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A simple microscopic model of local structural instabilities in high-T, materials, which involves the
existence of more than one local state, is proposed, and the effects of dynamic fluctuations between these
states on the electron and phonon properties are studied. These results give new insight into several

important general features of these materials, including their large anharmonicity and also their structural
transformations which often limit the attainable values of T, .

I. INTRODUCTION

The correlation between the superconducting
(and other} properties of high-T, superconductors
and the presence of structural phase instabilities
and lattice transformations has been widely dis-
cussed and is now well established as an empirical
nile; see especially the work of Matthias' 4 and of
Testardi. ' Such empirical rules have produced
virtually all advances in raising T,. On the one
hand, nearly all high-T, materials (T, & 10 K}
seem to have these instabilities, '"' and crudely
speaking, the higher the value of T„ the greater
the "degree of instability. " On the other hand, rel-
atively minor changes in material parameters
can result in structural transformations which re-
duce the "instability"; such transformations are
often accompanied by dramatic decreases in T,
and are thought to form an ultimate limitation'~
on the T,'s achievable in a class of materials.

High-T, superconductors include a variety of
kinds of materials such as sputtered films, "the
A-15's,"and binary and ternary compounds and
alloys. ' ' These materials are often characterized
by the existence of more than one phase (as a func-
tion of composition and/or temperature), by de.—

fects and structural disorder, by nonstoichiometry,
and by lack of reproducibility of their properties.
Very recently there has been direct evidence for
the coexistence of two phases in several systems
(A-15's"" and Nb-Zr alloys"}. It has been found
that certain important features are common to
most high-T, materials; these features include
(i) large anharmonicity, '" (ii) anomalous heat
capacity, ""and (iii) existence of more than a

ngle ph
Virtually no theoretical work to date has included

lattice instability in any fundamental way. Phillips
and co-workers, ' '" on the other hand, have re-
cently done pioneering work in undertaking the
treatment of these aspects of the properties of
high-T, materials. They have pointed out the im-
portance of the coexistence of two phases and of

the existence of defects in these materials. They
have investigated a model which has microscopic
static regions of a second phase located at defects
and have studied their effects on the phonon fre-
quencies, on the residual resistivity, and on the
lattice constant (particularly in the A-15 materi-
als).

In the present work we consider the effects which
the dynamics of instabilities and of transformations
to other phases can have in high-T, materials.
We will propose a simple microscopic model which
incorporates the existence of more than one state
locally, and we will consider the effects of dynamic
Quctuation between these local states. This situa-
tion should be contrasted with the model of Phillips
et al. ,' ' ' in which the coexisting phases are
treated as static. This present model of dynamic
fluctuations is used to discuss (i) lattice proper-
ties such as anharmonicity, heat capacity, and
modifications of phonon frequencies, (ii) the re-
lationship of instabilities to high values of T„and
(iii) the structural transformations which often in-
hibit' ' high values of T,.

II. MODEL

The model which we propose for instabilities in
high-T, materials is based on the idea that the
local ground-state configuration (ionic and elec-
tronic) is separated from one or more other con-
figurations by a small amount of energy and by a
potential barrier. We shall call excitations be-
tween these local states "local structural excita-
tions" (LSEs). Transitions between these states
can be caused by electrons or by phonons. "
LSEs have important effects on the electron and
phonon properties if their excitation energy and
the barrier between their states are sufficiently
small.

We propose that there are an appreciable number
of LSEs with small excitation energies and small
barriers in high-T, materials which have structur-
al instabilities. These materials invariably ex-
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hibit more than one phase as a function
of'~" "'~"temperature, pressure, or composi-
tion; examples include the cubic and tetragonal
phases in the A-15's and the TI, TII, and cubic
phases in the alkali tungsten bronzes. '~" Ex-
perimentally, these materials are characterized
by defects such as vacancies, ""impurities, ' dis-
order, ' and/or nonstoichiometry. "'0 Dynamic
fluctuations (transitions) between these local
states (LSEs) will be important physically if they
can be excited easily. The fact that several phases
often exist as a function of (relatively small
changes in) temperature and other parameters im-
plies that the states are separated by a small en-
ergy difference. In addition defects and nonstoi-
chiometry introduce randomness into the local en-
ergy difference between states. Another way of
inferring the existence of an appreciable number
of physically important LSEs is that these materi-
als often are characterized by the coexistence of
more than one phase' ""6 which is nucleated
by the defects. These defects perturb the unstable
structure so as to favor the local nucleation of the
second phase at preferred sites. This, however,
should be considered as one extreme possibility.
At other sites the defect perturbations may not be
so drastic as to favor nucleation of the second
phase, but yet they may randomly modify the local
potential barrier and the energy separation be-
tween the phases. Further, the materials with
larger degrees of instability correspond to cases
with larger numbers of LSEs having fast dynamic
fluctuations. Anticipating the result of Sec. III A
in which we demonstrate a positive correlation
between the enhancement of T, and an effective in-
teraction between LSEs and the lattice, we can al-
ready see the physical origin of Matthias's empiri-
cal rule. '~

Some of these local states of the LSEs corre-
spond to phases which are realized macroscopical-
ly. Examples include some of the A-15's which
have a macroscopic cubic to tetragonal phase
transformation for temperatures in the neighbor-
hood of T,. Small volumes of one phase can be
maintained within the other by pinning to defects
and by strain fields; such a situation corresponds
physically to the static model of the A-15's pro-
posed by Phillips. ' '" A second example is a film
sputtered near its phase transition temperature
(e.g. , Re-Mo alloy" at T-1250 K); in this case the
two phases corresponding to the phase transforma-
tion are "frozen in" and can be maintained meta-
stably to low T. It should be noted that the local
phases may not always correspond to phases realized
macroscopically but rather may be occupied only
locally. In addition, LSEs occur in high-T, ma-
terials which remain in a single macroscopic

phase but which are locally unstable with respect
to another ("ghost") phase. This local ghost phase
may never be physically realized to reveal itself,
but it has important physical effects due to the
local instability. The local ghost phase forms the
upper state of the LSE. Examples of systems in
which local ghost phases can be identified include
the superconducting alkali tungsten bronzes,
e.g. , the tetragonal I (TI) structure Na,WO, with
x in the range of 0.2 &x &0.5. As x is decreased
below 0.2 there is a structural transformation
from the TI to the semiconducting tetragonal II
phase. ' The sodium ions occupy interstitial
sites"'" in the pentagonal and square tunnels of
the TI structure. The site occupancy is random,
and there is some possible clustering of Na ions
into microscopic inhomogeneities. Hence the Na
occupancy will deviate from the uniform random
occupancy described by the x value. This implies
that for any average value x, in the TI phase,
there are microscopic regions where the local
density x is smaller than the average value xo and
close to that corresponding to the TI-TII phase
boundary, and thus there is local TI- TII instabili-
ty and physically meaningful LSE. The local TII
structures then serve as the ghost phases for the
LSEs in Na„WO, .

The interaction between LSEs and phonons in
structurally unstable materials has important ef-
fects on the phonon spectrum. These effects (i)
are seen in the superconducting properties and (ii)
are seen in other thermal properties which pro-
vide an independent test of the present model. To
illustrate these effects we shall consider the mean
squared atomic displacement (u',.) and the heat ca-
pacity in the present model. Derivations of cer-
tain formal results for two model LSE-phonon
Hamiltonians are given briefly in the Appendix.

III. CONSEQUENCES OF THE MODEL

A. Lattice and electronic properties

We consider a distribution of isolated LSEs '
interacting with the harmonic phonons by means of

If = g Sp,*+P gg„o~(a'; +a; )e"6, (1)
f kag

where a-„ is the annihilation operator for aphonon of
wave vector k and polarization a whose energy is
co-k . For simplicity the LSEs are taken to have
only two levels each which are separated by the
energies 4~ and which are spanned by the Pauli
spin operators o&. The second term represents
transitions between the LSE states caused by pho-
nons. The degree of instability of the LSE is mea-
sured by 4& and g„& with greater instability as-
sociated with smaller 4,. and larger g-„& (smaller
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barriers). The coupling in Eq. (1) is the simplest
form of coupling between the phonons and the LSEs
and represents much of the essential physics.
The value of the coupling parameter gk &

can be
estimated from experiment, e.g. , ultrasonic at-
tenuation. 2'

The thermodynamic properties of the interacting
LSE-phonon system described in Eq. (1) are ob-
tained by using a diagrammatic approach to obtain
the free energy in powers of g. (See Appendix
for further details. } To order g' the free energy
is P '=k~T.

y (2) g„[(e85~+1)-1(egtu&~ 1)-1)P 2

N

&( [((g c, }-&(e ia e f)

+ (~- + & ) ' (e "" ' —1)] . (2)

The mean-squared atomic displacement can be
written

Here (u',},is its value in the harmomc approxima-
tion and E- is a contribution to the internal en-

kaf
ergy of the phonon system (to order g') which is
given by &~ =Z&f Ej~. The total internal energy
is given by E'2'=8(pE"'/sp), and it has contribu-
tions from the phonon system, from the LSE system,
and from the LSE-phonon interaction energy. 2 Phy-
sically the second term in Eq. (3}can be thoughtof
as resulting from an increase in the occupation of
the ka phonon modes and to changes in their
zero point energies due to the LSE-phonon inter-
action. The main contributions to the second term
in Eq. (2) come from large k; for relatively small

a&, the second term in Eq. (2) can then be ex-
panded, which gives

sm

I
i
+(

G),, (n )
f

(4)

teristics [e.g. , its temperature (in)dependence]
which are quite different from that resulting from
phonon-phonon interactions. The large value of
(u', }induced by the LSE-phonon interaction is con-
sistent with recent experimental observations on

PbMo, S„"and the large induced anharmonicity is
consistent with results for the A-15's such as
V,Si, ' and other high-T, materials. In each case
the temperature dependence of the anharmonicity
(u', ) is quite unusual and cannot be explained by
ordinary phonon-phonon interactions. "'

The heat capacity gives fairly direct information
about both the LSEs and about their effects on the
phonon system. For the interacting LSE-phonon
system it is calculated in the usual way from the
internal energy which is obtained from Eq. (2).
The total heat capacity has the form C = C~ + CP '

+C~~, where C~ is the contribution of the LSE
system, and CP ' is the usual noninteracting pho-
non contribution (e.g. , the Debye contribution).
For many systems C~ will be a substantial con-
tribution, and it gives quite directly important in-
formation about the distribution in energy of the
LSE splittings. C~) arises from (i) the change in

energy of the phonon system and also from
(ii) the interaction energy of the LSE-phonon
system. %e have evaluated C~~ for low tempera-
tures, which gives

4/3
3g /364/32{)7 8LP V

(5a)

for k~T «(d~ and k~T «4, , and

4/3
3g/ 64/ 132

V

(5b)

Here the phonon spectrum has been treated in the
Debye approximation (&u; =vk, g', ,. =G'k, and ~v
is the Debye energy) and the lowest-order term in
b,&j&uv has been retained. The first term in Eq.
(4) is the leading contribution, and it arises from
modifications of the zero point energy.

Materials with considerable local instability
have appreciable values of g; ~, and for them (u', )
differs considerably from the harmonic value.
These large value of (u', }imply that an effective
anharmonicity has been induced by the phone. .—
LSE interaction. This anharmonicity has charac-

for k~T «(dD and 4& «A~T. In both cases a Debye
spectrum for the phonons was used (&o;, =vk and
g- =G'k). Note here in particular that the Cz~
is positive or negative depending on whether 4&
»k~T or 4z «k~T. Thus, the contributions to the
heat capacitv from C~P' and those from C~ in the
interac'-. i', ', ,'-'I='. -phonon sy t' m are consistent with
the existence of "anomalous" contributions to the
heat capacity (both negative and positive} seen in
high-T, materials such as the A-15's."

The LSE-phonon interaction may contain higher-
order terms in the phonon operators than that in
Eq. (1), and these terms have interesting physical
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effects, including the softening of phonon frequen-
cies.

The form of the LSE-phonon interaction in Eq.
(1) is appropriate for cases in which the rate of
the dynamic fluctuations between the states of the
LSE is slow compared to the phonon frequencies.
It is quite conceivable that there are cases in
which the transition rate between the LSE states
is larger or comparable to the phonon frequency.
Then the phonon is strongly coupled to the LSEs,
and higher-order terms such as

e
Q '

go ofg) ojo jg» Q~og k j
7foj

(6)

may be important. Higher-order terms involving
more than two phonon operators are not considered
here because their effects (such as anharmonicity
and phonon softening) are already given by the
linear coupling of Eq. (1) or the bilinear form in

Eq. (6). The contribution of the interaction in

Eq. (6) to (u',) is expressed by Eq. (3) with E;i ~~

given by (see Appendix for details)

&f /{&", (k~g, /N)[tanh(2p&~)/&~]] '=[2(e "'~ —1) ' —(e & 1)-'- (e & 1)-']

x[p&p '~(e "~ —1) ']+[(e "~ —1}' —(e & —1) ']
' -1) ']+[(e "-)' —(e' ~-I) ']

x[(e "~ ~ —1) '- (e &~ 1) ']

For moderate temperatures the largest contributions to (u', }are given by large k, and for small z, we

expand in powers of 4,/&u„which gives

&p„= (&«/2H)(k;„/k &e). '[c soh'( p~a, )/cosh(pa, )][cosh(-,'pro; )/sinh'(2pra. „)]. (6)

Note that in this case at low temperatures values of k for which (d"„»k~T give exponentially small contri-
butions to (zP), and for ksT «vn the acoustic modes give a contribution to (u,) which is proportional to
(k r/(o }'.
The effect of the interaction in Eq. (6) on phonon frequencies can be especially interesting. This interac-

tion gives a phonon self-energy contribution to order k; ~, which is (see Appendix for details)

Z-„(i&a„)=-—g k»tanh(2pa, .)([(e "& —1) ' —(e & —1) '](&u-„—i&a —4,.) '
j

Wraith this self-energy the phonon Green's function
has poles at &~+ 4j. Higher-order terms in h.„j
give poles at (d, ~n4j. These poles can be inter-
preted as modulations of the phonon frequency by
the LSE, and they can lead to dramatic and novel
phonon frequency or force constant changes.

Now consider the relevance of these results to
the PdH„system. Here the relatively small heat
of formation" and the small mass of the proton
may give rise to LSEs of at least partly electronic
character which have large LSE interactions with
the optic modes and which also possibly have rap-
idly Quctuating low-energy LSE modes. From the
above results these factors all imply a large an-
harmonicity and phonon frequency anomaly in the
optic mode which involves the proton motion. Let
MD and M~d be the atomic masses of deuterium
and palladium and (uP} be the second moment of
the phonon frequencies. Since the ratio Mn/Mz, ~
is small, Pd vibrates in essentially acoustic
modes, and D vibrates in essentially optic modes.
It was deduced" from experiment that Mo(&o')D
= —', Mv~(&o')~, contrary to the expectation that they
should be roughly equal as in typical binary com-

pounds. This result however is consistent with
the novel type of "softening" of the optic-phonon
frequency in the present model given in Eq. (9);
the interaction between the optic phonon and the
LSEs may be particularly large due to the small
D mass and to the sensitivity of the local electronic
structure to the D position.

The optic phonon "softening" mechanism dis-
cussed above is also consistent with the important
and unusual difference observed between the Pd-H
and Pd-D force constants. The force constants k,
in terms of the optic-mode frequencies are
~, = (k, /M, }' ', i = H, D. From the above resuits
(with n= 1) we have &u, = ~I'i- & where ~,"is the
frequency in the absence of the phonon-LSE inter-
action, and 4 is taken to be the same for H and D
on the grounds that the electronic structure should
not depend much on the mass difference between
H and D. Then, (ke/kn) = 2 [(~» —&)/(~z —&)]'.
Because &uieoi/&o~eoi= v 2, we have that k11/kn& 1 for
nonzero 4, which is consistent with experiment.

Now consider the relevance of the above results
to the effective electron-electron attraction. The
anharmonicity and softening of the force constant
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induced by the LSEs leads to larger electron-pho-
non interaction and hence to an enhancement in
the superconducting transition temperature in T,.
In addition, electrons can also scatter from the
LSEs with an interaction of the form
Z», V», C~~C~o". Such an electron-LSE interaction
will be also mediate an effective electron-electron
attraction in addition to that caused by electron-
phonon interaction, and T, can thus be further en-
hanced. It is interesting to point out that such an
electron-LSE interaction has recently been ob-
served experimentally in amorphous metal alloys. '

An illuminating example of the enhancement of
T, by LSEs and their interactions can be found in
the alkali tungsten bronzes introduced earlier in
Sec. II. Shanks" has recently observed the de-
pendence of T, of TI-Na„WO, on x for values of x
from 0.2 to 0.4 and found that T, increases rapidly
as the TI-TII structural phase boundary at x=0.2 is
approached. On the other hand, experimental mea-
surements of both the volume spin susceptibili-
ty ' ' ' and specific heat indicate a linear de-
pendence of the density of states N(0} at the Fermi
energy E~ onx, for the cubic and TI alkali tung-
sten bronzes including the Na„WO, . The observed
nearly exponential increase in T, as x approaches
0.2 is extremely puzzling in view of the fact that
N(0) decreases linearly as x decreases. This
behavior, moreover, is not unique to Na„WO, .
The same phenomenon was discovered in the TI
phase of K„W03,"where as x is decreased to ap-
proach the x = 0.33 boundary which separates the
TI phase (x &0.33) from the hexagonal» phase (x
&0.33); T, again increases rapidly. In our present
model, recalling from Sec. II the discussion which
indicated that the local TI- TII instabilities are
due to alkali ion occupancy deviations from the
uniform random occupancy x, we note that as x
approaches x,(=0.2 for Na„WO, ), these deviations
become more significant thereby increasing both
the number of LSEs and their interactions with
phonons and electrons; and in the present model
this gives a rapidly increasing T„consistent with
what was observed experimentally. "

B. Structural transformations and superconductivity

We now consider the way in which structural
transformations can limit the enhancement of T,
which is due to structural instabilities. In the
present model the degree of local instability in-
creases as the energy splitting between the LSE
states and the barrier between them decreases.
As discussed above, when the degree of local
instability increases, T, is enhanced both due to
enhanced phonon pairing of electrons and also due
to electron pairing directly by LSEs. For suffi-
ciently large local instability, however, the nearly

H=gko' +@go' Q
q

(10)

which is essentially that in Eg. (1). In a mean-
field-like approximation, u is taken to be its ther-
mal average (u}, and the free energy is E = C(u)'

ksT In[-2cosh(A/2keT)], where A= (~'+ g (tM)')'~',

and the first term is the elastic energy of the pho-
non displacement. The free energy is minimized
with respect to (u), which gives

2CA/g = ~ tanh(A/2ksT) . (11)

(u) is nonzero for T &T~, where

2Ca/g =-, tanh(n/2ksT~) . (12)

At T decreases below T~ the total splitting A(T)
increases as is shown in Fig. 1.

For the dependence of T, on the total splitting
A we consider first the simple form

Ae-(1+1)/ x (13a}

&C, (Ap} -""

I

I

I

I

AI (hP}

I

Tci(Ap}

92 Ap g/2C gt l2C

FIG. l. Enhanced superconducting transition tempera-
ture T ~ and lattice distortion A as given byEqs. (13) and
(ll), respectively. A&(T) gives the lattice distortion
for 6= and g=g&, the second dashed curve corres-
ponds a value of g&g&. T, (A=A) gives T, as a function
of 6 inthe absence of lattice distortion, and T, (6) gives
T, as a function of 6 in the presence of lattice distor-
tion.

degenerate LSE levels can undergo at low tempera-
ture a pseudo Jahn- Teller-like transformation'4
accompanied by a local lattice (structural) distor-
tion. ~ This distortion splits the LSE states thus
increasing the local stability and removing the as-
sociated enhancement of T,.

We now consider in some detail the relationship
between the enhanced T, and local instabilities and
transformations by using the LSE model. The form
of the dependence of T, on local instabilities is
not known in detail. We shall discuss several
somewhat arbitrary but physically plausible forms
which are adequate to bring out the essential fea-
tures. For the c oupling between the local (har-
monic) phonon displacement u and a particular
LSE we take the simple form
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where

x g"/A, (13b)

and g' is a constant. Such a form can be motivated

by electron pairing via the LSE. The form of T,
in the absence of any lattice distortion is shown by
T, (A= A) in Fig. 1. To determine T, in the pres-
ence of lattice distortion Eqs. (11) and (13) must
be solved self-consistently in such a way that
A(T) in each is evaluated at T = T, . This solution
is given by the intersection of A(T) and T, (A) in

Fig. 1, and the resulting T, in the presence of
lattice distortion is also shown there as a function
of 4.

We now briefly mention results similar to those
above for another plausible form of the couplings
between LSEs and electrons and phonons. The
case of g=Ke " ' and X=gme ~ c/A in Eq. (13),
which is motivated by the dependence of these cou-
plings on the LSE barrier, has been solved in de-
tail, and the results have all the same general fea-
tures as those shown in Fig. 1 except that there is
now a weak increase of T,(s) for decreasing 6
after lattice distortion.

We now discuss the physical implications of the
results obtained above and shown in Fig. 1. Two
different situations can occur: (i) The sample
with instability characterized by b,o and g, under-
goes a pseudo Jahn- Teller distortion at a tempera-
ture T„(+}higher than the enhanced T, corre-
sponding to 6,. As T decreases below T~, (A,) the
lattice distortion increases, and the LSE stability
(measured by A) increases, and the maximum at-
tainable superconducting transition temperature
is T„(AO}. For T below T„(Q) the lattice distor-
tion no longer affects the attainable T, . (ii) On the
other hand a sample with instability characterized
by 4, and someg & g, may not undergo a pseudo
Jahn-Teller distortion until T falls below the T, (d)
curve. Then the maximum attainable supercon-
ducting transition temperature is T, (Ao), and the
distortion that occurs at lower temperature will
have no effect on the attainable enhanced super-
conducting transition temperature T, (A ).

A nice metallurgical example that illustrates
cases (i) and (ii) is the sputtering of materials
with structural instabilities at elevated tempera-
tures. Examples are'"" Nb, Qe, and" the Mo-Re
alloys. Sputtering enables unstable local structures
to be "frozen in" and maintained at low tempera-
tures (i.e., phonon distortion is not allowed to de-
velop). The instabilities (A ) which occur at high
temperature are thereby retained at low tempera-
tures, and the LSEs give an enhanced T, (60}cor-
responding to case (ii). If, on the other hand, the
sample is prepared under ordinary metallurgical
conditions, these instabilities will not be frozen

—((g}e-&'+»~"
C

X = (K/((o}')e "I'
(14a}

(14b)

where (u&) is a phonon frequency, which is shown
in Fig. 2. In this case LSE enhanced superconduc-
tivity can be realized only in regions I and III
where T, (b) ~ T~ (a) The su. perconducting transi-
tion temperature T, can be either larger than T„
or less than T,. In this simple model there is a
forbidden temperature region T, & T» T, in which
superconductivity does not occur. If the material
is originally in region I but close to 4, such that
external modifications such as compression, cold

05

I

I

I

I I

1.0
I

1.5

FIG. 2. Lattice distortion temperature T~ and the en-
hanced superconducting transition temperature T, vs
instability parameter 6 for a choice of couplings (see
text) which gives two intersections between these curves.
The example shown here is given by Eqs. (11) and (14)
with parameter values g /4C = 1.0; K/((d ) =1.0, (co)
= 4.43, and a = 1.87.

in, and lattice distortions will have set in at high

temperatures. Thus as T decreases from these
high values the effective splitting increases, and

g~ &
decreases. This stabilizes the local struc-

tural phases against fluctuation to the higher-ener-

gy state and makes the LSEs ineffective in en-
hancing T, . This corresponds to case (i) and to a
lower value of T, .

An example given by Matthias' of this behavior can
be found in the compounds Nb, Si and Zr, Sb. These
compounds have not yet been synthesized in the
9-8' form. Instead they crystallize in a tetragonal
form with c/a=2, and they are no longer super-
conducting about 1 K. The relatively large distor-
tions of the cubic structure developed in these
compounds to give c/a= 2 is expected in thepres-
ent model to drastically lower T,.

Different dependences of T, in Eq. (13) on A can
result in rather different features than those dis-
cussed above for Fig. 1. For example, the curves
for T, (6) and T, (6) could intersect at more than
one ~. This is the case for
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working, etc. , brings 6, from region I to region
II, there will be discontinuous drop in the T, value
of at least T, —T, . This discontinuous drop in the
value of T, seems to be consistent with some of
the observations of McCarthy4 "in which residual
shear was introduced into the crystals of the C12,
C14, C15, andA12 structures.

IV. CONCLUDING REMARKS

A simple microscopic model of local instabilities
in high-T, materials which involves the existence
of more than one local state has been proposed;
the model has been motivated by considering such
local phases i.n several specific materials. The
effects of dynamic fluctuations between these
local states on the phonon and electron properties
have been considered. Effects on the phonon spec-
trum include large anharmonicity, enhanced heat
capacity, phonon frequency softening, and an en-
hanc ed electron-phonon interaction. The increased
effective electron-electron attraction due to local
structural fluctuations can lead to an enhanced
superconducting T,. Finally, the model has been
used to discuss the structural transformations
which often limit the attainable values of T,.
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APPENDIX

We give here brief derivations of the formal re-
sults for the interacting "spin"-phonon systems
of Eqs. (1) and (6) which were discussed in the
text. In Sec. A1 we give the diagrammatic formal-
ism used and give some thermodynamic results
for the system in Eq. (1); these results have been
obtained previously by Sheard and Toombs. " In
Sec. A2 we give thermodynamic results and the
phonon self-energy for a system with interaction
given by Eq. (6); these results have not been de-
rived previously. We give here brief self-con-
tained derivations for both systems; the reader
is referred to Ref. 26 for fuller details of the
method.

iak )H,~= P g~ &a&(a -„+a-„)e
ke)

(Alc)

Here o& are the Pauli spin operators for "spins"
with splittings ~&, ak is the annihilation operator for
phonons of wave vector k and polarization n, and

8-k& is a phase factor.
A reliable method for obtaining the thermody-

namic quantities is a diagrammatic expansion for
the free energy; this can be done by using the
drone-fermion representation" for o for which
the Wick theorem is then available:

H"'=Q S,.cd, +Q (o-„a'; a;,
ka

(A2a)

$8) ~H, = Q g„„(c~-—c,)y, (a "„.+a"„)e
keg

(A2b)

Green's functions (propagators) are defined in the
usual way

C,( „)= &T[',( ),( )][,'(0),(0)]),„
@q(i(u,) = &Ty;(r)y~(0))(„,

.)=&T[ '=,.( )+;.( )][ -„.(0)+;.(0)]),„.
Here T is the Wick v ordering operator, ( ) is the
ensemble average, and the Fourier components
are indicated by &o„=nv/6, &u =mme, where n(m)
are odd (even) integers. The unperturbed propaga-
tors (corresponding to H"') are illustrated in
Fig. 3(a), and the interaction HI is shown in Fig.
3(b).

({0) (0)

1 g20') = c.c) —p,

pc~ = 2((T~+ io)) = c'~Q ),

where the c's are Fermi operators which anticom-
mute with the ft)'s for which p,p&+f&$, =2&,

&
and

fj Then H =H" ' +HI, where

1. Linear phonon-spin interaction

The interacting spin-phonon system of Eq. (1) in
the text can be written

p(0)

(a)

(A1)

(Ala) tb) (c)

Hp= Q ~~~a~~al~
w

ka

(A lb)

FIG. 3. Diagrammatic representations for the LSE-
phonon Hamiltonian in Eq. (1) and in Eq. (A1): (a)
unperturbed propagators; (b) vertex; and (c) lowest-or-
der correction to the free energy.
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(a)

k, lCU

(b)
& c!"(f~. ~~„) . (A3)

[c)
FIG. 4. Diagrammatic representations for the LSE-

phonon Hamiltonian in Eq. (6) and in Eq. (Alc'): (a)
vertex; (b} lowest-order correction to the free energy;
and (c) lowest-order correction to the phonon self-en-
ergy.

Thermodynamic quantities are obtained from the
free energy which is given by the usual linked clus-
ter expansion. " To second order ing, F"'
=-ksT:-'2' where "+' is shown in Fig. 3(c) and is

Evaluating the frequency sums gives the result in
Eq. (2) in the text.

The internal energy is given by E+' = &(i3F"'/Sg),
and it has contributions from the modifications of
spin energy, modifications of the phonon energy,
and from the spin-phonon interaction energy. For
example, by differentiating F"' appropriately with
respect to P in the propagator D"' one obtains the
contribution from the phonon system (which is a
contribution to Ql~ al )) and is

E,"~' =—P a-„g~ &((&o~ —&&) '(e &+1) ' + (ur„+ a&) '(e ~~&+ 1) ' —4a&&u-„(&u-„g')-'
Pre )

x tanh(& ph&)(e~ia —1) '- 2a&(&o~, —a2&)
' tanh(&pc&)[pe~" i~(e~"ie 1)-']j (A4)

The results summarized here in Sec. A1 are dis-
cussed in more detail in Ref. 25.

2. Nonlinear phonon-spin interaction

We now consider both the thermodynamics and
the phonon self-energy for the spin-phonon system
with interaction given in Eq. (6) in the text; the
Hamiltonian is given by Eqs. (Ala), (Alb), and

(Alc')

By using the above formalism, we obtain for the
interaction term

(A2b')

which is shown diagrammatically in Fig. 4(a}.
The contribution to the free energy to order h'

is shown in Fig. 4(b} and is given by E"'
=-k~T"'2', where

(A5)

Z, (iv) ) =—Q h', ~g
' Q G,"'(i(u )C,"'(Ao„)

ml|L

(A7)x C!"(isa —i~ i&o ). -
1

For simplicity the phonon polarization index has
been dropped, and an average interaction h» has
been used. When the frequency sums are evalu-
ated this gives the result in Eq. (9) in the text.

The results obtained in (A2) and given in Eqs.
(7) and (9) in the text have not been derived pre-
viously.

For convenience the new propagator G„(f~„)
= (Ta.„(v)a-„(0)),„ is introduced here and is shown
by the line with an arrow in Fig. 4(b). The inter
nal energy corresponding to the phonon system is
given by differentiating F"' appropriately with
respect to g in G"' which after summing over fre-
quencies gives the result in Eq. (7) in the text.

In calculating the phonon self-energy a multiple
scattering approach for the phonon is required.
We shall assume that the spins are distributed
randomly in space and following Langer" calculate
an ensemble averaged Green's function over the
random spin distributions. Retaining only the low-
est-order term in h, we obtain

G;(i(o ) =([G;"'(i(u )] ' —Z, (i~ }]', (A6)

where the proper self-energy Z, (ie ) is shown in
Fig. 4(c) and is given by
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