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The valence-band energy levels of ZnTe in a magnetic field are computed using the Luttinger-Kohn formalism
for zinc-blende semiconductors and experimental valence-band parameters obtained from cyclotron resonance.
The results are used to obtain gyromagnetic ratios (g values) for light and heavy holes and applied to spin-flip
scattering of laser light in the ZnTe valence band. The two shallowest-heavy-hole g values are found to be
g =0.92%0.15 and g = 2.14 = 0.20 in spherical approximation. The shallowest-light-hole value is found to be
g = 2.33 £ 0.40 in spherical approximation. Calculations are also presented for the magnetic field in the [111]
crystallographic direction, and the magnetic field in the ( 110) plane. The effects of scattering from holes with
finite momenta along the magnetic field are also considered. The g value of the shallowest-heavy-hole level is

compatible with experiment.

I. INTRODUCTION

In recent years, optical studies of semiconduc-
tors in magnetic fields have yielded a wealth of
information on band structure and defect com-
plexes. Most of this work has focused on optical
absorption and emission processes. A relatively
new experimental technique, that of spin-flip scat-
tering of laser light, is emerging as an important
tool for such studies.

The principal information obtainable from a spin-
flip scattering experiment is the gyromagnetic
ratio or g value of the particles involved in the
scattering process. In the case of electron spin-
flip Raman scattering, the g values of free and
bound electrons have been generally well-accounted
for by theory. For hole spin-flip Raman scat-
tering in the valence band of a semiconductor there
have been no calculations of g values to date.

The purpose of this paper is to present calcula-
tions for the g values of heavy holes in ZnTe,
motivated by the experimental results on ZnTe
to be presented in a separate paper.! Fortunately,
the theory of valence-band eigenfunctions and
energy levels for zinc-blende semiconductors has
already been developed by Luttinger and Kohn,?’?
and will serve as the basis for the calculations
which follow.

The existence of a nonzero cross section for
spin-flip scattering from both holes and electrons
was first demonstrated theoretically by Yafet in
1966.* An important feature of his work is the
prediction that the cross section will diverge as
the laser energy approaches the band-gap energy.
Figure 1 provides an intuitive description of the
spin-flip scattering process for holes in the val-
ence band of a p-type semiconductor. In Fig. 1(a),
the incident photon creates an electron-hole pair
at ¢£,. At ¢, the electron combines with a spin-up
hole, leaving a spin-down hole plus a photon. The
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intermediate state consists of two holes and an
electron. The time-reversed process also con-
tributes to the scattering cross section. Figure
1(b) shows the situation in a p-type semiconduc-
tor in a magnetic field. An incoming photon zv
excites an electron from below the Fermi level to
a state near the conduction band. In Fig. 1(c), the
electron returns to the valence-band level of op-

(B)

FIG. 1. Spin-flip scattering from holes in the valence
band of a p-type semiconductor (schematic). (a) Time-
ordered graph. An electron-hole pair is created at ¢;.
At t,, the electron combines with a spin-up hole, leaving
a spin-down hole. (b) Incoming photon excites an elec-
tron from the valence band to a state near the conduc-
tion band. (c) Electron drops back into the state of op-
posite spin, with the emission of a photon.

932



15 SPIN-FLIP SCATTERING IN ZnTe—~THEORETICAL 933

posite spin, with a photon of energy 4y’ leaving
the system. In this case the energy change of the
photon is equal to the splitting in the valence band.
Hole levels in the valence band of a zinc-blende
structure semiconductor are fourfold degenerate
in the absence of a field, and actually cannot be
depicted by a simple pair of spin-split levels as
shown in Fig. 1. More complicated considerations
are necessary.

II. THEORY

In the absence of spin and spin-orbit interaction,
the zinc-blende valence bands belong to the I', or
T'; representation of the cubic group. Inclusion of
spin creates the additional representations I,

I';, and I'y. The (zero-spin) I'; states transform?®
as x, v, and z under the tetrahedral point group.
The resulting three-band edge functions X, Y, and
Z , respectively, behave like functions of unity
angular momentum and are formed from p-like
functions of the individual ions.® The I'y conduc-
tion-band state is formed from s-like states of

the individual ions.

With the inclusion of spin and spin-orbit inter-
action the original threefold degenerate valence
band (sixfold degenerate including spin) breaks up
into a fourfold degenerate J =3 state and a twofold
J =% state. These states are labeled I'y and T',,
respectively. The I'y state is the one of higher .
energy. The valence-band wave functions which
are diagonal in the |J,m,) representation are®

3 =ANZ) [ (X +iV)H),
, D =N | (X +iY) v -224),

U ff)o =

4=

8) =
Ugh=

, =5 =N (X =iV)r -2V,

where the spin-up | 4) and spin-down | ¥) functions
have been introduced. These are simply the eigen-
states for aJ =§ particle. The labels u,,, refer

to eigenfunctions for band index » and momentum
k.

The phases of X, Y, and Z are chosen in such a
way as to satisfy the requirements of time-re-
versal symmetry. The Kramers’ doublet states

u1.)o=| %’ %) ’ u(f,)ozl %, "%
for the heavy-hole states, and
u(zof)o=l %,% ) “‘3%4 %’ _%>

for the light-hole states. Here the spin functions
a and B are subject to the condition

a=T8, 2)

where T is the Kramers’ time-reversal operator.®
The split-off band states | £,%) and | 1, -~ %) also
form a doublet. These states are evidently not
readily accessible to a spin-flip scattering ex-
periment and hence will not be considered further.

Through Egs. (1) and (2), the initial and final
states in a valence-band spin-flip scattering ex-
periment have been given a rigorous meaning.
Transitions between o and 8 states of the same
hole band are observable only by the application
of a magnetic field which serves to destroy the
time-reversal symmetry of the states. In the
presence of a magnetic field, the o and B states
will have different energies.

Luttinger and Kohn? consider a degenerate T’y
energy band in an external homogeneous field H
directed along the z axis. The Landau gauge

K=(-Hy,0,0) (3)

is chosen for the vector potential. In this gauge,
the energy levels and eigenstates are given by
solutions of the coupled equations® (in units
where 77 =1),

5 [0 (perr ) (b0 + £40) 7 (9 =1,
@

In Eq. (4), the repeated indices o and B are to be
summed over x, y, and z. The summation over
j' is over the number of degenerate states in the
band. The p, are the usual quantum-mechanical
momentum operators, and the F; are given by
the Luttinger-Kohn wave functions

$=D Fy0)uy, (5)
i

where the u; , are the unperturbed & =0 basis
states given by Egs. (1).
By making the defintion

ka=pa+(e/C)Aa9 (6)

the matrix D,;, can be generated, defined by its
elements:

Dy;r =DiE ko kg . (7

This “Hamiltonian” matrix is 4X4 in the case of
the fourfold degenerate I'; band, and is expres-
sible in terms of a set of 4X4 angular momentum
matrices satisfying the commutation rules

[J,,d,]=i],, etec., (8)
JE+J2+J2=3(3+1) =3 . 9)

These are, of course, the angular momentum
matrices appropriate for a spin-2 particle. The
remarkable similarity of this formalism to that
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of the Dirac four-component theory of the electron
has been pointed out in the literature.”
The matrix D derived by Luttinger is expressed
as®
D=(1/m)[ly,+37,) 5k* =y, (RETZ + R} T2 +RET2)
- 27’3({kx ky} {Jny} + {ky k,} {Jsz}
ke HI, ) + (e/c) e d - H
+(e/c) q(J3H, +JH ,+J JH,)]. (10)

Here the symmetrized product is defined by the
notation
{k Ryt =3k R, +k k), etc.

In Eq. (10), the new dimensionless parameters
Y1 V2 Vs Kk, and g have been introduced. These
five constants depend upon the material proper-
ties, some of which are obtainable from experi-
ment.

The parameters y,, ¥, andy; are related to the
cyclotron resonance parameters A, B, and C as®

(11)

'VJ.Z_A b (12)
7’2=_%B, (13)
ys=3(3C2+B?)Y2, (14)

The parameters k and g are not directly ob-
tainable from classical cyclotron resonance ex-
periments.® Estimates of their magnitudes can
be made, however. Under the assumption that
bands of atomic f-like character are far from the
valence band,'®

kx:(B=A~-2)+1GC2+B%)Y2, (15)

The parameter g is difficult to estimate, but
is related to the spin-orbit parameter. For Ge,
Kohn'! has estimated q to be approximately 0.01.
According to Yafet,’ ¢ will be “small” when the
spin-orbit splitting of the valence band is small
compared to the energy separation of this band
from the other bands with which it is connected
by the spin-orbit interaction. He concludes that
this is indeed the case for all known semiconduc
tors. In view of these considerations, g will be
taken to be zero in the calculations which follow.

In 1968, Stradling'® performed cyclotron reso-
nance measurements on ZnTe. This was the first
reported cyclotron resonance from holes in a
II-VI compound. The p-ZnTe acceptor concentra-
tion in his samples was of the order of 7x10%
cm™? and the maximum hole mobility was about
6500 cm?/V sec at 35 °K. The studies were per-
formed in the range of 45 to 65 K at a frequency
of 155 GHz and magnetic fields from 0 to 80 kG.
From the measured anisotropy of the effective
masses, Stradling was able to compute the follow-
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ing valence-band parameters:

A=-4.0%0.2, (16)
| B| =2.3+0.4, (17)
|c|=2.0£1.0. (18)

The Luttinger parameters for ZnTe can now be
computed from Egs. (12)-(14) and Eq. (15), using
the values in Eqs. (16)—(18):

y,=4.00, (19)
y,=1.15, (20)
y,=1.29, @1)
k~0.054, (22)
q=0. (23)

III. ENERGY LEVELS

It has not been proven possible to obtain a gen-
eral solution to Eq. (4) with the matrix D of Eq.
(10). Instead, Luttinger was able to obtain solu-
tions for three specific cases. All three cases
are limited to the condition in which there is zero
momentum along the direction of the magnetic
field (¢, =0). In the first case, the Hamiltonian
D is solved rigorously for a magnetic field which
lies in the [111] crystallographic direction. In
the second case, a solution is obtained for the
case of spherical energy bands. In the third case,
an approximate solution is obtained for a magnetic
field lying anywhere within the (110) plane. Lut-
tinger used specific 4X4 representations for the
matrices J.

A. Case 1: magnetic field in [111] direction

The Schriédinger equation Dy =Ei can be solved
with the Luttinger ansatz®
ci10,
CaPpyz
C3Pp-z

Ca®p

Y= (24

where the ¢, are harmonic oscillator eigenfunc-
tions. Equation (24) is valid for >2. The re-
sulting numerical matrix D is given by

(25)
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where
er=ly,+vs) m+3) + 3k +2q, (26)
e;==(2ys+7,) [+ 1) (n +2)]*72, 27
es==(ys—v,) [fnl - ]2, (28)
e,=—q/NZ, (29)
es=lyy-vs) m+3) -3k -%q, (30)
es=lys—v,) [5n+1) (n+2)]*72, (31)
e,;=(ri-vs) (n—3)+3k+3q, (32)
es==(2yg+v,) [Fnle -], (33)
eo=lrytvs) n+d) -3k ~-Fq. (34)

Eigenvalues and eigenfunctions of D can be com~
puted numerically from Egs. (25)—(34) to desired
degrees of accuracy. For n=0,1, further solu-
tions are obtained by choosing ¢ ;=0 and solving
the resultant 3X3 problem. Two additional mean-
ingful solutions are obtained for . =-1,-2, by
sétting c1=c3=c,=0.

Using the parameters y,, v,, ¥3 Kk, and g¢=0
obtained in Sec. III, the energy levels for the
ZnTe valence bands with the magnetic field in the
[111] direction can be computed by solving the
secular equation resulting from Eq. (25). The
energy levels, expressed in cm™', are given in
Table Ifor H =100 kG. Here, the states are
labeled using the notation of Egs. (35) and (36),
to be given later. The energies are relative to
the degenerate zero=point energy in the [111] di-
rection in the absence of the magnetic field. The
shallowest states are those of the heavy-hole
ladder €5 The k, =0 ordering of the @ and
states is reversed for light holes and heavy holes.

TABLE 1. ZnTe energy levels in the [111] crystallo-
graphic direction H=100 kG.

n €% €} €q €3
0 12.41 23.93
1 37.73 73.27
2 78.32 129.53 10.15 5.99
3 131.25 188.11 31.89 22.07
4 188.69 247.61 49.11 37.24
5 247.72 307.56 64.75 51.96
6 307.42 367.74 79.71 66.44
7 367.48 428.08 94.32 80.77
8 427.73 488.51 108.73 95.00

9 488.10 549.00 123.02 109.17
10 548.56 609.54 137.23 123.30
11 609.08 670.12 151.38 137.38
12 669.63 730.72 165.49 151.45

light holes heavy holes
(Energies are in cm™! at & =0)

As the quantum number »n increases, the spectrum
approaches a set of uniformly spaced harmonic
oscillator levels, corresponding to two cyclotron
effective masses and two effective spin states.
Note that for large n, the difference in energy be-
tween o and B spin states of a given hole ladder
approaches the cyclotron resonance energy w, for
that ladder. This is the “classical” regime stud-
jed in Stradling’s cyclotron resonance experi-
ments. The calculations presented in Table I are
“exact” insofar as the effective mass approxi-
mation is valid for this system.

B. Case 2: spherical approximation

The special case y, =y, corresponds to the case
of spherical energy surfaces. If the parameter
q is also set equal to zero, the characteristic
values of Eq. (4) can be obtained without resorting
to numerical calculations. The question of whether
these approximations are valid for actual physical
systems in general and for ZnTe in particular will
be the subject of later discussion.

With y,=y,=% and ¢ =0, Eq. (25) consists of two
2Xx2 submatrices which are directly diagonalized®
to yield

exm)=y.m— (37, +7 = 3kK)
£{[yn - by, =k +59)+ 37%n(n - VY72,
(35)
es) =y m—(Gy,~v +3K)
P - D},
(36)

{[y'n+l—k-3v)]7+3y

where n =2, 3,4,..., for the minus (=) sign, and
n=0,1,2,..., for the plus (+) sign in Egs. (35)
and (36). Here the plus sign refers to the spec-
trum of light-hole energy levels; the minus sign
refers to the spectrum of heavy-hole levels. The
subscripts o and 8 can now be identified, respec-
tively, with each member of the pair of original
Kramers’ doublets.

Energy levels resulting from this calculation
will reflect a spherical average over the system.
The eigenvalues are given explicitly by Egs. (35)
and (36), and the calculated results are shown
in Table II for H =100 kG. Comparison of Tables
I and II indicates a fairly close agreement between
the individual energy levels from the two calcula-
tions. This is to be expected from the nearly
spherical energy surfaces at # =0.

The energy levels for both the spherical approxi-
mation and the [111] direction are shown in Fig. 2.
The nonclassical behavior of the degenerate val-
ence bands is strikingly manifest in the nonuni-
form spacing of the energy levels for low values
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TABLE II. ZnTe energy levels in the spherical ap-
proximation H =100 kG.

n €y €g € €p
0 12.73 23.60
1 38.69 72.31
2 79.04 127.78 10.72 6.46
3 131.18 185.61 33.24 23.29
4 187.83 244.39 51.25 39.18
5 246.16 303.63 67.63 54.61
6 305.11 363.12 83.31 69.78
7 364.46 422.77 98.62 84.79
8 424.02 482.52 113.72 99.71
9 483.71 542.34 128.69 114.55
10 543.49 602.21 143.58 129.35
11 603.33 662.11 158.41 144.11
12 663.21 722.04 173.19 158.85

light holes heavy holes
(Energies are in cm™! at £y =0)

of n. The uniform spacing at high quantum num-
bers is also evident. The level spacings in this
regime yield the effective masses given by the
classical cyclotron resonance experiment.

C. Case 3: approximate solution in the (1-1-0) plane

For this case, it was possible for Luttinger to
use perturbation theory on the difference between

H=100 kG
o € € [ &
e 2
=8 0 ————2
——mg—— O —e—3
—_—_3
4o —%=I| ——_ 4
4 5
p
g ® 5 —— g
- ——=
8o —*==—2 —— g —— 7
@ —_—
w
4 ——
w 7 _T* =8
T8 > o
120f—
— —
—==—2 ° 10
—_— 3 .
Al =
2 " 2

160

LIGHT HOLES HEAVY HOLES

FIG. 2. ZnTe theoretical valence-band energy levels
for a field of H=100 kG. Long horizontal lines are the
results of the spherical approximation. Short lines with
dots are from the “exact’” calculation in the [111] direc-

tion.
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the Hamiltonians corresponding to Cases 1 and 2.
The matrix D is separated into three terms,?

D=Dy+D,+D,. (37

As in Case 2, D, can be put in 2X2 block form with
the solutions

ex) =y n=(Gy,+v =3k
£{[y'n— Gy +v,-k)]*+3y"2nln - )}2,
(38)
€fn) =y n— Gy, =¥ +3«)
£{[yn +ly,—k = 59) 1+ 37%nn - D72,
(39)

As in Case 2, n=0,1,2,..., for the plus sign,
andn=1,2,3,..., for the minus sign. The new
constants y’ and y” are expressed by (in a form
given by Roth et al.?),

Yy =ys+y, -¥3) [%(3 cos?0 - 1)]2; (40)
Y" =3y +5va+ 5 lya—vs) [5(8 cos®o - 1)]F, (41)

where 6 is the angle between the magnetic field
and the [001] crystallographic axis in the (110)
plane.

Most of the anisotropy and all of the isotropic
part of D is contained in D,. The D, term in Eq.
(37) is proportional to $V3(y, —v,) and will be
neglected here since the actual amount of aniso-
tropy in ZnTe is small. The D, term in Eq. (37)
is proportional to ¢ and hence will be dropped.

Calculated results for the shallowest light-hole
state €%,(0), €5(0) are shown in Fig. 3. The energy
levels are plotted as functions of the angle 6 be-
tween the magnetic-field direction and the [001]
axis of the crystal, in the (110) plane. Results for
the first two heavy-hole states are shown in Figs.
4 and 5.

In these figures, the dashed lines indicate the
results of the spherical approximation (Table II);
the black dots are the results of the “exact” [111]
calculation (Table I). As expected, the heavy-hole
levels suffer more from the effects of anisotropy
than do the light holes. However, an interesting
effect is that the ¢ and B8 light-hole states curve
in opposite directions, whereas the o and 8 heavy-
hole states curve in the same direction. The very
slight departure of the [111] calculations from the
plotted curves is in part due to the neglect of the
D, term. If need be, anisotropy of higher quantum
number levels can be readily computed.

IV. MOMENTUM EFFECTS

The results of Luttinger and Kohn apply only to
the case of zero momentum along the magnetic-
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€5 (0)

H=100 kG

)
I

ENERGY (cm™)
S

24

L

/4
ANGLE © (rad)

FIG. 3. Anisotropy of the light hole n =0 energy
levels. Dashed line is the spherical approximation
result, and the dot is the “exact” calculation in the

[111] direction.

€g(2)

H=100 kG

ENERGY (cm™)

€, (2)

1

/4 w2
ANGLE © (rad)

FIG. 4. Anisotropy of the heavy hole » =2 energy

levels. Dashed line is the spherical approximation re-

sult, and the dot is the “exact” calculation in the [111]

direction.

H=100 kG

~N
(]
I

ENERGY (cm™)
2

34

38 L
[¢] /4 n/2

ANGLE © (rad)

FIG. 5. Anisotropy of the heavy hole » =3 energy
levels. Dashed line is the spherical approximation re-
sult, and the dot is the “exact” calculation in the [111]
direction.

field direction. When the population of free holes
is low, only k, =0 excitations are possible. How-
ever, for large numbers of holes (created ther-
mally or by photoexcitation), k,-dependent effects
may become important. Indeed, Luttinger has
pointed out that the valence-band energy levels
will depend parametrically on k2, in some involved
way.

Goodman*'® has investigated the quantum theory
of cyclotron resonance absorption and has dis-
cussed line-shape effects as well as new absorp-
tion lines which can arise because of 2,#0 effects.

Wallis and Bowlden* were able to derive the k&,
dependence of valence-band energy levels in the
presence of a magnetic field, with the restriction
that the energy surfaces are spherical. Their
results will be summarized here.

The starting point is the Luttinger Hamiltonian,
Eq. (10). Wallis and Bowlden chose a specific
representation for J such that

) (42)
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(0 o0 -w3 o
7l 0 o0 2 -3
J=% LT (43)
W3 -2 0 0
0 W3 0 0
—
3000
7lo-10 0
Jz=5 (44)
0010
0 0 0 -3

In the spherical approximation, y,=y;=%. The
parameter g is also taken to be negligibly small.
Under these conditions and the ansatz’*

c,G

n

b= C2Gpyz , (45)
€3Gy

C4Gn+3

where the ¢, are numerical coefficients, and
where*

G, =

expli(g.x +kyz)] siz \1/2 42
T L LR ) mwe,

2"plwi/z

(46)
the Schrddinger equation Dy =Ey can be solved.
In Eq. (46), g, are momentum eigenvalues, with
q.=ky,

t=Vsy - (g, /V5), (47
where
s =eH /fic, (48)

and H,(t) is the Hermite polynomial of degree .
The functions G are normalized in a box of di-
mensions L,, L,, and L, and satisfy the operator
relations

(k2 +k2)G, =H%s(2n+1)G,,, (49)

(ky +ik,) G, = =15 [2( + D]?G, ., (50)

(ky —ik,) G, = =12V (2n)"/2G,_,, (51)

k,G,=hVs ¢G,, (52)
where

c=ky/Ns . (53)

The resulting purely numerical matrix D is given
by14

ky (105 em™) ky (105cm™l)
o 4 8 12 6 o 4 8 12 16
O T T 0 L B B B S|
\ (@)
0 (2)
€(0)
20+ 20- o)
[ €a(3)
__40F € . 40f € ¥
e Tl
Kl 2 (4) ~
%60 % 60| l4
& 5
L e
H &
80} 80
100+ 100
H=0 I H=100kG
120 1200

FIG. 6. kg dependence of the ZnTe energy levels at
H=0 and 100 kG. First two light-hole levels and the
first three heavy-hole levels are plotted.

By hy hy O
D= "2 ha O By ’ (54)

hy O ng hy,

0 hy hy hy

where

By=+7) n+3) +3l,-27) 2+ 3k, (55)
hy==7[3m+1) (o +2)]*2, (56)
hy=7[6(m+1)]2¢, (57)
hy=ly1=7) n+3)+30,+27) 2 -3k, (58)
hs==-7[60+3)]"¢, (59)
he=ly,=7) n+3) +3ly,+27) ¥ +3k, (60)
h,==7[30n+2) +3)]*2, (61)
he=(y1+7) (n+3) +3ly ~27) %= F«. (62)

The energy levels can be determined numerically
by solving the secular equation corresponding to
Eq. (54). If the parameter ¢ is set equal to zero
in Egs. (55)—(62), corresponding to k, =0, the
eigenvalues of Eq. (54) reduce to those of the
spherical approximation (Case 2), Egs. (35) and
(36).

Equations (54)—(62) were used to compute the
matrix D, and the secular equation was solved
for various values of magnetic field and wave
vector k,. Results are presented in Fig. 6, for
H =0 and 100 kG. AtH =0, the solution reduces
to degenerate sets of €~ heavy holes and e* light
holes. As the magnetic field increases, the levels
move to higher energies and separate into orbital
ladders and spin levels as shown. The first three
€~ levels and the first two €* levels are plotted in
Fig. 6. The energies at k, =0 are those given in
Table II. A strange feature of the heavy-hole



levels is that at k, =0 the g-spin state lies higher
than the a-spin state, but these two states cross
over and order like light-hole states at large
values of k,. Also, the €, states exhibit a nega-
tive mass character in the region near &, =0.
This general behavior has been discussed by
Wallis and Bowlden.*

The light-hole levels are much less perturbed.
However, the levels €%,(0) and €}(0) initially fol-
low a curvature characteristic of light holes, but
then at large k,, they assume the curvature of
the heavy-hole band, with the @ and 8 states
switching in the process. All other light-hole
levels follow nearly parabolic curvatures. It
should be noted that whereas all levels vary lin-
early with field at 2, =0, they depart from linear
dependence on field at finite values of %,.

V. RESULTS AND CONCLUSIONS

Theoretical values of the energy levels were
computed in Secs. III and IV for a field of 100 kG.

Not all of these levels will be populated with holes.

In fact, only the shallowest levels are expected
to be of interest in a light-scattering experiment.
These levels can be populated thermally and by
photoexcitation from the laser light.

Although many different transitions between the
levels are allowed, we are concerned here with
transitions which change the spin quantum number
by unity, and leave the principle quantum number
n unchanged. The g value is given by

g=Q2mch/pg) (w/H), (63)
=2.1428x10* (w/H) , (64)

where w is given in cm™?!

In Egs. (63)—(64),
w=ley—egl. (65)

From Tables I and II, the shallowest light-hole
level yields

glir1(0) =2.47 (66)
for the [111] direction, and
g% (0=2.33 (67)

for the spherical approximation.
For the first two heavy-hole levels,

gl (2) =0.893, (68)
and

glii(3) =211 (69)
for the [111] direction, and

g™ (2)=0.915, (70)
and

, and H is given in Gauss.
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g (3)=2.14 (71)

for the spherical approximation. [Note that the
shallowest light-hole (1h) level is denoted by (0),
whereas the shallowest heavy-hole (hh) is denoted
by (2).] _

Anisotropy of the g values in the (110) plane can
be determined from Figs. 3-5. The results are
shown in Fig. 7. Heavy-hole g values are only
slightly affected by the anisotropy, whereas the
light-hole g value varies considerably with the
angle 6.

All of the above results are valid for spin-flip
transitions between hole levels with hole momen-
tum ky~0. For finite values of k,, the more com-
plicated behavior implied by Fig. 6 is expected.?

Of course, the theoretical calculations of this
paper are only as good as the input data, i.e., the
cyclotron resonance parameters of Stradling.!? In
an effort to determine how sensitive the theoretical
calculations are to variation of these input param-
eters, each of the parameters was independently
varied in a symmetrical fashion about its +¢ error
limits. The appropriate Gaussian weighting factor
was then assigned to each parameter and the g
value was computed. A total of 125 calculations
were made, with five different values for each
parameter. Each calculation was then weighted by
the product of the Gaussian weights for each input
parameter. The results are shown in histogram
form in Fig. 8. The abscissa represents the g
value and the ordinate is the accumulated statisti-

_—M_\

hh(3)

2.0

L

g VALUE

[ hh(2)

1/l4 m/2
ANGLE © (rad)

FIG. 7. Anisotropy of the ZnTe light- and heavy-hole
g values.
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FIG. 8. statistical results for the theoretical g-value
calculations for the first light-hole spin-flip transition
and the first two heavy-hole transitions. Dashed lines

are the result of the spherical approximation for nom-
inal values of the cyclotron resonance parameters.

cal weight. The calculations were all done in the
spherical approximation.

These results show that the most probable
heavy-hole (z =2) g value lies between g =0.9 and
g =1.0, with the likelihood of other g values being
much less. Similar results are shown for heavy
holes (n =3) and for light holes (x =0). The g val-
ues for nominal input parameters [see Egs. (16)—
(18)] are indicated by dashed lines. The widths
of these histograms yield a rough measure of how
errors in the input to the theory are mapped into
the final results. In this way, the theoretical
error limits can be applied (for the spherical ap-
proximation case):

g¥(2)=0.92£0.15, (72)
2% (3)=2.14£0.20, (73)
22 (0)=2.33£0.40. (74)

Similar error limits hold for calculations in the
[111] direction and in the (110) plane.

The 4X4 formalism of Luttinger and Kohn applies
to the fourfold-degenerate valence band, and is
strictly correct only when there are no nearby
perturbing bands. This is not the case, however,
for many narrow-gap semiconductors, but it is
satisfied to a good degree in ZnTe, where the
conduction band lies at E, =2.391 eV, and the
split-off band lies at A =0.93 eV,'® away from the
degenerate valence band.

For their theoretical calculations on Ge, Roth
et al.® employed a 6x6 formalism, taking into
account the split-off band. They concluded that
for Ge, the effect of the split-off band on the
heavy-hole levels could be neglected. The ques-
tion then arises: Why don’t valence-band energy
levels of the 4X4 formalism depend on the mag-
nitude of the spin-orbit parameter? Evidently
the spin-orbit parameter enters only for large
values of k,. According to Yafet,'® the energy
levels are independent of A as long as the kinetic
energy is small compared to A. The energy levels
are determined by the band shape, i.e., the pa-
rameters A, B, and C as obtained in the classical
cyclotron resonance experiment, in conjunction
with the additional parameter «.

For InSh, Pidgeon and Brown'” have gone to an
8X8 formalism based on the Luttinger-Kohn the-
ory, where in addition to the split-off band, the
conduction band is also included. This is nec-
essary for InSb, because of its small band gap.
For this treatment, it is necessary to know the
value of the interband momentum matrix element
P? defined by Kane.'® For ZnTe, the parameter
P? is unknown, but estimates® for II-VI com-
pounds yield P2~21 eV. The principle effect of
the more-complicated 8X8 formalism is a small
sublinear dependence of the energy levels on the
magnetic field. For ZnTe, this should be neglig-
ible.

Finally, it should be mentioned that a generali-
zation of the 8x8 formalism to include an infinite
series of harmonic oscillator functions was de-
veloped by Bell and Rogers? for InSb. As with
the 8X8 treatment, this further complexity is not
warranted for the case of ZnTe.
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