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Properties of the electron-hole liquid beyond the local density approximation
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An exact evaluation is given in the high-density limit of the first gradient coefficient which enters the

exchange plus correlation energy in the Hohenberg-Kohn-Sham formalism for an inhomogeneous two-

component (electron-hole) system. Numerical results are given for isotropic electron and hole bands for a

range of values of the electron-hole mass and density ratios. An application is made to Ge under [111]strain

and the surface energy is calculated in a simple model.

I. INTRODUCTION

The consideration of the electron-hole liquid
(EHL) in semiconductors such as Ge and Si has
been a subject of much recent interest. ' " Al-
though most of the initial works involved the study
of EHL in its uniform state, more recently a great
effort has gone into extension of EHL to its non-
uniform structure. The motivation of studying the
inhomogeneous EHL is largely due to the fact that
the initial condensation is into finite droplets.
Thus the understanding of this transition automati-
cally entails a study of its inhomogeneous charac-
ter with particular interest to its surface proper-
ties (e.g. , surface energies or surface tension).

To study such a system, the application of the
functional-density formalism"'" generalized to
multicomponent systems is particularly useful.
Such a generalization is straightforward and rigo-
rous. The results are simply that the energy of
such a two-component EHL is now a unique func-
tional of the electron density n, (r) and hole density
n, (r) represented by E[n,(r), n, (r) ] (the subscripts
1 and 2 will correspond to electrons and holes, re-
spectively). Second, E[n,(r), n, (r)] reaches its
minimum when the densities n, (r) and n, (r) corre-
spond to those actually included by applied external
potentials V,(r) and V,(r) (V, and V, couple to the
electrons and holes, respectively).

We can next decompose E[n,(r), n,(r)] into the
usual electrostatic contribution

sity n, (r) and n, (r) given by T,[n,(r), n, (r)] and an
exchange and correlation term E"'[n„(r),n, (r )].
Thus E[n,(r ),n, (r)] is given by

E[n,(r), n, (r)]=Ez[n, (r), n, (r )]

+ T, [n,( r ),n, (r )]+E"'[n,(r ),n, (r)] .

(2)

In Eq. (1), Z is the static ba, ckground dielectric
constant. We note that Eqs. (1) and (2) can include
all band structure effects subject to the approxima-
tion that transitions from electron to hole bands
are forbidden. Since, for example, in Ge, the re-
combination times are of the order of 5 x 10~ sec
(because of the indirect gap), such a description is
adequate when the system is investigated experi-
mentally for times up to approximately a micro-
second.

Although the kinetic energy T,[n,(r), n,(r)] can
be approximated a.s an explicit functional of n, (r)
and' n,(r) (see also Sec. IV), Kohn and Sham"
have formulated a scheme in which T,[n,(r ), n,(r ) ]
is written exactly in terms of auxiliary wave func-
tions g(r ):

E„[n,(r ), n,(r ) ]

e' d-d-, n, r -n2r nlr' -n. r'
l r —r'I

+ dr V, rn, r+V, rn, r

the kinetic energy of a noninteracting EHL of den-

where N, is the number of electrons; N, is the
number of holes and we have specialized to an
isotropic EHL. Although T,[n,(r), n2(r)] is now

treated exactly, the price is a much more elabo-
rate procedure for calculating the density and en-
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ergy. It is given through the self-consistent so1u-
tion of the following equations: n, (F) = g y,'*(F)q&(F),

~.(r ) = g 0',*(F)P.'(F)
(6)

"'(,( ),~.(~)))(i(F)=~i()i( ) (4)

+ l'(, (F),~.(~)j)()i(~)=~i()i( ), (5)

Q@xc
v", '[n, (r ), n, (F) ]=&, fn, (r ), n, (r ) ],

&na r)
QExc

U,*'[n,(F),n, (F) ]=
)

[n,(F),n, (F)].

In this work, our primary interest is to further
improve the understanding of the structure of
E"'[n,(F),n,(r )]. A very appealing approximation
for E"' is a gradient expansion in n, (r ) and n, (F),
l.e. ~

F,"'[n,(F),n (r) J= dr (A"'[n (r), n (F)]+ B,";[n,(r), n (r)]f Vn, (r)['

+B," [n2,(r), n, (r)][Un, (r) ['+B»[Vn,(r}][vn,(r)]+0(fvni')j.

Considerable effort has gone into the study of"
A"'[n, (r), n,(r)] for the uniform EHL. For the
nonuniform EHI, , the gradient corrections have
been found to be important""'" as in the case of
metallic surface energy calculations. "" Although
such corrections have been included within ex-
change alone' or using the single-component calcu-
lation of Ma and Brueckner" (MB), these proce-
dures are inadequate (see Secs. II-IV). Our task,
in this work, is to treat these gradient contribu-
tions in a much more fundamental way (corre-
sponding to the attention given to A.*').

In Sec. II we give a general formulation for the
relation of B,",', 82",, and 8,", to the isotropic EHL
response functions. In Sec. III we evaluate these
quantities in the high-density limit (HDL) for the
case of isotropic electron hole bands with arbi-
trary ratios of electron-hole masses and densi-
ties. Since this calculation is restricted to a two-
component system, in Sec. IV we apply our results
to the case of Ge under a [111]strain.

II. FORMULATION

Consider a two-component system of isotropic
electron and hole bands in the absence of any ex-
ternal fields. The Hamiltonian for this sytem is
given by

j.~g2
1 g-1 2 g=l

1 e' 1 e'
"2m~= - -r ~i- -i

I rg rg'I

Let us next apply weak external fields V,(r, f)
and V,(r, f). These external fields will introduce
a perturbation on H, given by

dr n,(r) V,(r, f), (11)
/=1

where n, (r) and R,(F) are the density operators
corresponding to the electrons and holes, respec-
tively.

From linear response, the induced density dis-
tributions of both components are given by

2

n (r, t)=-—Q dr'
8=1

d t' (0
~
[n (r, f), n~( r ', f')]

~

0)V~(r ', f') . (12)

The commutator in Eq. (12) is to be evaluated
with the unperturbed ground state

~
0).

The Fourier transform of Eq. (12) yields

dt(0 j[n (-k, f), n (k, 0)]
~
0), (14)

with 0 being the volume of the system and

2

n„(k) = -QX.,(k)V,(k), Pi (k, t)= dr e '" '~n (r, f) .

where » Eq. (13},we have specialized to static external
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&0 I
a Im&&m lrf, I 0&

g g (16)

potentials.
%e next write the perturbed ground-state energy

to second order in HI, i.e. ,

where Im) are the exact eigenstates of H, a.nd E„
the corresponding exact eigenvalues.

Restricting our external potentials to a single
Fourier component and using Eq. (11), we can re-
write Eq. (16) as

z -
I

„- lgr &0lng(-f}ln&&ning(f) Io&
I

k Ig~ ln' ")Im&&min. (k) lo)

„- &&RI',i-gi1»OI'. ig&!I»

0 l

Straightforward spectral decomposition of X 8(k) in Eq. (14) allows us to write Eq. (17) as

~@k}= —l I

p' (@I'x. «}—' I p'(f) I'x„(k) —
I v„(f)v,(f) I x„(k) .

(17)

(18)

To relate hE"'+ n, T, in Eq. (2) to Eq. (18), we make use of Eq. (13) and subtract from Eq. (18) the elec-
trostatic contribution of Eq. (1}.

The result is

hE"'(f ) + &T,(k) =([Qn,(k)] X»'(f) + [n,(k )] 'X„(k ) —2n, (f)n, (k)X„(f))/

LX„(f)XQQ(k) [Xgg(f)]']' —(e'/K)(2gi/f') [n,(f) —n,(f)]'. (19)

Our next task is to convert the y's in terms of
the irreducible screening functionsgi»(f), gi»(k),
and w»(k) [see Fig. 1(a)]. Taking careful consid-
eration of the appropriate signs of the electron-
hole interactions we get [see Figs. 1(b)-1(d)]

X»- [ gi»(f)+(eg/K)(4w/fg)L(f)]/e(k), (20)

X, = [—w„(f)+(eg/K)(4gi/kg)h(f)]/Q(f), (21)

X„=[-gi„(f)+ (e'/K)(4gi/f ')S(f)]/e(f ), (22)

where

1 ~ gggleig~ 1

+ ~ ~ ~ «

I»II i
$9 LIMNI 9~95 9 SgggP Rg ~

2~ 5 !ILIA II,

~ QS

SISS�!9

5
~e$$$ S

1

2 --- 1
5 15!5515
5 15!5515

''g

2~5 i gme!5~ 1

1

+

imp QI ~
oo ~$5 5$5 5!

iR 9 QSR9!~ y $99591

Rgp I I Un !

1 —--- 1

lmgii ii)

5 5$$ $9 I R~95551 RRL I 5 ~

g(f) =v„(k)gi„(f) —[gi„(f)]',
e(f) = 1+ (eg/K)(4gi/f ')

X [—gi„(f) —gigg(f) y 2gigg(f)].

(23)

(24)

Using Eqs. (20) —(24) in Eq. (19) gives

aE"'(f) + b T,(f) =(-Q [n,(f)]'gi»(f) - 9 [ng(f)]'w»(f )

+ n, (f)n,(f)7I'„(f))/h(f ) . (25)

2

+

2 ~-:=:-:-- 2

1 ~ 2
IIIIIIII
ISI $1 5 5 IR I

1 ~ igmg g i!Ii ~
2

I Il 'jl ~ 1 1~ ' "l~ 2
+ psggg i!

1 ~mama I I

(c)

~ o ~ 2
ggp S 5 $ $ !
555RIQSS I
$$$9$51 I

IIIIII
2 ~~IIIII~
2 ~* o ~ 1

5$55$59
I I!5!I i!8~ 59$55$515~

ggggmg im ~2 — 2

III

(26)

where

To remove the contribution of AT,(f) we simply
subtract the kinetic energy of the corresponding
noninteracting EHL from Eq. (25). This is

1 [n,(f)]' 1 [n (k)]'
»l, (k) 2 grg, (k)

'

+ NIIII II

1 ~ -= =- 2 1~:iQ!l I 2 2~NMII(il
1 ~ 2 1, „, ~ 2 1 ~' '" ~ 1

+ !$55$5151~5 $55$ $ 9 s Ig !$11~

and

[f(k') f(f'+f)]-
(2w)' b g/2ng, [(f'+ k)' —k "]

dk [f(f') f(f'+f}]—
(2w)' ll'/2gn [(f'+f)' k"]

'

(27a}

FIG. 1. (a) General form of graphs for the reducible
screening function. The lowest-order terms in the de-
composition of the reducible screening functions into
irreducible screening functions for (b) )(,2(k); (c) )(»(k);
and (d) X f2(k). The dashed line represents the Coulomb
interaction which is repulsive for electron-electron and
hole-hole interactions and is attractive for electron-hole
interactions .
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where f(k) denotes the usual Fermi occupation
function.

Finally, a comparison of Eq. (9) and Eqs. (25)
and (26) gives the desired relation between B"' and
the irreducible screening functions. B"' is given
by the coefficients of the k' term in the expansion
of the following functions:

+ — = const+ B,",k'+1 -v22(k ) 1
2 n(f) vo»(k)

1 -v„(k) 1
+ = const+ B»k'+

2 n(k ) v,o,(k )

(28)

(29)

v»(k)/n(k) = const+ Bf2k'+ (30)

In Sec. III, we rigorously evaluate the high-density
limit of these irreducible screening functions and
the corresponding B11 B22 and B,", for an EHL
with isotropic bands.

(b)

III EVALUATION OF Bxc

and

v„(k) = a, ,'+ b»k'+ ~ ~ ~,

v„(k ) = a,,'+ 522k
'+ ~ ~ ~,

(31)

(32)

From Eqs. (28)-(30), it is apparent that to get
B"' B"' and B"' requires only the knowledge of
v»(k), m»(k), and v»(k) to order k'. Define
then

(c)
FIG. 2. Lowest-order irreducible graphs contributing

to g $f ( k ) in the high-density limit (HDL); (a) bare ex-
change; (b) screening of exchange graphs; and (c) pure
correlation graph not of Hartree-Fock origin.

m„(k) = a, ', + b„k'+ . ~ ~ (33)

We next observe that the equilibrium density of
the uniform EHL corresponds to an effective r,
=0.63 and 0.84 for Ge and Si, respectively. ' By
effective ~„we mean that lengths are measured
in units of the effective Bohr radius given by a*
= k'K/pe' so (a*r,)'= 3/4vn, where p. is the re
duced mass given by 1/p, = 1/m, + 1/m„and n is
the density of holes. This high effective density
implies that it is adequate to evaluate 5]1 522&

and b» in the HDL.
The terms corresponding to the HDL of m, 1 7t»,

and m» are rigorously given within the random-
phase approximation and are displayed in Figs.
(2) -(4)

Let us first focus attention on m» and rewrite
b„as

(b)

ll 11+ 11 11 P

where b» is the Lindhard contribution

bo» = m, /12v'k~, .

(34)

(35)

(For notational convenience, we set 5= 1 in the
following. ) b;," is the exchange contribution cor-
responding to Fig. 2(a) and is given by"

FIG, 3. Lowest-order irreducible graphs contributing
to )(' 22(k) in the HDL; (a) bare exchange; (b) screening of
exchange graphs; and (c) pure correlation graph not of
Hartree-Fock origin.
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1

(b)

p (p pp), e&= p'/2m„y. , = k2»/2m,

All of the above terms enter the MB analysis
except that e(p'} is now given by

E(p') = 1 +(e'/K)(4m/p") [e,'(p') + v', (p')]. (43)

The lowest-order screening functions w', (p') and
v', (p') are the electron and hole bubble graphs
given in Fig. 4(b). The difference between v', (p')
and v', (p') is simply the replacement of m, -m, and

k~, -k». It should be pointed out that although this
difference between MB and the present calculation
of b» for the EHL seems formally minor it does
add considerable complexity to the analysis.

Returning to b]y and b11 we get

8
I „=—(r~ A~ —,G,()t) ——,e5, G,()))

1 1

(44)
FIG. 4. (a) Lowest-order irreducible graphs contribut-

ing to g ~2(k) in the HDL; (b) the Lindhard screening
function; and (c) the lowest-order (random-phase approx-
imation) screened interaction.

and

3,2 1 1 8 83
(„' =—(rq Aq 2 ~, G,()) ——,

' Ey, 1,()))
1 1

(45)

b;", = —,',(e'/K) m', /v'k~, . (36)

The true task of calculating B"' is obviously the
correlation contribution b» given by Figs. 2(b) and

2(c), with the screened interaction line shown in

Figs. 4(b) and 4(c). The calculation of f)», how-

ever, follows closely that of MB with the main
exception being this interaction line. In order to
write down the result for b11 we briefly outline
the main points.

Let us define

(38)

(37)

with b'„ the first two terms in Fig. 2(b), b2» the
last term in Fig. 2(b), f),", that of Fig. 2(c) with
k =0 in the interaction line, b" the contribution f
Fi . 2

].1

xg. (c) from the k dependence of the interaction
lines. Then following the procedures of MB

1 1 8 1 84
——tr~ ~(P) 3 Go(p}+

1

Z(k„, O)m,

where A~ and A~ are the vertex functions shown in
Fig. 5. For b" we get

(; = ——,', (r, .
~

W', ())) (&(()&sr(P) —[&s)'())) ), *

8p,

(46)

where

V(p) = (e'/K)(4v/p) [e(p)] '. (47)

Thus far the analysis has followed closely that
of MB with the difference being in the form of e(p}
[Eq. (43}]. We now are forced to depart from MB
by using a form of Ward identity applicable to the
electron vertex function

where

~(p) = tr [~(p')Go(P+P'-}]

V(p') = (e'/K)(4v/p") [1/e(p') —1.],
G,(p) = [p, —e;+ p, , + i |)sgn(e& —i(, ,)] ',

t ,( )- (2).. ( ~ ),

(39)

(40)

(41)

(42)
FIG.. 5. Lowest-order correlation contributions to the

vertex functions.
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a'(p) + cV(p) =

(i.et 1 the differentiation is strictly with respect
to the electron chemical potential only). Using
Eqs. (38), (44), (45), and (48), we rewrite

Making the usual substitution, p' - 2k»q and
rotating to the imaginary axis pot - (2k'z, /m, ) qyi,
and after very lengthy analysis we g et in the HD L

e' m', 1 " H(y, P, y) 9y'+ 13y'
K v'k. , 36, y G(y, P, y) (y'+ 1)'

11 + 11 + 11 11 11

where

(49)
(54)

1 a 1
b', , = —— -tt Z(b)

2 ', G,(b) ——,ttb, ~,(b)]

( 50)

and

and

where

e2 2 1

F1 4 0 (y +1

(55)

b,",= tt, Z(b), G, ib)) .
1 8

6m, ~ 8p, ',
(51)

These can next be rewritten in terms of the func-
tions I,(p'), I,(p'), a.nd I,(p') given by MB,

G(y, P, y) = R(y) + 1/yP —y/y' tan '(y/Py),

R(y) = 1 —y tan '( 1/y),

H(y, P, y) = (r/P')(y'+ r'/P') '

(56)

(57)

(58)

b'„= ——, tr, ,(V(P') [=.'I,(P') + —,'1,(P')]]
1 1

b~» -- -(1/m, ) tr1 V(p') ,' I,(p')—

(52)
y = m, /m„P = k, /k, ,

The calculation of b2»' of Eq. (46) is even more
tedious . After a cons id erabl e amount of manipu-
lation, we get in the HDL

e Bl 1b3~1 1
11 g ~&k2 1 2F1 0

1 1
—

1 I(y, p, y) 1 I(y, p, y)
' 1 J(y, p, y)

y(y' + 1)' G(y, P, y) 2 G(y, P, y) 6 G(y, P, y) 2 G(y, P, y)J ' ( 59)

where

I(r, P, y) = (1+y') '-H(r, P, y-)

and

&(r, P, y) = -(1+ y') ' rp[H(y, p, y)]'—.

(60)

(61)

In summary, the value of b» is the sum of Eq s.
(54), (55), and (59). To evaluate b;, is now trivial.
Simple symmetry ( Fig. 3) dictates that to get b»
all we have to do is replace y - 1/y, P - 1/P, m,-m„and k» —k+2 in Eqs. (54), (55), and (59).

We now turn to b». From Fig. 4(a), we observe
that m» has no Lindhard or exchange contributions.

Let us again separate contributions to b» by

bc b3~ 1 + b3~2 (62)

where b2»' is the contribution of Fig. 4(a) with k = 0
in the interaction lines and b»' the contribution of
Fig. 4(a) from the k dependence of the interaction
lines.

Before evaluating b 12 we note that even for a
single component system, treated by MB, this
contribution was never separately evaluated but
was grouped with other terms. The form for b»'
is, however, not difficult to derive and is given
as follows:

1 e 4m 9 1
12 p' If ~I2 s t tt [ Il(p t lt Fl) + 2 I3(p t 1 t el)]2' K p 8p, 6~p g

1 e 4m 9 1
trq, —„,„[2I,(p', m„k.,-) + vI, (p', m„k~, )] .2' K p 9 p, 1 &~p j

(63)

The functions I,(p', k», m, ) and I,(p', k», m, ) are identical to those entering Eqs. (52) (53). The explicit
dependence on k» and m, must be stressed since in the second te rm k, —kF, and m, - rn 2.

Again, afte r some analysis, the H DL is given by

e' n1,' 1 P' "
H(y, y, P) (9y4+ 13y') e' m', 1 1 1

K v'k» 72 y () G(y, y, P) (y'+ 1)' K m'kF2 72 P
'

y
( 64)

b 12 can be seen to be close ly related to b» '. Some simple analysis shows that the only change is to re-
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place one of the 97/c(p)/6 p, , in Eq. (46) by &4/', (p)/8 p,„ i.e. ,

b'„"= —,', t '
p ' p . vp v'vp —~ ~P '

Using Eq. (59) with minor changes to account for 67/cx(p)/S px we get in the HDL

1 "dy 1 1 1
1

1 I(y, y, p) 1 I(y, y, p) 1 cT(y, y, p)
K 2/'k» 12. , p (y'+y'/p') (y'+1) G(y, y, p) 2 G(y, y, p) 6 G(y, y, p) 2 G(y, y, p)

(65)

In summary, b» is thus the sum of Eqs. (64) and
(66).

%e conclude this section by relating our results
for b'"+b' to B"'.

It is clear from Eqs. (64) and (66) that b» ex/-K.

Also, a„x- (e4/K') In(ex/K) with the consequence
that the HDL result (or equivalently lowest order
contributions in ex/K) given by Eqs. (28)-(30) can
be simplified to

2 [-I/3/„(k) + I/3/c»(k)] = const+ B,*;k '+ . ~ ~,

(6V)

Bxc (e2/K)Gxc /+4/3 Bxc ( e2 /K) Gxc /324 /3

and

Bxc (&2/K)GXC/(32 32 )2/3

Then

Gxc 1 [I/(3~2)4/3](Zxc 1 v)11

C2"; = 2 [1/(33/') 4/3] (Zx"2' ——,
' 3/),

and

Gxc [I /(3V2)4/3] Zxc

(77)

(78)

(79)

and

w»(k)/3/»(f)3/22(k) = const+ B»k'+. . . .

Now

and

7T 82 7T 8 8
k Ek2 K' E1 Fl Fl

2 [-I/3/22(k ) + I/4/232(k )] = const+ Bxxpc 2 4-. . . ,

(68)

(69)

(70)

This completes the first ~igoxous HDL analysis of
the gradient terms [Eq. (9)] for an isotropic two-
component EHL.

The required integrals for evaluating Z"' and the
corresponding C"' have been evaluated numerically
and the results are displayed for a range of elec-
tron-hole mass ratios y and for several ratios of
densities P in Figs. 6-8. (The P values corre-
spond to n, /nx= 1, n, /nx= 2, and n, /nx= 4. ) In Sec.
IV, we apply these results to Ge under a [111]
strain.

8 7T 8~ 82

k +Kk2 +0 K~1~2 F2 F2
(71)

We next define the dimensionless quantities Z,";,
Z2, , Z', 2 by

IV. APPLICATION TO Ge UNDER [111]STRAIN

In Ge, the electron bands near their minima are
ellipsoidal in shape and are localized at the L

bxc (e2/K)(m2/4/4k2 )Zxc

b,";= (e'/K)(m22/3/4k2~2) Z"' (72)
2.07 X )0

b;, = (ex/K)(m, mx/vckp, k~x)Z;, .

Using Eqs. (31)-(33) and (67)-(72), we get

e2/K
11 2k4 ( 11

Fl

e' KB,"2—,(Z,",','
3/)

2k~x

and

(73)

(74)

i.07XiO '
c"'

II

0.07 Xlo ~"

—0.95 X IO
0.5 1.0

y'
I.5 2.0

ex/K
12 k2 k2 12 '

Fl F2
(75)

Finally, we define the dimensionless quantities
C"„',C,",, C"„' by

FIG. 6. Calculated HDL electron-electron contribution
to the exchange and correlation gradient coefficient
(see Sec. III) as a function of electron-hole mass ratio,
p= ml/m2, for electron-hole density ratios of n~/n2=1
(top), 2 (middle), and 4 (lower).
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5XIO ~

(.XC
l2

3XIO 5"

0.5 I.O
7

I.5 2.0'

FIG. 7. Calculated HDL hole-hole contribution to the
exchange and correlation gradient coefficient (see Sec.
III) as a function of the electron-hole mass ratio, y=m&/
m2, for electron-hole density ratios of n~/n2=1. (bottom),
n&/n2

——2 (middle), and n~/n2=4 (top).

ly the electron bands). Second, a full treatment
of Ge requires our previous analysis to be gen-
eralized from the case of one-electron band and
one-hole band to that of four-electron bands and
two-hole bands. The latter problem can be
avoided by studying Ge under [ill] strain. The
application of [111]strain to Ge lifts the de-
generacy of the two-hole bands and raises the
energy of all the other ellipsoids relative to that
along the [111]direction. We thus are essentia. lly
left with a two-component EHL. As to the former
difficulty, we follow Brinkman and Rice' and take
the two bands to be isotropic with appropriately
chosen effective masses. It is worth noting that
in the calculation of A*'(n„n, ) [Eq. (9)], the effect
of incorporating the anisotropy is to enhance the
correlation effects by =20% for Ge."

The lifting of the degeneracy gives for the hole
Dlasses

m, '=4 ——(B'+ —C')'~' (81)

2.07 X IO -0&3

I.07 X 10

C"0
22

point of the zone. There are four equivalent elec-
tron ellipsoids. From cyclotron resonance stud-
ies, the transverse (m, ) and longitudinal (m, )
masses are known accurately and are m, = 0.082m
and m, = 1.58m, ' where m is the free-electron
mass.

The hole band structure consists of two bands
which are degenerate at I". Their dispersion is
given by'

~4(k) gauzy [B4$4+ C'(jPQ'+/PQ'+ Q'Qz) ]&/z (80)

where A = 13.38, B=8.48, and C= 13.15. The di-
electric constant for Ge is K= 15.36.

In order to apply our former analysis to Ge we
are immediately faced with two difficulties. First,
the energy bands are highly anisotropic (especial-

and

m "=A+(B'+—C')'~' (82)

which for Ge under strain results in m, = 0.04m
and m, = 0.130m.

To define the appropriate isotropic masses, we
recall' that for correlation contributions it is the
optical mass (m") that is appropriate while for
the kinetic energy it is the density of states mass
(m4). In terms of m, and m„ these a.re given by8

m =(m', ~)'~'and(m") '= ,'(2m, '—+m,'), respec-
tively. For Ge under [ill] strain, we then have

m,"=0.12m, m,"=0.0742m, with the reduced opti-
cal mass p, = 0.046m, while m,"=0.22m and m,"
=0.0878m (note that y=m,'%n,"=1.60).

The first calculation of the surface energy of
EHL was carried out by Sander et al. ' for Ge in a
model with four isotropic electron bands and one
isotropic hole band. Both kinetic and exchange
energies were approximated by making a gradient
expansion, i.e. , for each component,

, r]=(rgb'r{A, (r)'" C{r",.(r)]*/,.(r) ~ ~ ~ ~ ]
(82)

0.07 X io

0.95 X IO
I.O

7

(

l, 5
(84)

FIG. 8. Calculated HDL electron-hole contribution to
the exchange and correlation gradient coefficient (see
Sec. III) as a function of the electron-hole mass ratio,
y =- m &/m 2, for elec tr on hole density ratios of n &/n 2

= 1(P
=1},n~/n2=2(P =0.793}, and n~/n2=4(P =0.63).

where the constants A, B, C, and D are indepen-
dent of density but are band-structure dependent.
The correlation contributions to the energy were
neglected. In the case of total charge neutrality,
n, (r) =n,(r), the total energy functional is express-



PROPERTIES OF THE ELECTRON-HOLE LIQUID BEYOND. . . 987

ible in terms of the hole density only, which was
parametrized in the form

n(r) = n, /(e'"+ 1), (85)

where n, is the equilibrium density of the bulk
EHL and x is the distance normal to the surface.
After minimizing with respect to Q. , the surface
energy y, can be expressed in terms of n, and the
parameters in Eqs. (83) and (84) by

r, =2I)IInl"(~ (86

where $ = [x(9 —3 ln3 - v 3v) ]
' ' = 0.36247, P, is the

ground state energy per pair, and

x[ ]=Jc'.[x' [r)'~' B n[ )''~'

+ C' [vn(~..) ]'/n(r)

+ D'[Vn(r) ]'/n(r)"'], (88)

where n(r) is now the hole density and the coef-
ficients in this model are given by the following:

4' = -', (h '/2)j, „)q',

From the above discussion, the approximate
total energy functional for the locally neutral EHL
can be written

v = (C/2A —9D/5B)'i' (87)
where p.,'=m, ,'+m, ,' and q=(3a')'~',

Other calculations of the surface properties of
the EHL have followed with greater sophistica-
tion. Corrections to the anisotropy of the kinetic-
energy masses have been included. " More re-
cently, the full self-consistent solution of Eqs.
(4) and (5) has been carried out for Ge. The upshot is
that the surface energy may be adequately treated
via a gradient expansion of the kinetic energy.
However, those properties which depend sensi-
tively on the energy (such as surface density pro-
file a.nd electrostatic dipole layer) must be calcu-
lated in the more complete formalism of Kohn and
Sham. " In view of the above discussion, and the
fact that our main interest at present lies in the
correct treatment of the gradient contributions,
we will follow the treatment of Sander et al. ' ex-
cept that for the ca.se of Ge under [111]strain,
we use a model with one isotropic electron band
and one isotropic hole band. Of course, correla-
tion contributions to the energy must also be con-
sidered.

There are two ways in which correlations play
an important role. First, the bulk equilibrium
density of electrons (or holes) is more sensitive
to correlations than in the case of unstrained Ge
(due to the larger kinetic energy) Second. , ex-
change and correlation contributions to gradient
corrections to the energy are of the same order in
8'/K, even in the HDI, in contrast to the corre
sponding local density contributions. It is not
meaningful to consider only exchange effects. The
determination of the bulk density has been studied
in some detail" and is not our present primary
concern so we adopt a simple approach in which
the magnitude of the correlation energy is taken
into account by the approximation e,„+c„„=y„,z,„
where the constant y„, is determined from the re-
sults of Brinkman and Rice' for x, = 1 which is the
relevant range. Qf course, the corresponding
gradient contributions to the correlation energy
are to be taken from the exact HDL results of
Sec. III.

B' = —(3/2v)(e'/K) q (90)

C'= h'/72', (91)

In the absence of correlations, D' would be given by
D = —7e /432K'[)K. Using Eqs. (77) —(79) with

y= 1.60 and P = 1, the appropriate contributions
including both exchange and correlation are
expressible as

gy (ex/K)(Cxc Cxc Cxc)

where Cyy +0 114 & 10 Cp2 0 7313&&10 and
Cx»c=4. 238&& 10 ', so that D'=-(e'/K)C"', with
C"'= 5.083 & 10 '. Using the density profile of Eq.
(85), the minimization of Eq. (88) with respect to
o, gives Eq. (86) for the surface energy.

At this juncture, it is worth commenting on a
point of possible confusion. In Eq. (26) we have
written a form for AT,(k). The way this quantity
is used in subsequent analysis [e.g. , Eqs. (28)
and (29)], it is clear that the masses entering
vr» and v» are the optical ma. sses. Thus T,(k) is
not truly the kinetic energy since the appropriate
mass should correspond to the density of states
(~'). Our treatment, however, is correct since
we subtract a "pseudo" kinetic energy [T,(k)] from
E(n) and add its correct form (with proper masses)
via, Eq. (3) or Eq. (83).

Returning to the surface energy calculation, we
take ~c = e "'/e'x '= 1.5 for r, =' 1 from the results
of Brinkman and Rice. ' The n which minimizes
the energy is then given by n '= 0.36a*andtheen-
ergy per pair is p = —1.2 By*where the effective
Bohr radius and Rydberg are a*= 177 A and
Hy* = 2.65 meV. The effective ~, is x, = 1.2 and the
surface energy is y, =2&10 ' ergcm '. It must be
emphasized that the precise values of the bulk
parameters are sensitive to the treatment of cor-
relations. " For example, taking yxc = 1.25 yields
P = —0.81 so the stability of the metallic phase rela-
tive to free excitons is marginal. However, our
primary interest lies in the relative importance of
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gradient contributions to the surface energy and
firm conclusions concerning this matter can be
drawn. The first point is that the local density
terms and the gradient corrections in Eq. (88)
contribute equally to the surface energy in this
model. Second, the relative importance of the
kinetic energy versus the exchange and correla-
tion contributions to the gradient corrections may
be judged by rewriting Eq. (87) as v=(5/216@'
+6mC"'/5y*'q)'~'. Again, the kinetic and exchange
plus correlation contributions are of the same
magnitude. Finally, we turn to the important
question of the convergence of the gradient ex-
pansion. The kinetic energy can always be treated
exactly in the Kohn-Sham formalism so the rele-
vant quantity is the relative contribution to the
exchange plus correlation component of the sur-
face energy from the local density term and gra-
dient corrections. The various contributions can

be isolated and it is found that gradient correc-
tions to y,"' are about 15/o of the local density
component of y,"'. From the above, we conclude
that the convergence of the asymptotic gradient
expansion may be adequate for practical purposes
and that it is essential to treat correctly the ex-
change and correlation contributions.

Finally, while there are no measurements (to
our knowledge) of the surface energy of Ge under
strain, there are several recent measurements'
for unstrained Ge. To properly treat Ge requires
an extension of the above analysis to include the
full band structure. The results of such a calcula-
tion will be presented elsewhere.
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