
PHYSICAL REVIE% B VOLUME 16, NUMBER 3 1 AUGUST 1977

Demagnetizing fields in the de Hase-van Alphen effect*
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A description of magnetic interaction, including demagnetizing effects and the vector nature of the
magnetization, is presented. Demagnetizing factors appropriate for the second-order approximation for cubic
and cylindrical sample shapes are explicitly calculated. A technique for measuring absolute amplitudes based
on the weak interaction of two frequencies is proposed.

I. INTRODUCTION

Since it was first suggested by Shoenberg, ' mag-
netic interaction has played an important role in
understanding the amplitudes of the de Haas-van
Alphen (dHvA) effect. Magnetic interaction (MI) of
a single frequency with itself must be considered
when cyclotron effective masses are derived from
the temperature dependence of the amplitude, or
when scattering lifetimes are derived from the
field dependence of the amplitude. ' Magnetic inter-
action of two frequencies often produces amplitude
modulation of the higher frequency, "' making in-
terpretation of its amplitude difficult. Recently,
magnetic interaction has been used as a tool for
measuring properties which are otherwise difficult,
to determine: These include the absolute ampli-
tude of the oscillation"' and the sign of the second
harmonic component of the signal. ' Finally, de-
magnetizing effects have also been used experi-
mentally to check whether the sample magnetiza-
tion enters MI in a purely classical way or re-
quires quantum-mechanical modification. '

In analyzing the effects of MI, it is often impor-
tant to take into account the vector nature of the
magnetization and the effect of the demagnetizing
fields, both of which have received little attention
in the literature. In this paper, an earlier deriva-
tion of MI' which includes these effects will be re-
viewed, and the demagnetizing effects for cylindri-
cal and cubic sample shapes will be calculated ex-
plicitly. The details of the calculation are de-
scribed in the text and a summary of the results is
given at the end of the paper. In addition, com-
ments on the effect of a field inhomogeneity in the
presence of MI will be presented, and a technique
for measuring absolute amplitudes using the mag-
netic interaction of two frequencies will be pro-
posed.

11. MATHEMATICAL FORMULATION

The basic equations describing dHvA amplitudes
in the presence of MI result from replacing the ap-

plied field H in the Lifshitz-Kosevich9 (LK} expres-
sions by the total field B, where B includes con-
tributions from the sample magnetization. The to-
tal field is given by

B(r) = Bo+4vM(r}+b(r), (la)

where B, is the applied field assumed to be homo-
geneous, M(r) is the local magnetization of the
sample at r, and b(r) is the field produced at r by
the distribution of magnetization M(r) throughout
the sample. The latter term is referred to as the
demagnetizing field, and is given by'

(lb)

The first integral is over the surface and the sec-
ond over the volume of the sample.

The LK expression for the oscillatory magneti-
zation may be written"

F PgM=m(H) A„sin 2nr —-y
H 4, ' (2a)

m(H }=H ———8—F 88 F sin8 8$ (2b)

where M is the oscillatory magnetization, F(8, P)
is the frequency of oscillation in I/H for the field
direction H specified by the spherical coordinates
(8, P), y is the Onsager phase constant, p =+1 (-1}
if the extremal area of the Fermi surface associa-
ted with the oscillations is maximum (minimum),
and m is the vector direction of the magnetization.
Expressions for the temperature and field depen-
dence of the amplitudes of the harmonic compo-
nents A„will not be needed in what follows and are
defined in the literature. "

Equations (1}and (2) completely describe MI for
a single frequency if B is substituted for H in Eq.
(2). Various iterative techniques for finding M as a
function of the applied field B, are described in the
literature. "'" The present work follows the

16 1117



1118 G. %. CRABTREE C6

method of Crabtree et al. ,' which is based on the
work of Phillips and Gold. ' The amplitudes A„are
assumed to decrease rapidly with increasing r, so
that the order of the approximation is given by the
subscript r (i.e., A, is first order, A, and A', are
second order, etc.}. The lowest approximation,
correct to first order, is

F'(B,) Pw
M, =m(B,}A,sin 2w ' —y

(~)
B,(r) =B,+4wM, +b, (r),

where the r dependence arises from substituting
M, in Eq. (1b). Iterating once and keeping terms to
second order,

F(B ) Pw'
M, (r)=m(B, ) A, sin 2w

( I
—y

I

+A, sin 4w ' —y ——,(4)
F(B,) Pw

B,(r) =8,+4wM, (r)+b, (r) .

For simplicity, we assume Bo lies in a symme-
try plane of the crystal so that BF/BQ = 0 in Eq.
(2b), and that the sample shape has sufficient sym-
metry that b is coplanar with Bo and M. (As shown

below, this is always the case for cubic shapes,
and will be true for cylindrical shapes if the cylin-
der axis lies in ihe same symmetry plane as B,.)
Then B„M„and b, are related as in Fig. 1, and

~B, ~
may be approximated to first order by

~B, ~=B [1+(4wM", +b",)/B ],
where the superscript (~ refers to the component

A

Bo

b)

FIG. 1. Relation be-
ags

tween Bo, M&, b„and B&.
All four vectors are as-
sumed to lie in a symmetry
plane of the crystal (see
text).

along B, and ~ will refer to the component along 8.
With 58 defined in Fig. 1, F(B,) may be approxi-
mated by

A

F(B,) =F(B,)+—58

from Eq. (2b), Eq. (5) may be rewritten

2wF (B,)/B, = 2wF/Bo K(r)M ", ,—

where

(Va)

K(r}=, [1—I "(r)]+——— yI'(r)—8~'F „1aF 1 aS'

Bo F8~ F8

This approximation may be used to expand the
sine functions in Eq. (4). Keeping terms to second
order gives

M~(r) = m(BO) (A, sin [2w(F /Bo —y) —~ Pw]

+ A, sin[4w(F/B, -y) —,'pw]—
—2K(r)A, sin[4w(F/Bo —y) —~pw)],

(8)

where B, may be substituted for 8, in the slowly
varying functions m(B) and A, . The first two terms
are the usual LK fundamental and second harmon-
ic, while the last term is an additional second har-
monic due to magnetic interaction. The same tech-
nique can be applied to derive higher-order ap-
proximations; however, the volume term in Eq.
(lb) will contribute to b(r) and the evaluation of
K(r) becomes more difficult. Much of the work

(
"

)
SF(4wM', +b )',

0

Combining these approximations and keeping terms
to first order,

—(—4wM', +b', ) (4wM", + b",), (S)

where F =—F(B,).
Note that M, is uniform in space so that the vol-

ume term in (lb) does not contribute to b& Also
the surface term in Eq. (1b) is linear in M„so that

b, (r) may be written

b, (r) = 4wM", [I-"(r)B,+I'(r)8 ], (6)

where
A

-4wM" 1(r) -=~
s )r-r'i

This form will be convenient for showing the rela-
tion of this work to that of Phillips and Gold. Using

1 SZI =-——IF 88
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using harmonic analysis of the dHvh effect deals
with fundamental and second harmonics only, al-
though recently work involving third harmonics has
begun to appear. ""In this paper, the approxima-
tion will not be carried past second order.

Equation (8) reduces to the result of Phillips and
Gold if E(r) is replaced by 8z2F/B22 Th.e term pro-
portional to (1/F)(8F/88) inside the large square
brackets of Eq. (Vb) results from the vector nature
of M, while the terms in I "(r) and I'(r) result from
the demagnetizing field. I"(r}and I'(r} play the
role of local demagnetizing factors which describe
the magnitude and direction of the demagnetizing
field at r.

The experimentally observed signal is propor-
tional to f»M(r)d'r where the integral is over the
volume of the sample. The r dependence in Eq. (8)
occurs only in I'(r) and I "(r), so that the volume
integral of M, (r) is determined by the volume in-
tegral of b, (r). Thus, demagnetizing effects cor-
rect to second order are completely determined by
the volume integral of the first-order demagneti-

zing field. The following sections will calculate the
volume integral of the first-order demagnetizing
field for the case of cubic and cylindrical sample
shapes. For ellipsoidal shapes b, is constant over
the volume of the sample and complete results are
given by Osborne" and Stoner. "

III. CUBIC SHAPE

Using Eq. (lb), and letting M(r) =M, —= M, the de-
sired integral is

M n'
b=— b(r}d'r= — d'rV d'r'

V Y I r- r'I

One integration over r may be done immediately:
A

b= — d'rn d'r'
s s fr —r'I (9)

With this expression, it may be shown that for the
cube of side L, box: M. Consider the x component of
Eq. (9), obtained by letting r=(+- L2, y, z):

Z, /2 M n' M n'd'y'
-z/2 s [(2 L -x')'+ ( y —y')'+ (z —z')']" ' [(-,' L+x')'+ ( y -y')'+ (z —z')']" '

The integration over r ' has six contributions as r' falls on the six faces of the cube. For r' =(x', +2'L, z')
or (x', y', + 2 L), the integrand is odd under the reflection x'--x', forcing these contributions to vanish.
For r' = (+ 2 L, y', z') the surface integral is over y' and z', and b, reduces to

I./2 I./2 1 Ib„=-2M, dy dz dy'dz'
[( y —y ')' + (z —z')' ]

"' [I.' + ( y —y ')' + (z —z')' ]"'

Similar arguments hold for b„and b, where the in-
tegrals are the same for all three components by a
change of variable. Transforming to the dimen-
sionless variables y/L, z/L, y'/L, z'/L gives

where N;2(r) is a local demagnetizing tensor de-
fined by

A A

Bx Ir rI)
b/L' = -2kM,

II r 2

d~ d~ d~ dz
y ~ y ~ 2 ~ 2 I 2

S/2 1
dydzdy dz

(1la) Schlomann has shown that

Nq;(r} = 1,

1
[1+( y y t)2+ (z za)2]1/2

(1lb}

The value of k may be inferred by applying a sum
rule derived by Schlomann. " The demagnetizing
field for a uniformly magnetized body of arbitrary
shape may be written

b, (F) = 4z g N, ,(r)M-„

(12)

The integrals occurring in Eq. (lib) have been
evaluated in the literature and give the same re-
sult. "

if r is inside the sample. Integration over the vol-
ume of the sample gives a similar sum rule for the
average values of N, ;(r) For the cube., the off-di-
agonal elements are zero and the diagonal elements
are identical as shown by Eq. (lla). Thus
f»N, ;(r)d'r= ', L', and—

5/L'= =', zM.
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The average demagnetizing field is ——', mM, the
same result as for the uniformly magnetized
sphere. Since observed dHvA signals depend only
on averages over the sample, the cube and the
sphere are equivalent whenever the second-order
approximation leading to Eq. (8) is valid. Specifi-
cally,

I"(r)d ' r = —,
' V,

V

J I BFI '(r) d ' r = --,' V——,
Bg

(13}

8w2F 1 BE '
K(r)d'r=-', V, 1+ ——

F Be

For either the sphere or the cube in the second-or-
der approximation, where V is the volume of the
sample.

The results in Eq. (13) are not restricted to the
cube but apply to any sample with cubic symmetry.
To see this, note that the derivation leading to Eq.

(11a) used reflection symmetry of the sample shape
through the xy, yz, and xz pla, nes and cyclic
changes of variable among (x, y, z). These proper-
ties are possessed by all shapes with cubic sym-
metry.

IV. CYLINDRICAL SHAPE

For a right circular cylinder of radius R and
length I., we first evaluate

U(r)=-J d'v'
& I r —r'

I

The function I/(~r —r'
~) may be expanded in Bessel

functions" as
CO &0

dk e (m ( 4 -((1' l

m=-~ 0

x Z (kp) J' (kp')e '"& '&',

where (p, P, z) and (p', (t)', z') represent r and

r, respectively, in cylindrical coordinates. z&

(z&} is the greater (lesser) of z and z'. Then

R 2r OO ()0

U(r) = dp' d(t)'p'M g dk e( + + J (kp) J (kp')e
0 0 e=-~ 0

dke' " "J„()tp)i (kp')e "" ")
m-"-~ 0

dQ'R(M, cos(t&'+M, sin(t)') g dke' '~ ~' Z (kp) J(kR)e '"'& '&'.
m=-~ 0

The first integral covers the end faces z'=+2L,
the second covers the surface p'=R. Integration
over Q' leaves only the m =0 term in the first in-
tegral and only m = +1 terms in the second. Inte-
gration over p in the first integral is straightfor-
ward; integration over z' in the second must be
broken into two ranges, z'&z and z'&z. When
these integrals are done,

U(r) =4rRM, —Jo(kp) J,(kR)e ~~ ' sinhkz
"dk

0

+ 4vR(M„c s fo+M()„sing)

—J', (kp) J,(kR)(1 —e ' ' cosh kz) .
"dk

0

(14)

Local demagnetizing fields for the uniformly mag-
netized cylinder may be calculated from the above
using b(r)=-7)'U(r). To find the volume integral of
b(r), Eq. (9) must be evaluated for the cylindrical

geometry:

b = — d'rsU(r)
S

b =-16m R M, —J, kR e ~ sjnhk —.
0

(16)

In the second term of Eq. (15}, the P integration
removes the first term of Eq. (14). The second
term of Eq. (14) may be integrated over P and z to

=-z dp dQ p U p, P, —-U p, Q, ——

L/2 2r

d@R xcosQ+ysinp U R, Q, z .
-L/2 0

(15)

In the first term above, integration over Q re-
moves the second term in Eq. (14). The first term
in Eq. (14) may be integrated over P and p to ob-
tain



16 DEMAGNETIZING FIELDS IN THE DE HAAS-VAN ALPHEN. . . 1121

obtain

8/RJgyR2J
0 0

L A A

&&e ' ' sinhk —(yM, +xM,}.

sinh(-,'kL) terms as exponentials, and using the in-
tegrals

f Z ',(x), "Z ', (x) 4dx-p
y " d"-3.

0 0

Combining this with Eq. (16), rewriting the gives the result

OO OO

b=-nR'I zM4n —— —2J', x e ' R'" + xM„+yM, 2w 1 — — —,J', x e '

0 0

Defining

D J 2 x e-(L/ R)x

0

Dp(L/2R) =—z [1—D~(L/2R)],

Eq. (17) may be written

b/wR L = -4w [zM, D,(L/2R)

+ (xM, + y M, ) D,( L /2 R )] .

(18b)

(19)

TABLE I. Values of Dp and D, from Eq. (8) for vari-
ous values of L/2R.

LI2R Dp L/2R Dp

propriate values for the volume integrals of I"(r},
I'(r), and K(r).

For other values of L/2R the connection between
Eq. (19) and the volume integrals is more compli-
cated. In the coordinate system of Fig. 3, B0 and

This gives the average demagnetizing field for the
uniformly magnetized cylinder. D, and D, are the
average demagnetizing factors for the longitudinal
and radial directions. The Bessel function inte-
grals in the definitions of D, and D, cannot be done
analytically, but numerical integration for a range
of L/2R values has been carried out by computer.
The results are shown in Fig. 2 and Table I.

At L/2R = 0.906, the curves for D~ and D, cross.
Setting D, =D, =D in Eq. (18—b) gives D = —,. There-
fore,

b/2wR~L =-—', wM,

in accordance with the sum rule derived by Schlo-
mann. The average demagnetizing field is the
same as in the sphere, and Eq. (18) gives the ap-

I
'

I
'

I
'

I
'

I
'

I
'

I
'

I
'

I

0.8

0.6-
0,

0.4-

0.2— Oz

I t I i I i I i I i I I I i I i I

0.4 0.8 l.2 l.6 2.0 2.4 2.8 3.2 3.6 4.0
L/21

FIG. 2. Demagnetizing factors Dp and D» as a function
of the length to diameter ratio for a cylinder. The
curves cross at L/2R = 0.906.
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the axis of the cylinder are assumed to lie in a
symmetry plane of the crystal so that B0, M, and
b are coplanar. For convenience this is chosen to
be the x-z plane. The angle between B, and the cy-
linder axis is n, while 8 (not shown in Fig. 3) may
represent the angle of B, with some other refer-
ence direction in the x-z plane, e.g. , the direction
of (100). Using the transformations

Bo

and

M, =M" cose -M'sine,

M, =M" sine+M' cose
(20)

z =B0cose - 8 sine,

x =B0sine+ 8 cose,

Eq. (19}may be written

I

&,&
= -4m'M" D, cos'e+D, sin'e

(21}

1 BF—(D —D )——sine cosa B'F 88 0

+ (D, -D,}sinn cosa

1 BF
(D sin'o—. +D cos'n) 8

88 ~ P

Using Eq. (6), the volume integrals of I"(r) and
I"(r) may be identified as the coefficients of B, and
8 in large curly brackets above. These may be
used in Eq. (7b) to find the volume integral of K(r).
The result is

Kr d'x

FIG. 3. Coordinate system used to relate DP and D, to
M" and M . Bo is chosen to lie in the x-z plane at an
angle e to the cylinder axis. 8 is the angle between 80
and an arbitrary reference direction in the x-z plane,
e.g., the direction of (100) .

teraction between two dHvA frequencies, is dis-
cussed. The weak interaction expansion for the
magnetic interaction expressions will be used and
terms to second order will be kept. For simplici-
ty, B, is assumed parallel to a symmetry direc-
tion, so that BE/88 = 0 for both frequencies. Also
the sample shape is assumed to have enough sym-
metry that b is parallel to M. Then B„M, and b

are parallel and the vector nature of the fields may
be neglected. The equations to be iterated are

8g2F 1 8F . 1 BF=V B F88 ~ F881+ ———D sine ———cose

1 8F
F 88-D, cose+ ——sine

M = ~ A„sin 2wr —- y -P, —,m

+A sin 2m' —-y -pb-b F
B b4 (22)

V. INTERACTION OF TWO FREQUENCIES

In this section, a method for measuring absolute
amplitudes when there is appreciable, but weak in-

B =B,+ 4wM + b (r),
where the indices a and b refer to the two frequen-
cies. Iterating as before, and keeping terms to
second order,

F b ~ Fb n', . F, mM=A' sin 2z —'-y -P —+A sin 2w —-y -P —+A' sin 4w —'-y -P—j. a4 1 4 ' B0 '4
Fb w (A;)2 . F, w- (A', }' . Z, w+A, sin 4w ——y -p~ —-K,(r) ' sin 4w —' —y -p, ——K~(r) ' sin 4w —~ —y -p~-B0

'(K, +K~) sin 2w ' ~ —2y —(p, +p~) 4
— ' '(K~-K, ) sin 2w ' ~ —(p, —p~)4

0 0

K~s= (6w'&Bo)&~~[1-I"(r)l.

(24}
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This expansion is valid in the weak interaction lim-
it, i.e., K,A;, K,A„K~A'„and KqA, «1. The
first six terms are the usual Lifshitz-Kosevich and
MI terms and the last two are sum and difference
frequencies produced by "nonlinear mixing" via
magnetic interaction.

The origin of the sum and difference sidebands
may be understood in terms of frequency modula-
tion. The oscillation F, is frequency modulated by
F„producing sidebands of amplitude+ & K,AgA1 at
F,+F,. These sidebands have opposite sign as is
usual for frequency modulation. Similarly, F~ is
frequency modulated by F,. However, if E,&Eh,
the sideband at E, -F, appears at negative frequen-
cy. Inverting the frequency to F, -F~ to obtain a
physically meaningful positive frequency causes a
sign change in the amplitude of the side band be-
cause sinx is odd under the reflection x- -x. Af-
ter inversion, the sidebands of amplitude &K~AyAg
appear at E,+E, and have the same sign, which is
characteristic of amplitude modulation (AM) of E,
by E,. This demonstrates how frequency modula-
tion (FM) of a lower frequency by a higher frequen-
cy appears as amplitude modulation of the higher
frequency by the lower.

This type of "FM-AM effect" is in addition to that
discussed by Alles and Lowndes. 4 They describe
an instrumental effect due to the use of field modu-
lation for observing the oscillations. In the present
case, the amplitude modulation is inherent in the
dHvA effect, independent of how the oscillations
are observed.

This source of amplitude modulation is often
overlooked in discussion of the dHvA waveshape
in the presence of field inhomogeneity. 4'" A com-

plete treatment can be carried out as follows. The
dHvA oscillations are first resolved into a spec-
trum of LK, MI, and combination terms as dis-
played above for weak interaction. The reduction
in each term caused by field inhomogeneity may be
found using the results of Hornfeldt, Ketterson,
and Windmiller. " The resulting spectrum gives
the inherent waveshape due to both MI and field in-
homogeneity. (A similar scheme was recently pro-
posed by Shoenberg for dealing with phase smear-
ing due to crystal imperfections. 'o) If the oscilla-
tions are observed by field modulation, each term
in the spectrum must be further weighted by the
Bessel function appropriate for the frequency of the
term and level of modulation. This Bessel function
weighting accounts for the FM-AM effect described
by Alles and Lowndes.

A well known case of AM due to MI is the neck-
belly interaction in Au near (111).+ "'0 In this
case, the interaction is well outside the weak limit.
This is graphically demonstrated in Fig. 4, where
a Fourier transform of the belly signal at (111) is

Au BELLY &III&

3 27IT &H &3.240T

-4N-3N"2N W 8 +N +2N+3hHAN

FIG. 4. Belly oscillations in Au for 80 along |',111) in
a sample of roughly cubic shape with an edge length of- 1 mm. The upper trace shows digitized data for part
of a field sweep taken between 3.271 and 3.240 T at
1.55 K. The full sweep contained approximately 140
oscillations sampled about 7 times/oscillation. The
choppy appearance is due to nonlinear pen motion be-
tween sampling points. The lower curve is the Fourier
transform of the data showing the belly peak (B) and
sidebands produced by magnetic interaction with the
neck.

shown. Sidebands up to four neck frequencies away
from the belly are evident. The interaction is so
strong that the central peak at the frequency of the
belly is appreciably reduced, and much of the pow-
er appears in the sidebands.

With such strong interaction, the analytical reso-
lution of Eq. (23} into LK and combination terms is
not practical, although a numerical solution could
be carried out. [The problem is further complica-
ted by the multivalued solutions of Eq. (23} for
strong interaction, '""which cause the sample to
break into domains with different values of M."]
Nevertheless, the contribution to AM of the belly
caused by FM of the neck by the belly is of order
K„,„A„,„which is typically a few percent and may
be treated by the weak interaction expansion. This
small additional AM of the belly was not consid-
ered by Alles and Lowndes, and is of the right or-
der of magnitude to explain discrepancies between
the AM they observed and that caused by field mod-
ulation detection in a homogeneous field.

The expansion in Eq. (24) can also be used to
measure the absolute amplitude of either of the in-
teracting frequencies. If the amplitude of the sum
or difference frequency is divided by one of the
fundamental frequencies, one obtains, e.g. , &4;(K~
+K,), and A; can be inferred if values for K, ~ are
taken from the first section of this work.
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Because only ratios of measured amplitudes are
used, the results are independent of the gain of the
measuring system. This is a variation of a tech-
nique described by Handles' and developed by Al-
les, Higgins, and Lowndes, ' where the MI contri-
bution to the observed second harmonic is projec-
ted out and divided by the observed fundamental
amplitude. In the present case, the interaction in-
duced components occur at sum and difference fre-
quencies and are automatically separated in fre-
quency from the LK terms. Thus, it is not neces-
sary to make the accurate phase measurements
needed for separating the MI and LK contributions
to the second harmonic. Furthermore, an impor-
tant consistency check is available. The ratio of
sum and difference amplitudes is (I",+I"~)/(I" ~ -I",)
independent of the gain of the system, demagnet-
izing factors, or Dingle temperatures. The ratio
of sum and difference amplitudes thus gives a
check on the field inhomogeneity and the validity of
the weak interaction expansion.

One convenient test of this technique is the ro-
sette-belly interaction for II along (100) in Au.
Fourier transforms of observed signals indicate
the weak interaction limit is valid if the field and
temperature are adjusted properly. " Absolute am-
plitudes for both orbits have been measured by oth-
er techniques and are available for comparison. '""

VI. SUMMARY

The MI contribution to the dHvA wave shape is
evaluated in second order in Eq. (8), taking into
account both the local demagnetizing fields and the
vector nature of the magnetization. For the cube
and right circular cylinder with I /2R —0.906, the
average demagnetizing fieM is independent of the
direction of magnetization and the amplitude of the

MI induced second harmonic is therefore indepen-
dent of the orientation of the sample shape in the
applied field. The value of J K(r)d'r given in Eq.
(13) may be used to calculate the amplitude of the

MI induced second harmonic. For cylindrical sam-
ples with other values of I,/2R, the average de-
magnetizing field depends explicitly on the angle e
between the applied field and the cylinder axis. As
a result, the amplitude of the MI-induced second
harmonic also depends on 0. in a complicated and
inconvenient way as described by Eq. (22) and the
remarks following. Average demagnetizing factors
for finite cylindrical sample shapes are given in
Fig. 2 and Table I.

The magnetic interaction of two frequencies is
examined in the weak interaction limit; the results
are given in Eq. (24). The Ml-induced sidebands
appearing at the sum and difference frequencies
are indicative of both frequency and amplitude
modulation of the higher frequency by the lower.
Since the sidebands are separated in frequency
from the LK harmonics, their amplitudes may be
measured directly without the need for any phase
measurements. These amplitudes are a direct
measure of the strength of the interaction and may
be used to infer the absolute amplitude of either of
the interacting frequencies if the demagnetizing
factors are known. The technique cannot be applied
to the neck-belly interaction in Au because the weak
limit is far exceeded as shown in Fig. 4. However,
the rosette and belly amplitudes near (100) can be
measured in this way if the field and temperature
are properly adjusted.
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