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Stability limit of the antiferromagnetic phase near the spin-flop boundary in MnFz
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The spin-flop phase boundary in MnF, has been accurately measured by antiferromagnetic-resonance
techniques. The new data, which show discrepancies with previous differential magnetization data, are in

very good agreement with the results of calculations of the renormalized k = 0 magnon energy due to four-

magnon scattering arising from exchange and magnetic dipolar interactions.

I. INTRODUCTION

It is well known that spin-wave theory can be
used to describe the properties of antiferromag-
nets below their Noel temperature T„. However,
quantitative agreement with experiments, partic-
ularly at temperatures near T„, can only be ob-
tained if the renormalization of the magnon ener-
gies due to the appropriate interactions is taken
into account. This has been recently demonstrated
in investigations of the antiferromagnetic reso-
nance linewidth. ' '

A quantity that is quite sensitive to the details of
the interactions and at the same time is experi-
mentally accessible is the critical field for the an-
tiferromagnetic (AF)-spin-flop (SF) transition.
This is a first-order transition in which the
thermodynamic phase boundary lies between the
limits of stability of the AF and of the SF phases.
With the anisotropy written in an effective single-
ion form, ' ' the separation between these bound-
aries at zero temperature is of the order of H'„/
H„where H& and H, are respectively, the aniso-
tropy and spin-flop critical fields, and tends to
zero as the temperature approaches the bicritical
point. Therefore, the various phase boundaries
are nearly identical for small anisotropy and can
be experimentally measured by several techniques,
such as ultrasonic attenuation, ~ (differential) mag-
netization, ~ ' nuclear magnetic resonance' '
(NMR), optical absorption, ' etc. Since the limit of
stability of the AF phase is characterized by the
field H, at which one of the k =0 magnon frequen-
cies goes to zero, the phase boundary can also be
determined by antif erromagnetic-resonance
(AFMR) measurements. ' The temperature depend-
ence of H, is clearly a direct result of the renor-
malization of the magnon energies due to the var-

ious magnon interactions.
The present investigation was motivated by the

fact that in the nearly ideal uniaxial antiferro-
magnet MnF„ there is a considerable discrepancy
between the calculated spin-flop phase boundary
and the experimental data in the temperature range
in which spin-wave theory should be quite accurate.
One of the difficulties of the measurements in
MnF, arises from the large value of its spin-flop
field (H~„=100 kOe). Small misalignments of the
easy axis with respect to the direction of the ap-
plied field results in sizeable transverse fields
which not only shift the phase boundary but also
alter the character of the transition. In this paper
we present the results of AFMR measurements of
the AF-SF phase boundary of MnF, up to —,'T„. The
technique consists of measuring at several frequen-
cies the resonance field of the AFMR mode whose
frequency decreases with increasing field. This
can be done very accurately in large fields with
a carefully aligned sample. Extrapolation of the
frequency to zero gives the value of the critical
field H, (T). On the theoretical side the main dif-
ficulty has been in the treatment of the anisotropy
interaction which plays a key role in the spin-flop
transition. Since the anisotropy associated with
the 8-state Mn'+ ions arises primarily from the
magnetic dipole interaction, ' the calculation
should be done by treating this interaction explic-
itly rather than introducing a phenomenological
anisotropy energy. The theory previously pub-
lished by two of the present authors (J.P.T. and
R.M.W. )" accounted for this fact. However, a
random-phase approximation was employed with-
out diagonalizing the quadratic part of the magnon
Hamiltonian. This gave reasonable agreement
with the existing experimental data at low tem-
peratures (T& ,'T„) but deviated at -higher tem-
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peratures. In the present paper the quadratic
terms are diagonalized before the random-phase
approximation is applied to the higher-order four-
magnon terms. The calculated phase boundary is
in excellent agreement with our experimental data
obtained by AFMR.

II. EXPERIMENTS
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FIG. 1. Measurements of the antiferromagnetic-reso-
nance frequency vs applied field at two temperature
values. The linear extrapolation to zero frequency yields
&, (&). The shaded region corresponds to the field range
where AF-SF domains were observed at 4.2 K (Ref. 7).
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Antiferromagnetic-resonance experiments wex'e

performed between 2 and 18 QHz in high dc mag-
netic fields generated by a superconducting coil on a
polished sphere(d=2. 5 mm}ofMnF» whichwas shown

by a"FNMRexperiment" to consist of a single AF
domain. The resonance was excited and detected
by two crossed fine wires connected between the
center conductors of two coaxial cables and 50-0
chip resistors. This broad-band untuned arrange-
ment had a poor standing wave ratio but the iso-
lation between input and output cables outside the
dewar was better than 20 dB over the whole band.
At low temperatures the resonance signal was
strong enough to permit direct observation on the
oscilloscope with frequency sweep. Sample align-
ment with the c axis along the applied field H, was
obtained by observing the resonance at fixed field
close to the spin-flop field H„and tilting the
sample until the frequency was at a minimum.
One knows that the minimum frequency is limited
by y(2Hj Hs)' ', where I is the gyromagnetic ratio,
H~ is the transverse field due to imperfect align-
ment, and HE is the exchange field. Since we were
able to observe the resonance as low as 2 GHz
(the lower limit of the sweep oscillator), we can
estimate that the alignment was better than 3
x 10 deg. The field measurements were made
using a "Al NMR probe which allowed an accuracy
of 1 Oe. Thus the precision of the measurements
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FIG. 2. Comparison between the present AFMR data
for the AF-SF phase boundary and previous measure-
ments. Also shown are measurements of the AF-pa-
ramagnetic (P) and SF-P phase boundaries (Ref. 4).

was limited by the linewidth b H of the AFMR. At
low temperatures b, H =15 Oe and is probably
caused by pit- imperfection scattering. At high
temperatures, b H is dominated by magnon-mag-
non interactions and increases with T4, making the
measurements above 50 K difficult and inaccurate.
The temperature was measured with a capacitance
thermometer" and capacitance bridge, and stabil-
ized with a standard temperature controller.

Figure 1 shows a typical plot of resonance fre-
quency versus field for two different temperatures.
The shaded region indicates the field range at 4.2 K
in which AF-SF domains exist. The transition
field H, is determined by extrapolating the value
of H at which the resonance frequency e, goes to
zero. Note that the lowest AFMR frequency is
more than two orders of magnitude smaller than
the zero field gap, v(H =0}=260 GHz.

In Fig. 2 we compare the new AFMR data for the
phase boundary with the previous data of Shapira
et al. ' Note that our measurements agree well
with the scarce ultrasonic attenuation data. Both,
however, differ substantially from the differential-
magnetic-moment (DMM) measurements. The ori-
gin of the discrepancy, which is as large as 5 kOe
at some temperatures, cannot be attributed to the
fact that the critical field measured by the DMM
technique is not necessarily H, . This is so be-
cause that difference would not be larger than H„/
H, (about 0.7 kOe in MnF~) at low temperatures,
and should become progressively less at highertem-
peratures. %e believe that the DMM measurements
are not as accurate as our AFMR data because of com-
bined effects of several factors. First, in the ex-
periments of Ref. 4 the sample is aligned outside
the measuring apparatus. This may result in
small misalignments which are sufficient to broad-
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en the transition. Second, the fields used in the
DMM measurements of Ref. 4 are pulsed. This
makes the field measurement itself less accurate
and introduces difficulties in the thermometry.
Since the relatively short pulse duration almost
certainly represents an adiabatic process, the in-
crease of the parallel susceptibility with tempera-
ture leads to an increasing discrepancy between
the actual spin temperature and the mea-
sured one until the lattice entropy becomes
large enough to overcome the effect. This would

result in effects in the direction of the discrepan-
cies of the experiment of Ref. 4. We notice that
the few measurements in Ref. 4 made with ultra-
sonic techniques and cw fields are in good agree-
ment with our data.

Apart from the differences in magnitudes of the
DMM and AFMR data, which might arise from
several of the above-mentioned factors, we note a
sizable difference in the variation of H, with T,
particularly in the region around 20 K. This is
shown more dramatically in Fig. 3. Since it is
this variation which is predicted by the magnon
renormalization theory, we consider this dis-
crepancy to be much more serious. Since the DMM
data give a very poor fit to both the theory and the
ultrasonic-attenuation data, and are subject to ex-
perimental difficulties to which the other experi-
ments are not, we conclude that they are much
less accurate than the present data.

We also note that plotting our data on a log-log
graph paper shows two distinct temperature de-
pendences for H, (T}, which can be well fitted by
the expressions

92.88+9.5x10 4T~'~ kQe, 4&T &20 K,
H, (T) =

92.88+3.8 x10 ~T ' koe, 20& &&50 K.

III. THEORY OF THE ENERGY RENORMALIZATION

We shall take for the Hamiltonian of the two-sub-
lattice antiferromagnet MnF„

X =g p, WHO Sg + S) + 2cJg j
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FIG. 3. Comparison of the experimental AFMR data
(open circles} for the AF-SF phase boundary with the
results of calculations based on the renormalization of
the &= 0 magnon energy due to four-magnon interactions.
A few representative points from the DMM (solid circles}
and ultrasonic attenuation (triangles) data of Ref. 4 are
included for reference.

be treated as accurately as possible. The details
of the application of spinwave theory to a Hamil-
tonian with a single-ion anisotropy may be found
in many references. ' ' " In the case of Eq. (1}
the development is essentially the same. With the
Holstein-P rimakoff transformations one obtains
two sets of operators ag, a-„and bz, b~&. The in-
tersublattice coupling gives rise to quadratic
terms of the form af&ag, b)bf, a1b g, and albtg.
The dipolar interaction contributes with the same
types of terms, as does the single-ion anisotropy,
but, in addition, it contains terms like aga g and
a&b g. Since these complicate substantially the
calculations" while contributing negligibly to the
spin-wave frequencies, they can be neglected. The
diagonalization of the quadratic Hamiltonian is then
carried out as in the usual theory. ' ' " New nor-
mal-mode operatorso. p, e~, Pg, P, are obtained
by a canonical transformation in which the trans-
formation coefficients are now

Qy =[(Ag +(dy )/2(oy] vg = (Qg —1) (2)
2 M ~» ' ~s 3 Ni' rii)Ni ru )+ag Pa ~ ~3 ~5(f f fj K f j

where i and j refer to up and down spin sublat-
tices, H, is the magnetic field applied along the
easy axis, and J'&, is the exchange constant (only
the next-nearest neighbor J, = 1.76 K will be kept }.
The dipolar interaction is responsible for essen-
tially all the magnetic anisotropy in MnF, and will

with

(g —(+2 B2 )Ilm

(4a)
1IB,=2e+,Sy, --',g'psS e'"

0

y~ = cos(-',k, a) cos(-', k„a}cos(-,'k, c),
(4b)

(3)

IIX =2*p s ~ —g p~ g(21 —2I -Q 8 & ' ')
0 S 8
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where z, denotes the number of second-nearest
neighbors (eight for MnF, ), P, stands for the di-
pole sum g, (1 —3z '/r')/r', where r runs over all
the lattice sites on the opposite sublattice from
the ion at the origin, and+, stands for the sum
over all the sites on the same sublattice.

The unrenormalized normal mode frequencies
are

(v, (0) = (e» —yff„(e((, (0) = ~» + yff, ,

where y =gee/S. In computing the frequencies,
the dipolar sums in (4) are carried out explicitly.
Since the sums converge rapidly, one needs only
to consider terms out to next-next-nearest neigh-
bors. The Lorentz and surface contributions are
much smaller and are neglected.

Since the Holstein-Primakoff representation is
nonlinear, the Hamiltonian (1) also contains higher-
order products of boson operators. When these
are expressed in terms of the normal modes one
obtains terms which contain all types of combina-
tions of n, , o.„P,, and P, operators. It can be
easily shown that the three-magnon terms cannot
contribute to the energy renormalization. The
four-magnon term is thus the lowest order one of
interest, and it has contributions from both ex-
change and dipolar interactions. To compute the

temperature dependence of the spin-wave spectrum
due to the four-magnon interaction we use the
usual random. phase approximation. This involves
approximation of a sum by a few terms and a sys-
tematic replacement of pairs of operators by their
averages. For example, a typical term

a» a» p» p» h(k, —k»+k, —k4)
&ykpP 30 4

is replaced by

Z a»a»(P, P, )+&a»a») P, P„

where

(a»a») = Tr(e ~a» a» )/Tr(e ) . (6)

The averages of other pairs of operators vanish.
Applying this approximation to each four-magnon
term, the Hamiltonian X reduces to a quadratic
form and therefore renormalizes the normal-mode
energies. Using the contributions to 3C~4~ from the
exchange and dipolar interactions we obtain for the
o., spin-wave frequency

(d, (T) =(d, —yff, +a(v (T),
where

I«a& & (T) = 2z P»S [(u» +v» —2u» v» y» )C, + (u» v» y» —v» )E, + (u» v„y» —u» )F, ]

~ —,'g'rP s s(u', ~,')0: ~ (2 ~ e'"' u', z. ~ 2 Q e' '' v,'I', —( ', ,* -2, , (p.'
S S

2v'+u, v, Q e'»' ' E, — 2u'+u, v, Q e'»' F
0 0

(8)

where the coefficients C„D„E„andI', are
summed over the thermal averages

1
C, = Z u v y (2n +2n& +1),a 0

o(s)
2$f$

1
a q

(9)

1

NS ~ ~~ 'I ~e '

In Eqs. (9) N is the number of spins in each sub-
lattice and the thermal occupation numbers are
computed with the renormalized frequencies, as in
(6). The correction for the frequency of the P»
mode is given by the same expression as (8) with
E, and F, interchanged. Equations (V)-(9) must
be solved self-consistently for each value of tern-

perature and field. This was done numerically for
MnF, . The procedure consists of initially calcu-
lating the parameters C, D, E, and I', with the
unrenormalized frequencies. Then at each point k
in the Brillouin zone the magnon frequencies for
both modes are calculated. With the new bose fac-
tors new coefficients are calculated and the pro-
cess is repeated. The process converges more
rapidly at low fields and low temperatures and does
not converge at all at temperatures about 0.9T~.
For most cases the criterion (C„—C„,(&10 ' was
met in less than eight iterations. One iteration in-
volving a sum over 8000 points in —,

' of the Bril-
louin zone takes a few seconds on the computer.
The sums in the dipole part are done independently
neglecting surface contributions. They are approx-
irnated by sums over 106 neighbors, which have
been found to account for almost all the contribu-
tion.

Before discussing the numerical results we would
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like to point out that the energy renormalization
for antiferromagnetic magnons has been previously
calculated by several authors. '5 " However, they

do not apply to the present problem because they
have usually been carried out for H, = 0, neglect-
ing the effects of the dipolar four-magnon inter-
action. Nevertheless it is worth noting that with

H, =0 and no dipolar terms the lengthy expres
sions (7)-(9) reduce to the previously obtained
result" "
n&u~(T) = — &u, (0)g (1 —y', }'~'(2n, +1).

a
(10)

The measured temperature dependence of II, can
be qualitatively explained as well by simple ana-
lytical calculations. The temperature-dependent
part of H, is proportional to the change in fre-
quency + „which may be written approximately
as n~ =g, C, n, if we assume that the zero
gap n-mode states are much more populated than
the g ones. At small and intermediate tempera-
tures we replace the sum over k by an integral
with upper limit extended to infinity and assume a
linear dispersion relation e =vk for the zero-gap
magnons. ' A simple change of variables in the
integral gives a T' dependence to b, ~, if C, is
assumed constant; this is very close to the mea-
sured T ' ' dependence at T &20 K. As the tem-
perature increases the T dependence decreases
mainly due to the effects of the finite extent of the
Brillouin zone.

IV. SPIN-FLOP PHASE BOUNDARY

The spin-flop phase boundary for MnF, was ob-
tained by determining the value of H, =H, (T) for
which &o (T) becomes zero The s.olid line in Fig.
3 shows the result of the calculation based on ex-
change and dipolar four-magnon interactions as
described in Sec. III. Since the anisotropy in MnF,
is not entirely of dipolar origin, the zero-temper-
ature value of H, had to be adjusted to the experi-
mental value. However, this correction is only
0.5 kOe and it introduces a negligible error into
the calculation of the renormalization. The cal-
culated phase boundary is seen to be in excellent
agreement with the AFMR data of Sec. II. Of
course, the critical field calculated here is the
same quantity measured by the AFMR experi-
ments but it is remarkable that a spin-wave cal-

culation can describe the measurements at tem-
peratures as high as —,'T„so well.

In order to demonstrate the role of the various
four-magnon interactions we also show in Fig. 3
the results of two other calculations, one in which
only the exchange part is considered and another
in which we assume exchange and single-ion an-
isotropy -KQ, (Sf}' instead of the dipolar one. It
is evident from Fig. 3 that when only the exchange
interaction is considered the magnon renormaliza-
tion is overestimated. This is a consequence of
two facts. First, the anisotropy becomes rela-
tively important because in the exchange part of
the coefficients in Eq. (2) there are cancellations
due to the negative sign of v~. Second, there is a
destructive interference in the scattering ampli-
tudes of the exchange and anisotropy magnon in-
teractions, an effect previously found in the re-
laxation of the k =0 antiferromagnetic magnon. ' '
This conclusion is relevant because in the usual
treatments of the magnon renormalization the role
of the anisotropy is overlooked.

We also note from Fig. 3 that in order to repro-
duce the experimental data for H, (T) in MnF, the
correct dipolar anisotropy must be considered.
A temperature- and wave-vector-independent
single-ion anisotropy form interferes too strongly
with the exchange interaction, resulting in a spin-
flop field that tends to decrease at higher tem-
peratures. This result demonstrates how sen-
sitive the spin-flop phase boundary is to magnon
interactions. We note that the importance of the
role of the form of the anisotropy was not realized
in previous investigations' ' of the AFMR relax-
ation rates in MnF, . This was so because the
agreement between the calculation using the four-
magnon interaction due to the single-ion anisotropy
and the experiments was sufficiently good at low
temperatures. At higher temperatures, where the
details of the form of the anisotropy would proba-
bly be more pronounced, the relaxation was domi-
nated by higher order processes which did not de-
pend on the anisotropy. However, presumably the
agreement at low temperatures would be better if
the correct dipolar anisotropy had been used in
the cal culations.
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