices decreases. Qur
methods of solving the Stoeckley-Scalapino trans-
fer Hamiltonian formalism study the temperature
region near the first eigenvalue degeneracy, and
we therefore cannot extrapolate this solution to the
low- temperature region.

The solution of these models relies on the con-
struction of the continuum-limit equations of mo-
tion for the spin operators, and the recognition that
the resulting continuum problem is exactly the
one-dimensional electron gas, but with different
definitions of coupling constants and temperature
scales. The solution" for the eigenvalue spec-
trum of this electron- gas problem is used to
provide the solution for both the low-temperature
model" and the Stoeckly-Scalapino model. " The
soliton and bound-soliton gaps in the eigenvalue
spectrum determine the correlation length in the
corresponding planar- model problems.

The violation of universality near T, is both in-
teresting and complicated. There are additional
marginal operators which imply that exponents
depend on the model, e.g. , lattice structure or
spin, in addition to symmetry class. This is per-
haps not surprising since exponents are known to
depend on the temperature ratio T/T„and T, de-
pends on the model. Despite this, there are scal-
ing laws which are found to hold in our solution.

The solution we have obtained for the "order
parameter" correlation function C(r), near or at

T„has the structure

c(r) =y "o-&'&c,(~).
The "prefactor" exponent q, (T) varies smoothly
near T,. At T„ we find the result q, (T,) = 8 ' '.

The correlation function C,(r) is equal to a
standard second-order phase transition correla-
tion function of the form

C,(r) =r-"'f(mr), (1.2)

dg ' dP .+c„—+c" dx " dy

Here a = (T- T„)a, with T„the mean-field transi-
tion temperature and a, b, c„,c, are positive. The
partition function is then given by a sum of the
Boitzman factor over all configurations of p which

with m-~T —T, ~". It exhibits long-range order for
T&T„,C,(r}-const, as x-", while f(mr) e-
for T & T,. The exponents g, and v are related by
the scaling relation 2v=(l q, ) ', which has also
been shown to apply to the Baxter-model electric
exponents, ' in the continuum limit. Indeed, "un-
physical" variables can be introduced to make the
C,(r) formally the same as an electric correlation
function for the Baxter model.

We propose the name "displaced scaling" to
describe this situation, since the g exponent is
displaced by g, . However, once we have proven
C,(r) is a Baxter-model correlation function, for
which the usual scaling laws are known to hold, in
addition to the 2v = (1 —g,} ' above, we have com-
pletely established the nature of the scaling pro-
perties of the correlation function in the two-di-
mensional x-y model. The model we solve has
q, =0, v=-,', and we suggest that q, =0 is true for
more general models.

Qur results thus verify the conventional quali-
tative picture of diverging susceptibility as T, is
approached from above. The susceptibility expo-
nent is found to be y= v(2 —q, —q, ), and our results
further make clear the nature of the infinite sus-
ceptibility for T & T„and nature of a "long-range
order" in that interval. The introduction of the
two sets of exponents, pp and Qy suggest this
model is equivalent to two Baxter models, and
consequently there should be two marginal opera-
tors of the Baxter type. These operators are ex-
plic itly constructed.

It is now appropriate to recall the nature of the
Stoeckly-Scalapino" transfer matrix for a com-
plex two-dimensional Ginzburg-Landau field P.
The energy associated with a given configuration
of g is
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leads to the functional integration

Z gy 8-8EEA) (I 4)

plication is also discussed. In Appendix A, we
discuss some further properties of the transfer
Hamiltonian.

Correlation functions are similarly constructed

(((*)("(*'))= I ()( e-"&"((*)(*(*')&-'. (1 5)

Now the two-dimensional space is sliced in strips
parallel to the x direction of width by. The width

by remains macroscopic but is smaller than the
scale of variation of the order parameter in the y
direction. It will cancel out of the final form.
Next, the one-dimensional function integrations
along each strip are carried out, leading, in the
usual way, to a transfer matrix generated by the
Hamiltonian

—1 8'
4p2C (g )2 sq2

H. $=1 ONE-DIMENSIONAL CHAIN

In this section, we construct the continuum spin
algebra and equations of motion appropriate for
the spin-one problem encountered in the Introduc-
tion, Eq. (1.3). This discussion is necessary be
cause we wish to relate this problem to the quan-
tum sine-Gordon equation whose solution we then
discuss in Sec. III.

The starting point for this discussion is the
spin- —,

' continuum x-y model which has been re-
cently discussed' in connection with the transfer
matrix for the Baxter model. The spin operators
are defined in term of the free-fermion Hamilto-
nian in one space dimension, the free-particle
Luttinger model, "

Cy

(y) I&& && I
~ (1.6) (2.1a)

When c„»c„order will be well developed along a
strip before the coupling between the strips be-
comes significant. In this weak-coupling case, the
Hamiltonian for a single strip is well represented
as a rigid rotor with a length

l
a

l
/2b set by the

minimum of alpl'+I) lpl' in this case 3C can be
written

Q2
3C= —Q n 2

—2 Q cos($(eg —$() e

with b. =(b/lal)'/p'c„c„. As the temperature is
lowered, b, decreases in a smooth way. Intro-
ducing angular momentum operators L„

2vL 'Q[p, (k)p, (- k)+ p,(- k)p, (+ k)], (2.1b)
am

where P, and g, are free-fermion fields with posi-
tive and negative group velocities, respectively,
and we have used the result of Mattis and Lieb"
to write (2.1a) in boson language in (2.1b). In the
latter equation,

[p,(- k), p, (k')]= 6~~.kL(2v) ' = [p,(k},p,(- k')],

with

X=n Q (L,)' Q (L;L;„+L(L(„). (1.8) e(e) & Je*, '=(l'(*)te(*), ,

We assume the lowest eigenvalues dominate the
critical properties, and we restrict ourselves to
the I.', = 0, 1 manifolds at each site. There results
a spin 8=1 problem,

X,=4 Q (J,)' —Q (J;J,q, +Z, J',~,), (1.9)

with J a spin-one operator. It is intuitively plausi-
ble that as b, decreases from b, »1, the first ei-
genvalue degeneracy occurs in this manifold of
states because the spacing to the next set is four
times greater. The equivalent assumption for the
Ising case is known to be correct, "and the lowest
two states per site correctly give the critical ex-
ponents. In Secs. II-IV, we discuss the solution
to the problem posed by Eq. (1.9), restricted to
the lowest three states per site. Clearly our re-
sults are directly applicable to spin-one chain
problems as well as the x-y model, and this ap-

S'(x) = p, (x)+ p,(x),
5e(x) —(2s)-l/2 [qt(x)sN&x) + )I)f(x)sN'(x)]

S-(x}= [S'(x)]',

where

x g/2
&(x) =fv dy [P (y)+P.(y)]

0

(2.2)

and IV'(x}=N(x+ s), with s representing the lattice
spacing which tends to zero in the continuum limit.
It can be shown that it is not necessary to use the
more complete spin algebra discussed in that ref-
erence, because the extra terms turn out to be
irrelevant to this problem. We now recall that

etc. , as discussed in this reference.
In terms of these operators, the continuum spin-

—,
' operators have the simple form [cf. Eq. (A4) and
Eq. (A5) of Ref. 5]



1156 A. LUTHER AND D ~ J. SCA LAPINO 16

the single creation or annihilation operators can
be written

for 8 (x) and 8'(x), needed for later purposes, are

y, (x) =(2va) '~'exp[&, ( x)+ik~x], (2.3}
i —8 (x) = [8 (x),3C0] = v 8'(x)8 (x),

(2.9)

P,( }=2 I. 'g e ' '&'~ 'p, (~)

The spin operator S (x) has the same operator
dimension as

S-(x)- exp —,
' [y,(x)+ y, (x)], (2.4)

since 2N(x) = P,(x)+ Q,(x), in the continuum limit
when n and s are zero; this suggests that we can
transform this operator S (x} into a simple product
of fermion operators, recalling Eq. (2.3}. The ap-
propriate canonical transformation

where k~ is the Fermi momentum in the continuum
fermion problem, a is a cutoff parameter, and

84 ~2/4

The reason for the transformation to g,g, opera-
tors is that the subsequent operations necessary
for the spin-one spin algebra are greatly simpli-
fied. To construct this spin-one algebra, we

simply introduce an additional continuum spin
field, say 2(x), write f(x) = Z(x)+ 8(x), and deduce
the equations of motion in the spin-one subspace.
In terms of fermion fields, we must introduce an
additional quantum number to distinguish those
fields associated with Z from those associated
with S. The previous result, Eq. (2.6), thus be-
comes relabeled as

p, (&) --.' p, (&) --'p, (&),

p.(&)" l p,(~) —'p(~)-
(2.5) (2.10)

is generated by the operator e'~ with

2'=2vK ' g qp, (&)p,(&)
k

and sinhy= --,'. The transformed spin operator
then has the form

8 (x) -exp[&, (x)+ P,(x)]= g,(x)P,(x) . (2.6)

It should be realized that this argument does not
determine an operator prefactor, e.g. , the Q(0)-
type terms arising from the lower limit in Eq.
(2.2}. This is not necessary, however, since we
are ultimately interested on)y in the space depen-
dence, and for that reason we may write Eq. (2.6)
as an equality.

Under the transformation given in Eq. (2.5), the
free-particle Hamiltonian becomes

&,'= —", vL 'g[p, (&)p,(-&)+p, (-&}p,(&}]

——"v g P, (k)P (k), (2.7)

and it is easily verified that the resulting spin al-
gebra

8'(x) = g [(x)P ~2 (x),
8-(x) = y, (x)y, (x),
28'(x) = p, (x) + p, (x}

(2 6)

is a canonical spin algebra. Since we have gene-
rated these operators by canonical operations, it
follows that the spin-correlation functions have the
correct asymptotic behavior, (8 (x}8')-» ' ', as is
easily verified, which gives the known exponent
for the spin-& x-y model. The equationsof motion

etc. , where the other relations are obvious, fol-
lowing from Eq. (2.8) with the attachment of the
"+"label on 8 fields, and the "-"label on the Z
fields. Clearly, the "+"and "-"labels have noth-
ing to do with the physical spins.

Obviously the Hamiltonian, Eq. (2.7), must also
receive the faith label, and the result X=X,+X
correctly describes the problem of two noninter-
acting spin-~ fields with dynamics governed by the
x- y one-dimensional spin-& Hamiltonian. It re-
mains to find the proper dynamics for the spin-
one x-y problem. Here we can make use of the
fact that we now have constructed the total spin
operator, g(x}=Z(x}+4(x), and know the dynamics
of the 2 and 8 fields separately

To deduce the correct equations of motion for
the spin-one x-y model, we first observe that the
spin- —,

' equations of motion lead to the result

[y (x),30,+K ]= vZ'( }Zx(x)+ »8'(x)8 (x) . (2.ll)
This lacks the interaction terms which mix 8 and
8 in the proper manner to permit the equations of
motion to be expressed entirely in the g(x) opera-
tors. If this were true, then these equations would
describe the correct dynamics of the spin-one
x-y model provided that only states with 4'= 1 are
involved.

We introduce an interaction term into the Hamil-
tonian to correct this deficiency. This term is

&, ,——gn dx 8 xZ x+2 xS x 212

The equation of motion for J(x), given by
[4(x),X.+3C +X„,], now becomes the same as
spin-~ case, since (g', X„,}=0:
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i —8-(x) = xg'(x)8 (x),dt (2.13}

and therefore the time evolution operator pre-
serves the local8' symmetry as well as the glo-
bal symmetry corresponding to the conservation of

J'(x) = &'8'(x),
dt

which involves only the total spin operators g.
This equation of motion is not that of the spin-

one x-y problem until we show that it involves only
states with spin-one symmetry. But mow, we note
that the spin algebra requires [J'(x},J(x'}]= 0,
which can be verified using the relation

8'(x) =-Z'(x)8 (x)+8'(x)2 (x)+ 28'(x)Z'(x) .
There is therefore a local conservation law that
states

8'(x'), i —„8(x) = 0,

P z, —J' ~*((*(*).

Further, the equations of motion for 8' and 4' also
satisfy this local conservation law. Because the
g(x} operators have only matrix elements within
the triplet subspace, a correlation function has
space and time dependence determined only by this
subspace. We show in the Appendix that triplet
state at each site is the ground state.

We conclude that Eq. (2.13) is the spin-one, di
mension-one x-y problem. This is equivalent, at
least as far as the space and time dependence is
concerned, to the fermion problem

&=&,+36 +36„,= —", xL ' P [p, (k)p, (-k)+ p, (-k)p, (k)]
k&O, e=+

(2.14)

with the spin operators

8'(x) = Q g'(x)g~ (x), 8 (x) = [g'(x)]',

2J'(x}= Q[p, (x)+ p, (x)].
(2.16)

This fermion problem can be tranformed into
several more familiar forms. In particular, the
backward scattering problem of the one-dimen-
sional electron gas is one equivalent problem, and
in Sec. III we bend Eq. (2.14) into this form, and
finally into the sine-Gordon equation for which
solutions exist.

We will also require a fermion form for the
d Z; (Z;)' term in Eq. (1.9). This is readily ac-
complished by using (8;)' = 2 Lf Sf, and taking the
continuum limit, with the result

(&l)'-2~) a )"(*)()'(*). (2.16)

III. TRANSFORMATION AND SOLUTION OF THE
SPIN-ONE CHAIN

In this section we discuss how the spin-one chain
Hamiltonian Eq. (2.14) plus Eq. (2.16) can be trans-

Expressing these spin operators in fermion equiva-
lents leads to an additional term bilinear in den-
sity operators which contains the temperature
field 6 in the classical two-dimensional problem.

formed into other Hamiltonians whose properties
have been extensively studied. We then use pre-
viously known results to discuss the physics of
our problem. The logic involves the identification
of charge-density and spin-density degrees of
freedom, and the separation of these into two sepa-
rate commuting Hamiltonians analogous to the
charge- and spin-density separation in the back-
ward scattering problem. The charge-density
Hamiltonian has the well-known Luttinger form"
and can be directly solved. The spin-density Ham-
iltonian can be transformed into three related
problems from which we can deduce a number of
its properties. First we show that the spin-density
Hamiltonian corresponds to a continuum limit of a
spin--, x-y-z model which is involved in the solu-
tion of the Baxter model. ' It can also be trans-
formed to the sine-Gordon equation whose eigen-
value spectrum is known. ' It also is equivalent
to the backscattering problem. "

The Hamiltonian given by Eq. (2.14) plus Eq.
(2.16) can be separated into two commuting pieces
by introducing the charge- and spin-density opera-
tors )(2 p, = p„+p, and v2 o, = p„—p, , where i
stands for 1 or 2. These new variables satisfy the
usual commutation relations of the density opera-
tors. In terms of these, the Hamiltonian Eq. (2.14)
plus Eq. (2.16) becomes X=K +X„with
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K = ' g p, (k)p, (-k)+ p,(-k)p, (k)
eo

+ —"Q p, (k)p, (-k) (3.1)

K,"= ' g o,(k}o,(- k)+ o,(- k)o, (k)
A&0

+ (},(2 }' Jee[eeeW2e'(e, —e,}+H.e.],
(S.V)

X,= ' g o,(k)o,(-k)+o,(-k)o', (k)
L a&0

+ —"g o,(k)o,(- k) + U,(2v a) '
a

x dx e~2~'1""+H.c. . (3.2}

Here the velocities and coupling constants are
given by

12gvo= 4 g+ gb, ,

2mv, = —4m- g&,17

V = ——g+-,'d15

Uii=- 4 &- a&15
(3.3)

and Ce, = ((t}„—(f}, )/&2 and 4}2= ((t}2,—(f}2 )/v 2 .
The K, part has the Luttinger form while the

X, part can be related to the continuum limit of a
spin-& x-y-z Hamiltonian by making a canonical
transformation to remove the }(2 in the U, part.
The transformation of the W2 factor is carried out
by means of the usual canonical transformation

0'1 0'1 coshfp + 0'p sinhp
(3.4}

0'2 0'1 SHlhg+ 0'q Cosh+,

with e'=v2. Collecting terms, the Hamiltonian of
E(l. (3.2}becomes

X,'= " ' pa, (k)o,(- k)+ o,(k)o,(k)
ao

'

+ —"g o,(k)o,(- k)+ U, (2m&) '
a

x dx yt2y', +H.c. , (3.5)

tanh2q}= U,', (2xv,') ',
and we have

(3.6)

where we have used E(I. (2.3}to replace the expo-
nential operators by Fermi operators, and 2gv,'

2w 4e U(} (Qv+n), and U, =-~x. This prob-
lem is now recognizable as the continuum limit of
the spin-~ x-y-z chain problem studied in Ref. 5.
If one makes the canonical transformation e,-- a,
then the U, term has the backscattering form gyp'.

Alternatively, one can also transform away the
U„ term in E(I. (3.2) changing H, to the sine Gor-
don Hamiltonian. First let o, - -cr, so that the
exponent in the U, part of E(l. (3.2) has the form
e~"~1 ~2' and U,', changes sign. Then eliminate U,',

by the usual canonical transformation with

[a„'(q)]' = (a„'}'+(v,'q)',

where

r},„'= n' sin & nw8/(I —8),

(3 9)

and n is any positive integer such that n &8 ' —1.
These states are below the soliton gap at energy
4', and occur for 8&-,', that is, U„&- -', mv, .
These states cause exponential decay in the pla-
nar model. The gap 6' is proportional to
U" 8', and therefore b'- U,' ', as 8-0. At this
special point, the soliton binding energy goes to
zero —that is, there is always a state n, -8 ', with
a gap vanishing proportional to 8. It is this point,
which is the "critical" temperature of the model,
and the parametrization in terms of the tempera-
ture leads to the conclusion that the gap vanishes
as (T,—T)'~', as T- T, from below. For T& T„
i.e. , U„&-2pv1 It is necessary to introduce a
cutoff before defining a continuum limit, a pro-
cedure discussed elsewhere. " This procedure
has been carried out, is tedious and not interest-
ing, for it gives the symmetric result of a gap
vanishing as (T —T,)'~' for T- T, from above.

In order to understand which features of the
eigenvalue spectrum of these various Hamiltonians
are important in determining the properties of the
phase transition, we will pause to look at the or-
der-parameter correlation function
($(0, y)g*(0, 0)). In terms of the transfer Hamil
tonian formalism, this correlation function is pro-
portional to the ground-state expectation value
(0

~

J' (x)Z'(0) ~0). Here we have replaced y by x,
and ~0) is the ground state of the transfer Ham-
iltonian E(I. (2.14) plus E(I. (2.16). The original
spin problem on the lattice together with spin
conservation can be used to show that

with 2vv,"=2+v', (I —U,', )'~'. Finally setting

v 2 e"(4,—4,) = i8(x)(8w)' ~'e", (3 8)

X, takes the familiar sine-Gordon form, with
scalar field 8(x).

The eigenvalue spectrum for the various equiva-
lent Hamiltonians can be written down directly
from previous work. The spectrum is character-
ized by a gap for creating a soliton-soliton pair
6', with the possibility of bound solitons depending
on the parameter

8 =(2&v, + U„)"'(2&v, —U„)-"'.

The spectrum of bound solitons is given by
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&ol~'d/lo&=&olz L/lo&+&ols(s/lo&,

and hence in the continuum limit we need to con-
sider the pair-density operators introduced in Eq.
(2.10). Expressing these operators in terms of the

p, amd o( operators of Eqs. (3.1) and (3.2) we find

that

&p ( J (x)g+(0) lp&
- &e&'/2&(e, (*&+e2(~&& e &/2&&e&+e2&&

IV. CONCLUSION

The critical region in our formulation of the
two-dimensional problem corresponds for the
fermion problem to a coupling parameter region
where both solitons and bound solitons occur. At
the critical temperature T„ the number of bound

soliton states diverges while their excitation en-

ergy vanishes. The order-parameter correlation
function C(r} near or at T, has the structure.

&(&z(l/2&(4I& (x&+12(x&& &&/2&(o&+02& l
fg y c(r) = r-" &'&c,(r) . (4 1)

(3.10}

with the e, =(p,,+ Q,. )»2 and, as before, &t&& =(&t&„
—

&t&( )/&/2. Since the ground state of X,+ X, is the
product of their separate ground states and since
8, depends only upon p„while f, depends only

upon a;, the expectation value in Eq. (3.9) has
been factored. In the first term, denoted by "0",
the ground state of K is used in taking the expec-
tation value while the second expectation value de-
noted by "1"is taken in the ground state of K1.
Thus the correlation function factors into two
pieces C,(x) and C, (x) associated with K and X„
respectively.

The correlation function C,(x) for the X, problem
has the usual power-law behavior

C (x)-x "0'"
0 (3.11)

associated with the Luttinger model. Here

&i,(T)=(2&/o, + V„}'/'(2&&v + V„) '/', (3.12)

and 2gv0 and V„are related to the temperature-de-
pendent parameter t&(T) by Eq. (3.3). The corre-
lation function C,(x} for the X, degrees of freedom
is more complicated. As we have seen Xy can be
transformed into the continuum limit of a spin--,'
x-y-z model. It can therefore be identified with
the transfer matrix of a Baxter model. We there-
fore expect that C,(x) will have the form

C,(r) =r "&f(mr), (4 2)

with m-lT —T, l". It exhibits long-range order for
T& T„C,(r)-const, as r-~, while f(mr)-e
for T & T,. The exponents q, and v are related by
the scaling relation 2v=(1 —&I,) ', which has also
been shown to apply to the Baxter-model electric
exponents in the continuum limit. Indeed, "un-
physical" variables can be introduced to make

C,(r) formally the same as an electric correlation
function for the Baxter model. Since the full g
exponent of C(r) is equal to &4+ q, and C(r) satis-
fies the usual Baxter scaling relations, we pro-
pose the name "displaced scaling" to describe the
behavior of C(r)

These results agree with the conventional quali-
tative picture of a diverging susceptibility as T, is
approached from above. Here we find a suscepti-
bility exponent y= v(2 —&I, —&I,}and for the model
we have solved g, =0 and v=-,'.

Kosterlitz and Thouless have recently con-
structed a theory of the critical-point behavior
by focusing on the role of vortex excitations. They
find that the partition function for the vortex de-
grees of freedom can be viewed as that of a two-
dimensional Coulomb gas:

The prefactor exponent &I,(T) varies smoothly near
T, and at T, we find that q, (T,) = 8 '/'.

The correlation function C,(r) is equal to a stand-
ard second-order phase transition correlation
function of the form

C,(x}=x"&f(mx}. (3.13}

As the temperature is lowered from some high
value, 4 decreases until the parameters 2gv,' and
—I/,', of Eq. (3.5}become equal. This occurs for
b, =-,'p and corresponds to the ferromagnetic criti-
cal point of the spin- —,

' chain. At this value g and
m vanish making C,(x) a constant. At this point,
the value of &I, obtained from Eq. (3.11) is 1/&8,
the result quoted in the Introduction. For T & T,
the correlation function exhibits long-range order
and the space dependence is determined by C,(x).

The calculation of the susceptibility exponent
y, from the modified Fisher's relation of Ref. 5,
gives y=2v(1 —&I, —&I,), gives 1 —8 '/' =0.63.

&=2(„',) Jl l.',f "."
x exp —p e,.e~ ln

lr, —real'

i'j 0 (4.3)

For an x-y model with a near-neighbor exchange
coupling J, the fugacity

z = exp [- ((&J/T)(y+ z In2}]

and pe'= xJ/T. The parameter a represents a
short-distance lattice cutoff.

It has been shown that this partition function Eq.
(4.3) is formally equivalent to the ground state-
expectation value of exp(- PH, }, where H, is the



1160 A. LUTHER AND D. J. SCALAPINO 16

backward scattering Hamiltonian Eq. (3.2). In the
language of the fermion problem

(1+ U, /2„)x/a/(1 —U„/2v}

s = U„/2v, and the renormalized Fermi velocity
is chosen to equal unity. Thus T-0 in the statis-
tical mechanics problem corresponds to U„/2v-l.
As T is increased from zero, U„/2v decreases
from 1 and the first "critical point" of the fermion
problem is encountered at T,=-,' gJ, where 8=1
and U„/2v=0. The region near U„=O is subtle and
is characterized by the onset of a gap which in-
itially increases for T&-,' 7rJ, if U, =U„. From the
solution of the fermion problem one expects that
this gap increases as (T T,)'~'—exp —(T- T,}'.
This gives rise to "exponential scaling, "which
implies the correlation length diverges with this
exponential behavior. '

A difficulty occurs if we continue to raise the
temperature in this model. At the temperature
corresponding to 8, =-,', T=2T„bound solitons ap-
pear, and as the temperature becomes even lar-
ger, progressively more and more such states
appear at temperatures T„=nT, until some type of
condensation occurs as T -~. It seems implausi-
ble to us that any further transitions occur at high
temperatures, and therefore we believe the model
cannot be trusted in this region. Since the only
temperature scale is T„all expansions are in
powers of T/T„and we believe it safe to apply
this model only at low temperatures T«T„where
the vortex density is small.

Zittartz has also recently proposed a theory of
the two-dimensional classical x-y model. He has
emphasized the role of the magnetic field B and
views the nonlinearities in the expansion of the
icos($, —P,} exchange interaction as leading to a
renormalization of J with the basic nature of the
field dependence of the yartition function deter-
mined by the quadratic part

of the exchange. He is lead to a partition function
of the form given in Eg. (4.3) but with s =B/2T,
and pe'—= —,'q(T)=T/4vcJA. Here Zittlartz takes the
low-lying spin-wave excitations to have energy
cAk' as the wave vector k -0. A is assumed to de-
pend upon T/B due to renormalization effects. Us-
ing the same back scattering identification we see
that T-0 corresponds to g=0 and U„/2v=-1. As
T increases g increases until for a particular
value O=2 corresponding to U„/2wor=- —,'. At this
point g diverges. In this approach as T increases
further, g continues to grow until it reaches the
value 4 at —,

' U„=0 at which point the K= 1+ 1/5 -~.
This occurs for U„/2w=O.

Zittartz approach requires that no transition oc-

curs until q increases to two. Qur results give a
value of O, at the transition temperature, of (8) '~'.
If we view g as a measure of the temperature
scale, since all models predict g to be a monotoni-
cally increasing function of temperature, clearly
the gap which appears at this point controls the
higher temperature behavior.

Thus the behavior of these models in the critical
region is also determined by the properties of the
one-dimensional backward scattering fermion
problem. However, as we have seen, the models
have different definitions of the coupling parame-
ters and the critical regions correspond to dif-
ferent regions of the U, —U„plane.

What physics underlies the differences between
these various models? We believe that there are
various possibilities. The approach of Kosterlitz
and Thouless neglects spin waves and spin-wave-
vortex interactions which become important in

just the temperature region near T,. Zittartz uses
a term by term cumulant form to argue that the
basic structure of the critical region is determined
by the quadratic terms in the exchange coupling
with the nonlinearities simply renormalizing the
spin-wave coefficients A. However, a similar
treatment of the sine-Gordon equation does not
lead to the correct energy-level spectrum. Qur
treatment views the nonlinear aspects as the most
important part of the problem. This is put in
from the beginning by working with the lowest
three states at each site, which is appropriate
in the high-temperature region of interest. We
also have kept all the interactions between excita-
tions. Clearly, however, our approach is not with-
out difficulties. We cannot obtain the low-temper-
ature limit, in which g -0, with our three-state
approximation. This requires an infinite number
of states as discussed in Appendix A. Finally,
there is the nagging question of the role of the
spurious S=0 states which our spin-one fermion
representation introduces. We discuss this in
Appendix B and show that a gap exists between the
ground state and states with any singlet spin parts,
and believe that this gap is sufficient to suppress
any singlet contamination.

Another question obviously raised by our results
concerns the breakdown of universality, and the
degree to which properties of this model can be
extended to others. As discussed by Betts et al. ,

'
there is evidence from high-temperature series
expansions that exponents depend on the spin
value. The model solved here is presumably not
equivalent to a particular spin value on a lattice.

However, it may be possible to use our results
to infer the critical exponents of the x-y model in
the two-dimensional lattice. This can be done
from Eq. (3.5), and a matching condition on cou-
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APPENDIX A: TRANSFER HAMILTONIAN

The transfer Hamiltonian given by Eq. (1.6) is
appropriate for a

~
i( ~' problem in which c,«c,. In

this case the transition temperature T, lies well
below its mean-field value, and the potential
a~(i) ~'+ be/I' has a well developed double minimum
for T near T,. In this case, radial excitations of
the single-site problem are not important, and the
angular excitations described by Eq. (1.6) deter-
mine the ground-state properties.

Now, as discussed in Sec. I, the moment of
inertia I of the rigid rotor is given by

I= 1/2n = —,
'

(
~

a
~

/b)' c„c„/(kT)' (A1)

The excitation spectrum of a single rotor is l'/2I,
with l =0,+ 1,+2, . . . . For a nonvanishing T„ the

pling constants for the lattice theory. The match-
ing condition simply involves constructing that
lattice theory whose continuum limit is Eq. (3.5),
and has been discussed in connection with the "ex-
tra scaling law" in the Baxter model. ' It must be
kept in mind, as noted above, that the nature of
the critical-point behavior for the two-dimensional
planar model lacks the universality associated with
critical points in higher dimensions. Thus, in-
dices may depend not only upon the lattice to con-
tinuum limiting process but also on the spatial
isotropy of the model. " The model considered
here has c„»c, rather than the usual c„=c„
coupling of the isotropic x-y model.

Some preliminary work attempting to build in

the finite lattice spacing indicates that the type of
transition at T,does change. Here, we found that the
region near T, has the same characteristics as the
fully isotopic (Heisenberg) x-y-z model. On the
lattice, the transition is described by the Heisen-
berg-Ising model, and both exponents q, and g,
are changed from the continuum-limit values
quoted here. The tendency is to increase q„de-
crease g„and increase y towards the values typi-
cal of the high-temperature series.

As mentioned in the introduction, our results
can also be applied to spin-one chain problems.
For example they give a definite prediction about
the exponent for the transverse spin-correlation
function in the spin-one x-y chain. This corre-
sponds precisely to Eq. (1.9) with a=0. Calcula-
tion of the Q'(x)J ) function can be read from Eq.
(3.10) giving @'(x)J )- x ' '. This value might be
expected, since the corresponding spin--,' experi-
ment is —,

' and the large-spin calculations suggest
a 1/S dependence. " We also expect that the meth-
ods introduced in this paper may be of use in oth-
er field-theoretic problems involving systems
with multiple internal degrees of freedom.

two degenerate excited states with l = + 1 lie (2I) '

above the ground state, while the next twofold de-
generate state with l =+2 lies four times higher in

energy. %e therefore believe that the essential
structure of the continuous symmetry problem'
near T, can be retained by keeping only the L=O

and l =~1 states.
However, as T decreases towards zero, the

moment of inertia diverges, and the excited states
collapse towards zero energy. In the limit T =0,
the ground state consists of completely alligned
rotors. To achieve this alignment requires an in-
finite number of angular momentum states. For
T greater than 0, but small compared to T„one
knows that the order-parameter correlation func-
tion decays algebraically with an exponent that ap-
proaches zero as the temperature vanishes. Let
us see how this result follows from the ground-
state properties of the rigid-rotor transfer Ham-
iltonian Eq. (1.6).

Near zero temperature, one can locally expand
cos(y,„—y,.) in powers of the small angular de-
viation of the neighboring rotors cp„, —y, to ob-
tain

a2x=p(-~ . +(v...-(,))
Fourier transforming in the usual way with

(A2)

(As)

leads to

X= Q (d,(a~~a, + —,'), (A4)

with ,(d= k/6'~'. The order-parameter correla-
tion function is given by the ground-state expec-
tation value

C(n —m) = (0~ e'~~e '"m(0) = e

with

(A5)

(0~(y —y )2~0)= —g (e"&" ~) —1)
1 1

=(Wa/2. )h ~n m~. (A5)

Setting r = n - m and V n/2 = k T/e, with g =

2(c„c,)' ~'
~

a
~
/b, we have the expected result

C(r) =(1/r)»~ . (A V)

In this way of looking at the problem the zero-point
fluctuations of the quantum-mechanical rotors
about the nearly aligned state give rise to the
characteristic low-temperature power-law be-
havior. These fluctuations can only be described
when the entire set of rigid-rotor levels are avail-
able.
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The transfer Hamiltonian Eq. (3.8) was originally
constructed as a means of analyzing the phase
transition of a two-dimensional classical complex
Ginzburg-Landau field. It can also be related to
the classical two-dimensional x-y model. Con-
sider the energy functional for a x-y model on a
two-dimensional lattice

4'&g]'=- I Z (P(+i, y
—9'&, g)

—Z~ g cos(V
& &+&

—g & ~) .
(&y S)

The partition function is given by

(AS}

(A9}

If J„«J„ it is useful to integrate out the be-
havior along the ith row noting that

ehNQ

12 & n r)

(A10)

Here I„ is the modified Bessel function. If only
the n=0 and n=+1 terms are kept, the transfer
Hamiltonian for this problem is

Q e(J))'=-vJ~ Q (L)„Lq+L)„L)),

with pe = in[I, (pZ„)/f, (pJ„)]. This has the same
structure as Eq. (3.8).

(A11)

3c~= —Q (J(J'„,+ J J f„)+n(J () (Bl)

with J=L+S, L, and S are spin--, operators. This
problem is only a spin-one problem if every site
is in the triplet state. Since we then solve equa-
tions of motion for expectation values, at zero
temperature, our calculations can only be correct
if the ground state is triplet at each site. The
symmetry property needed to prove this is

APPENDIX B: TRIPLET GROUND STATE

The discussion here centers on the treatment of
the spin equations of motion discussed in Sec. II.
We seek to prove, as assumed there, that the
triplet state at each site is the lowest-energy con-
figuration. Then we show that a gap exists to the
first excited state, with one singlet excited, and
that there is no degeneracy factor associated with
the excited state which would destroy the ground
state.

The proof requires establishing a symmetry
property of the Hamiltonian considered in Sec. II.
There it was argued that the spin-one problem
could be replaced by the spin problem:

E(N}c (N- 1)—,Nh, — (B4)

and, at least for small 6, the triplet chain is
favored over the singlet chain, since the latter
has zero energy. For the case b =0, the conti-
nuum limit of this problem, "N-, with fixed
length I„results in an infinite energy difference
per length between the triplet and singlet chains,
since E(N) = N= —L/s, wi-th s the lattice con-
stant.

The continuum limit further requires a renor-
malization of the parameter b on the left-hand
side of Eq. (2.16). We treat the coupling constant
4 in the symmetry-breaking term on the right-
hand side of Eq. (2.16) as finite, which implies
the parameter for the lattice theory must approach
zero as N-~. For the moment, attach a subscript
I. or C to indicate the lattice and continuum cou-
pling constant respectively. Dimensional analysis
then requires 4~- s4c, which establishes the re-

[J'„3C~]=0 for all i (B2)

Qbviously, J, has no matrix elements which change

J, at any site. It is intuitively plausible that the
triplet states are lower in energy since they can
take advantage of the hopping kinetic energy from
site to site, while the singlets have no J matrix
elements and caanot participate.

This property means that the energy levels of
the system can be easily classified. Consider a
system with N, consecutive triplet states starting
at site 1, then one singlet, followed by N, triplets,
to form a chain N, +N, + j. sites long. The singlet
site breaks the chain, for there are no matrix
elements of X~ across it. Thus, if we have zero
boundary conditions, the energy of this configu-
ration is E(N, )+ E(N,), where E(N, ) is the energy
of a triplet chain Nl sites long. Adding more sin-
glet sites segments the chain further, for the en-
ergy of each singlet site is zero. %'e now show

Eo(N, + N, + 1) &Eo(N, )+ Eo(N,),
which states that the segmented system, with each
segment in its ground state, is higher in energy
than the all-triplet ground state.

Suppose every site of a segment N links long is
in the triplet site. The Hamiltonian Eq. (Bl) then
has the same energy eigenvalues E(N) as the spin-
one problem g(N}:

c(N) = E(N) . (B3)

We expect E(N) = 4'oN+ 4~, where 4 o is the ground-
state energy per spin, and 4 ~ is a boundary energy
associated with the endpoints of the segment.

An estimate of E(N) is given by using the trial
function g = g, P,(i), where g,(i) is the eigenstate
of J, at site (i}. Evaluating (g~H~ g) using Eq. (1.8)
gives the result
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normalization. For this reason, the b, =0 case and
the infinite-energy difference between triplet and
singlet chains is appropriate for the continuum-
limit model here. For the lattice problem, a fi-
nite b is required to involve a crossing between
singlet and triplet states. In the continuum limit,
that energy is infinitely large, because of the in-
finite ground-state energy density which must be
removed to correct the triplet chain to the singlet.
The parallel of this result to problems of quark
confinement is obviously strong.

The form E(N) =-~4o~N+ 4, is sufficient to
establish the desired inequality, provides 24s &

—
~

C c ~. But the boundary energy contribution is
clearly positive, for we can view the zero boundary

condition implied by a singlet state, as an infi-
nitely repulsive barrier.

We must now argue that the gap of = 4~ implied
by the above is not overwhelmed by entropy factors
as in the one-dimensional Ising model. Here, how-
ever, the situation differs because every singlet
costs an energy =~ Co~. The proper analogy is to
the one-dimensional Ising model in an external
field at zero temperature, for which every spin
has the Zeeman energy to overcome the entropy.
There is a real gap in the eigenvalue spectrum,
and the ground state is fully aligned. That align-
ment corresponds to the triplet state at every site,
with a finite gap of magnitude greater than 2 to
excite the first singlet.

*Work supported by the Alfred P. Sloan Foundation.
)Work supported by the John Simon Guggenheim Founda-

tion.
'P. C. Hohenberg, Phys. Rev. 158, 383 (1967); N. D.

Mermin and H. Wagner, Phys. Bev. Lett. 17, 1133
(1966).

H. E. Stanley and T. A. Kaplan, Phys. Rev. Lett. 16,
981 (1966); D. D. Betts, C. J. Elliott, and R. V. Ditzian,
Can. J. Phys. 49, 1327 (1971).

'D. D. Betts, J. T. Tsai, and C. J. Elliott, Proceedings
of the International Conference on Magnetism, Moscow
1973 (Nauka, Moscow, 1974), Vol. IV, p. 279.

T. M. Rice, Phys. Rev. 140, A1889 (1965); H. J. Mike-
ska and H. Schmidt, J. Low Temp. Phys. 2, 371 (1970);
V. L. Berezinskii, Sov. Phys-JETP 32, 493 (1971);
SR'. 34, 610 (1972).

A. Luther and I. Peschel, Phys. Rev. B12, 3908 (1975).
J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).
S. T. Chui and P. A. Lee, Phys. Rev. Lett. 35, 315
(1975).

R. F. Dashen, B. Hasslacher, and A. Neveu, Phys.
Bev. D11, 3424 (1975); see also L. D. Fadeev, I.
Arefiera, L. A. Takhtajan, V. E. Korepin, and P. P.
Kulish (unpublished) .
A. Luther, Phys. Rev. B 15, 403 (1977).
'J. Zittartz, Z. Phys. B 23, 63 (1976).
B. Stoeckly and D. J. Scalapino, Phys. Rev. B 11, 205
(1975); see also V. G. Vaks and A. I. Larkin, Sov.
Phys. -JETP 22, 678 (1966).

ieJ. Lajezerowicz and P. Pfeuty, J. Phys. (Paris) Colloq.
32, 193 (1971).
D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304
(1965).
A. Luther, Phys. Rev. B 14, 2153 (1976).
L. P. Kadanoff (private communication).
H. J. Mikeska, Phys. Rev. B 12, 2794 (1975).


