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Optical properties of one-dimensional semiconductors and conjugated polymers
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We present a description of the optical properties of one-dimensional semiconductors within the one-electron

tight-binding approximation. The case of conjugated carbon chains is explicitly considered; the influence of the
bond alternation, superalternation, effective heteroatomicity and chain coupling on the optical properties of
these systems is evaluated in terms of a simplified but exactly soluble model. It is found that the linear

susceptibility in the transparency region of the semiconductor shows a square dependence on a parameter X„
which represents the extent of the electron delocalization. Further the peculiar structure observed in the low-

temperature absorption spectrum of the polydiacetylenes is explained in terms of a short-range coupling
between chains.

I. INTRODUCTION

One-dim ens ional s ystems ar e character iz ed

by highly anisotropic optical, dielectric, con-
ducting and mechanical. properties. " This is
because the valence electrons, responsible for
these properties, are forced to move along linear
chains of atoms or molecules with distances which
are small enough to allow formation of energy
states more or less delocalized in one direction;
a similar delocalization, on the other hand, in

the other two directions is hindered by a sur-
rounding sea of stable saturated bonds which
keeps the chains well apart. This confers these
systems with an isolator type behavior in direc-
tions across the chains but a semiconducting or
conducting behavior along the chains. The metal-
lic state, on quite general grounds peculiar to
the one-dimensional systems, is expected to be
unstable in most cases. ' The complete delocal-
ization of the valence electrons along the chains
is limited by different constraints like bond alter-
nation and superalternation, ' heteroatomicity
(atom alternation), chain coupling, electron re-
pulsion, ' and the system is mostly forced to be
in a semiconducting state. This is the case for
almost all polymers, in particular, the ones with

carbon conjugated chains, ' and many crystal. lized
TCNQ (tetracyanoquinodimethane) and KCP (potas-
sium cyano-piatinide) complexes. "

The relative importance of the different con-
straints in forcing the semiconducting state is
still a matter of controversy' as is the question
of the characterization of the absorption spectrum
of systems with conjugated carbon chains either
in terms of exciton states or band-to-band tran-
sitions. The optical index of refraction and the
optical nonlinear coefficients have their origin
in the valence electrons and therefore are ex-
pected to be highly anisotropic and to reflect
strongly the effect of the different constraints

on the electron delocalization. The linear op-
tical properties are the most easily accessibl. e
experimentally but nonlinear optical properties
show some very interesting features pertinent
to the electron delocalization and their now

emerging" study seems promising.
In two following papers the nonlinear optical.

properties and the effects which arise from the
formation of planar or three-dimensional. arrays
in such systems are discussed in detail. In the
present one we give the theoretical background
to be used there and we apply it here to the de-
scription of the linear optical properties. We
mainly focus our attention on systems with con-
jugated carbon chains or similar ones with large
m-electron delocalization and we use a one-elec-
tron tight-binding approach in a formulation equiva-
lent to the Huckel molecular description of finite
carbon chains. "

Som e s ystems with character istic one-dimen-
sional structure are cursively described in Sec.
II where the model is also set up and the polariza-
tion mechanism by an electric field of optical
frequency is analyzed with due attention to local-
field corrections. The delocalization concept
is defined in Sec. III and in Sec. IV we give a
description of the linear optical properties of an
ideal. one-dimensional chain; the effect of dif-
fer ent constraints is discuss ed in detail within
the one- electron tight-binding approximation.
This is applied to actual systems in Sec. V. The
modifications to be brought into the description
when electron correlation is incorporated are
discussed qualitatively in Sec. VI.

II. DESCRIPTION OF ONE-DIMENSIONAL SYSTEMS

A. Examples of one-dimensional systems

A strictly one-dimens iona l s emic onductor in
the sense described in the beginning of the intro-
duction, namely form ed by independent s emi-
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conducting chains immersed in a medium of sat-
urated bonds, is seldom encountered in reality.
All such systems because of cohesion and stability
requirements possess a fully developed three-
dimensional order; as a matter of fact, the fluc-
tuations in this three-dimensional ordering prob-
ably are the agents for the onset of spectacular
phase transitions from conducting to semicon-
ducting state along the chains in some of these
systems. ' However, to the extent that the char-
acteristic intrachain energies are much larger
than the interchain coupling energy most of these
systems satisfy the criteria of one dimensionality.
This is the case of the polymers with long con-
jugated carbon chains like the polyenes, poly-
phenylacetylenes, polydiacacetylenes, polycum-
ulenes, polyacenes, as mell as the TCNQ or KCP
salts.

The characteristic valence four of the carbon
atom is the origin of the enormous variety of
thes e systems. Their common featur e is that
two of the four val. ence electrons are in hybrid-
ized sp orbitals and form saturated bonds with
the neighboring carbon atoms; these so-called
o bonds stabilize the skeleton of the carbon chains.
The remarkably different properties of the above
systems are determined by the fate of the re-
maining two valence electrons per carbon atom.

(i) In pofyenes where the constituent element is

H H
I I

H H

one of these two electrons, by sP' hybridization
with the previous two, forms a a bond with a
hydrogen atom thus forcing the skeleton in a zig-
zag configuration with a 120 angle between car-
bon-carbon bonds; the fourth electron (or m elec-
tron), on the other hand, is placed in a band
formed by the. 2P, orbitals of the carbon atoms
where z lies perpendicular to the plane of the
zig-zag chain. From the standpoint of the one-
electron description to be adopted here the sys-
tem is expected to stabilize in a configuration of
alternatively long ("single" ) and short ("double" )
bonds'; this will be termed bond alternation.

(ii) fn polyphenylacetylenes the valence electron
repartition is similar to the previous one except
that now every other hydrogen atom along the
chain is replaced by a C,H, radical and the con-
stituent element is thus

H H
I I

i~ rcpt& r w~

I I

C6H C6H

Because of the alternation of the side groups at-
tached to the carbon atoms, successive carbon

atoms are not equivalent and the chain probably
acquires a heteroatomic character; this wil. l be
termed atom alternation or simply heter'oatomici-
ty. Clearly by replacing the hydrogen atoms with
other appropriately chosen radicals a large va-
riety of such chains can be obtained.

(iii) In polyacenes two parallel polyene chains
are bonded together by replacing every other
C-H bond of each chain with a C-C bond between
the two chains; this is an extreme ease of sho«
rang e intet'chain couPling. More commonly this
structure is described as a chain of benzene rings
with neighboring benzene rings having one bond
in common.

(iv) In polydiacetylenes" every other pair of
successive C-H bonds of a polyene chain is re-
placed by an additional carbon-carbon bond along
the chain; further there is a change of hybridization
from sP' type to sP type on this pair of carbon
atoms with corresponding stereoehemical change
of the chain. The constituent el.ement now is

R, R2

c c c
c c

I I

R, R2

R2

c~
c c
I I

R2 R,

where for stability reasons the remaining two
hydrogen atoms of the primary polyene chain have
been replaced by appropriately chosen radicals
R, and R, which may be identical. In the chain
now appears an alternation of "double" and "triple"
bonds separated by "single" bonds; this will be
termed bond supexaltexnation. Clearly more
complicated structures can be obtained in this
way still respecting the valency requirements
of the carbon atom.

(v) In polycumulenes, formed like the poly-
diacetylenes, the constituent el.ement is

RI

c~c c/ «)c~/
I I

R2

from the standpoint of ehemieal resonance theory
the actual system is said to resonate between
these two structures, the polydiacetylene struc-
ture being by far the most dominant. Clearly
here too more complex structures can be obtained.

More sophisticated one-dimensional structures
which have been under active investigation re-
cently" are the TCNQ and KCP salts. In the
former class each site on a single chain does
not contain a single atom as in the case of carbon
chains but is composed on a mol. ecular group or
a charge-transfer complex; in the later class
the delocalized states are formed from d states.
To a lesser degree some features of genuinely
three-dimensional compounds like the tetrahedral.
semiconductors ean be ascribed to the one-di-
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mensional delocalized electron states. In the
following although we shall be using the termin-
ology appropriate to materials composed of car-
bon chains, we should point out that the results
are much more general and may as well be ap-
plied for more complex structures.

8. Model and underlying simplifications

We idealize the actual solid assuming that it
consists of parallel linear chains extending along
the x direction which will. be taken to be a crys-
taiiographic axis as well (Fig. 1). The chains
are embedded in a medium of localized o bonds
and other molecular groups dispersed in such
a way that there is a symmetry of revolution
around the chain axis; let cr be the number of such
chains per unit area of the yz plane. For the

X

FIG. 1. Structure of the PTS-diacetylene polymer
crystal IPTS, his poly (Toluene Sulfonate); R, CH&-SO3-

Q-CH3] and the cavity used for the calculation of the
local field.

present analysis we assume that the chains behave
independently so that we can focus our attention
to a single chain. We assume it to be sufficiently
long so that the end effects are negligible. In fact
we idealize the situation by considering the in-
finite chains.

The one-dimensional behavior, in these systems,
has its origin in the distinctly different roles
played by the m and 0 electrons, respectively';
they are completely separated from each other
with no direct interaction and because we are
dealing with infinite systems they belong to dif-
ferent bands, the m and v bands, respectively.
The latter, however, are very narrow and deep
lying and they may be more conveniently trans-
formed to states localized on the cr bonds; tran-
sitions between these states make their appear-
ance only in the far ultraviolet. Thus the con-
tribution of these o electrons to the optical and
dielectric properties along and across the chains
can be estimated by assigning to them bond polar-
izabilities which satisfy the additivity property.
This 0 bond additivity has been assumed previous-
ly too when discussing the optical properties of
polymers with saturated bonds" and except for
some finer details there is no serious reason
to abandon it.

The n electrons, on the other hand, are mobile
over the whole chain and their description in
terms of delocalized band states is appropriate.
However, because they are forced to move only
along one direction, that of the chains, they feel
the full impact of the different constraints there
and the system is found to be in a semiconducting
state. The exact origin of this semiconducting
state is still controversial particularly owing to
the wide gap observed in these materials. From
global energy arguments one expects that either
the static Peierls distortion' leading to bond al-
ternation and/or the electronic repulsione are
responsible for this. This will clearly affect the
choice of the description in terms of either one-
electron or many-electron states, respectively.
Here we favor the static Peierls distorsion and
we adopt the one-electron approximation for the
m electrons; we particularly emphasize the de-
localized character of their states.

These z electrons move along a periodic array
of atoms. Near each nucleus the potential field
due to that nucleus by far swamps out the effect
of the other nuclei in the chain and there the wave
function g of the m electron looks very much like
the atomic orbital Q of the atom; it is thus re-
sonable to write the m states as linear combina-
tion of the atomic orbitals. This is the basis of
the tight-binding or linear combination of atomic
orbitals approximation"; choosing an appropriate
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unit cell we write
N=l S

g(x) = g g c„„,P„„;(x),
ff =0 i= 1

(2.1)

To P~~ contribute the delocal. ized m electrons as
well. as the localized cr electrons while to P~
only the latter contribute; accordingly

where Q„,+,. is the atomic orbital corresponding
to the ith site in the nth unit ce11., s is the number
of sites in a unit cell, and X is the number of unit
cells and should tend to infinity for an infinite
chain. The expansion coefficients c„„,are de-
termined by minimizing the energy fg*HgdT
where H is the one-electron Hamiltonian and dT

is the volume element. Using the Bloch theorem

y( x+nd) =e'~"~t}(x}, (2.2)

+P( ~ ( c ( ~c( + c.c.),
where the Coulomb integral a,. =fP'f HP, dr is.
the on-site energy and the resonance integral
p„. = fp f HQ, dv (j =i s 1) represents the hopping
probabilities from the ith site to the neighboring
left and right sites; all other integrals as well.
as all the overlap integrals fp*, p, dr .(i wj ) are
assumed to vanish. Equations (2.1) and (2.4) to-
gether with the energy minimizing conditions

(2.4)

gC

Bcg
(2.5)

give the band energies e„(k) and wave functions
g„~(x) for the s electrons. We are interested in
the perturbation of these states by an external.
electric field of optical. frequency cu.

C. Optical properties: Linear susceptibility

In an electric field E of optical frequency ~
the system will respond through an induced polar-
ization P(~) =g"'(~) E(~). Owing to the sym-
metry of revolution around the chain direction
x, which also is a crystallographic axis, the sym-
metric second rank tensor of the linear suscep-
tibility yl" ~(u) has only two independent compon-
ents, y~~ and y&~', parall. el and perpendicular
to the chain axis or

d being the unit cell length, it follows from Eq.
(2.1) that the coefficients c„,+, of the nth unit
cell are related to those of the unit cell at the
origin c, ,

(2.3)

using (2.1) and (2.3}, the energy e= fg*Hg dr can
be written

(2.7)

and

~(1) ~(l,) (2.8)

El ——E+ E„„+Eq, (2.S)

where E is the macroscopic field, E„„is the
field from the polarization charges on the surface
of the cylindrical cavity cut (as a mathematicai
fiction) out of the specimen with the reference
chain as axis, and E„ is the field due to the in-
teractions between the induced charges inside
the cavity.

We make the assumption

Eq ——0.

This is consistent with the isotropic distribution
of the cr bonds on the one side and the delocalized
nature of the m electrons on the other side and
will not be justified any further here. The field
E„, wil. l be deduced from electrostatics. Indeed
one finds that for the component p.erpendicul. ar
to the chain direction &~„„ is equal to 2mP~ and
from (2.S) the local field in this direction is

E~~ —~(e~ + 1)E (2.10)

where y~' is the contribution of the delocalized
electrons of the n band along the chain and y~')

and y~' are the contribution of the localized v
electrons, respectively, along and across the
chain direction.

At the microscopic level the contribution of the
v electrons will be expressed by a polarizability
n per unit cell, equal to the sum of the 0-bond
polarizabilities, where for simplicity we dis-
regard any anisotropy variations; n is assumed
a scalar. Its relation to )(',' and y 'i will. be pro-
vided through the local-field corrections.

In order to estimate the local-field corrections
we use the cavity procedure" with due attention
to the axial symmetry inherent in the material. "
We consider a reference chain and the surrounding
side groups and we enclose it in a cylindrical
cavity of infinite axial extension and radius much
smaller than the wavelength of the applied elec-
tric field but larger than the interchain spacing
(Fig. 1). Then the local field E~ on the position
on the reference chain and its side groups is

and

&II(~) =X"(~)& (~)

(2 6)

Since by definition P~ = [(&~ —1)/4n j&„expres-
sing P~ as the surrey of the dipoles induced per
unit volume, Pj =E, ~E~L, where N, is the num-
ber of unit cel.ls per unit volume, one has
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or

2rrN, (2 = (&1 —1)/(&1, +1)

e~ = (1+2rrN, n)/(I —2rrN, (2).

(2.11)

(2.12)

Then from (2.6), )((1) =N, n and using (2.7) we
obtain

e2 ((d) = 1+ 41r)(~~" = 1+411)(,' ((v)+ 471N, (2, (2.14)

On the other hand for the component parallel to
the chain direction one easily finds E]]„„=0and
from (2.9) one obtains that the local field in this
direction is equal. to the macroscopic field, or

(2.13)

where y,' is the m-electron contribution and its
expression will be given by band theory.

For our purposes it is convenient to use the ex-
pression derived by Genkin and Mednis"; there
it is shown tiiat

(, )( )
2e' ~~ (

Q„„,(k)Q„,„(k) Q„„,(k)Q, (k)
V5'

& n4&+ (d&)) (k) (v + 2 /7(k) (v&2i(k) + (v 2 /T(k)
(2.15)

Q„,„(k)= — U*„,, (x) —U„, (x) dr,
1 8

(2.16)

where the factor 2 takes into account the number
of the spin states, V is the crystal volume, f„(k)
is the distribution function over the states prior
to turning on the electric field, I(v„i„(k)= e„(k)
—e„(k), T(k) is a reiaxation time, and

)(")(0)= ''gg dk ""' ' (22O)
rrIf „, ~,r~ (v,„(k)

which appears when evaluating the index of re-
fraction n2 = [ej~(0)]'r' in the transparency region
of the crystal for fields polarized along the chains,
namely

where U„„ is the unit cell periodic part of the
Bloch wave function

g„„(x)=e'~ U„, (x). (2.17)

n22 ——1+4rrXw~')(0) + 4rrN, a.

III. 7r-ELECTRON BAND STATES

(2.21)

In the present case the volume of the unit cell
is v=d/(r, where (r is the density of chains per
unit cross area, and, since only the x dependence
is relevant, Eq. (2.16) can be written

We shall now derive within the one-electron
tight-binding approximation the express;ons of
the Bloch energies and wave functions for the
three ideal infinite chains defined in Sec. II.

Q„.„(k) = —
I U*„„(x)—U„, (x) dx.

&k

In (2.15) V=Nd/(r; replacing

dk

(2.18)
A. Simply atom and bond alternated chain

There are two atoms per unit cell with Coulomb
integral. s n, and n, and the hopping integrals along
the chain alternativel. y take the values P, and P,
on the long and short bonds, respectively. The
wave function is

for an infinite chain and using the zero-tempera-
ture distribution function f„(k)= 1 for occupied

(v, valence) bands and zero for nonoccupied

(c, conduction) ones, Eq. (2.15) is transformed
to

(C2n-142n-1 + C22 4 22)i (3.1)

where the expansion coefficients c,. are deter-
mined by minimizing the energy

(, ) 2e2(r ~~ 'r' (d,„(k)j Q,„(k))2

(2.19)

N

L A&C 2g yC2g y + A2C 2' Cztf

+ (P1C 2II 1C2~ + P2C 22 C22+1 + C ~ C ~ )] (3.2)

This expression can be separated into its real
and imaginary parts and, using expression (2.14),
one can determine the dispersion and absorption
of an electromagnetic field of frequency ~. In
particular one can calculate the refractive index
n2 ((v) and the absorption coefficient k((((v) defined

by ell (~) —
fall ((v)+rell (~) = [nil (~)+2kl~ (~)]' and the

ref lectivity ft=[(n2 —1)'+k2]/[(n2+1)'+k2]. An

important quantity is

(P, + P, e' )c, + (o.2 —e)c2 = 0,
(3.3)

from which the fol. lowing two-band solution for
the Bloch energies and wave functions is derived

Introducing the notation 6) =@a, where a is the unit-
cell length, using the Bloch theorem (2.2) and
the energy minimizing conditions (2.5) we obtain
the foll.owing set of equations for the c&'s:

((2, —e)c, + (P, + P, e 'e
)C2 = 0,
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(the parameters n, and P,. are taken to be posi-
tive):

e, „(8)=sp2(p, '4-1+ v'+2vcos8)'/'=+ p2&,

(3 4)

and the energy (2.4) becomes
E

e=~ [u(C4nC4„+C4n &C43 &+C4„2C43 2+C4n 3C«3)

+ P] (C 4n 4C4n+ C 4n 3C4n 2)

1 N

4...(8) = (2~,/. g e'"'[(1~ p /r)" e '""A..
n=l

+P2C4n «+a+I 3C4n-2C4n-4] ~ (3.12)

+(1+p/r)"e '"'/'0. . .],
(3.5)

where "+"and "-"signs correspond to the con-
duction (c) and valence (c) bands, respectively,
and we have introduced the following notations
p, =(u, —n, )/2p„v=p, /p, (v(1), g=l el /p„and

e~ "4 =y [(1 + ve~e)/(1 4. Ve 'e)] / (3.6)

and the band energies are measured from —,'(n,
+n, ). With one valence electron per site the val-
ence band is filled and the conduction band empty,
the system being thus in a semiconducting state.
The small. est gap appears at the edge of the Bril-
louin zone (8=2')

The expansion coefficients c,. and the energy E

are determined from the following set of homo-
geneous equations:

(u —e)c|+p4c2 + 0+p2e c4 = 0,

pic4 + (u —E)c2 + p3c3 + 0 = 0,

0+ pnc2 + (u —E)c3 + pic4 = 0,

p2e+24 c, +0+ p,c3+(n —e)c4=0,

where the periodic boundary condition and the
Bloch theorem have been incorporated and 0= ka.
One obtains the following four-band solution:

e =~ p2( v'+-,'(1+ v")
+ [-,'(1- v")' + v'(1+ v" + 2 v'cos28)] '/'j'/'

—2P [p2+(1 v)2]i/2 (3.7) (3.13)

and there the joint density of states is infinite;
the largest gap appears at the center of the Bril-
louin zone, 6}=0, and is

gi —2P [ p 2+ (1+ V)2] &/2

One can define a Fermi energy by 2K~ =E~. For
the ease of complete dimerization v=0 and the
two gaps are equal (flat bands).

For an homoatomie chain one obtains, 'with

u, = n„ the expressions

g =
(~)4/2 Q e '" [($4„+pe " $4„4)

n

+e-*' (py4„2+e-'"y4„3)],

(3.14)

where v=j3,/p„v' =J33/p2 and p, C„q„and q2
are defined as follows:

p = [ (2 —v2 —v12)/($2 —1 —V2)] /2 (3.15)

C„={(]'-1—v')/[ P —v' - -'(1+ v")]]'/'
e, „(8)=+(P', +P', +2P,P, cos8)'/' =+P,g„

n= j.

(3 6)

7)„=tan ' ( v ' sin28/[((2 —v') + v ' cos28] ),
(3.16)

(3.17)

which are identical with the ones of Ref. 17. The
smallest gap (3.7) now becomes

&, = 2(P2 P, ), -
and the Fermi energy is Ez = (P, +P,).

(3.10)

(c«$43+ c4n ]44n-II+ c«2/43 2+ c4n 3$4n 3)p

(3.11)

8. Superalternated chain

The simplest case is the one representing the
polydiacetylene chain with four atoms per unit
cell whose length will be taken 2a (see Fig. 1);
this structure is formally obtained from the sim-
ply alternated chain by periodically substituting
every other P, with P,. The wave function is

2)2 =tan '[ v' sin28/(1+ v' cos28)]. (3.18)

W'e number the four energy bands from 1 to 4 in
order of increasing energy. In order to show
better the effects of the superalternation on the
band spectrum it is convenient to depict the bands
in the extended Jones zone'3 (Fig. 2); each pair
(1, 2) and (3, 4) can be viewed as arising by a dis-
continuity at the middle of the Brillouin zone of
the simpl. y alternated chain. With one electron
per atom the two lower (valence) bands are filled
and the two higher (conduction) bands are empty.
Wilson' also derived approximate expressions
of the energies and the wave functions by develop-
ing the coefficients in (3.12) in powers of (2P,
—p2 —p3)/(2p, + p, + p3) andkeeping only first-order
terms with respect to this parameter.



OPTICAL PROPERTIES OF ONE-DIMENSIONAL. . .

2.0

1.0-
th

C

0 "/za
CD
ha4
C

).0-

:"-0.V5 +
Q,2,,'. o

e
- 0.50

s/

0.25

m/a

derive the expression for the band energies and
wave functions for the corresponding polycumulene
chain by the following transformation: p, -p„
P, -I3„and then tt33 =P2. One obtains

e=eP, (1.+ 2(1+ v')

+[—"(1-v ) +(1+ v2+2v cos28)]'/'j'/'

(3.21)

The wave function is given by the same expression
(3.14) where now p, c„q„and r(, are given by

p = &/(t'-1 —")"
C =($ -1—v )' /[g' —1-s(l+ v')]'

q, =tan '[sin28/($' —1+cos28)],

q, =tan '[sin28/(v+cos28)].

The band structure of the monomers can also
be obtained by interchanging P, and P, and putting

P, =0; the four bands reduce now to four localized
states of energies (flat bands)

FIG. 2. Band structure and transition matrix elements
for a bond superalternated chain (infinite polydiacetylene)
and its equivalent bond alternated chain [infinite polyene
(tilted quantities)] (see text). The values of the param-
eters P; correspond to those adopted for the PTS-
diacetylene (P~=3.2 eV, P~/P2=0. 90, and P3/P2 1 50);
those of the equivalent bond alternated chain &vere cal-
culated from expressions (8.20) ( jf&/P2 =0.75, P, =4.0 eV).

P, =a(&,'-&, ), P, =4(&,'+&, ). (3.20)

From the formulas (3.13) and (3.18) one can

As can be seen in Fig. 2 or from (3.13) the
smallest energy gap is

E, = 2P, 1 v'+-,'(1+ v")
—[-,'(v" —1)'+ v'(1+ v')']'/')'/' (3.19)

at the edge of the extended Jones zone (when re-
duced in the first Brillouin zone this gap appears
at its center) where the joint density of states
is infinite; the l.argest gap,

E,'=2P, ( v'+-,'(1+ v")
+[~(v/2 )12 + 2v( 1+vI)2]1 2)1 2

appears at the center of the Jones zone (edge
of the first Brillouin zone). There are two other
intermediate gaps; appear at the boundaries of
the Brillouin zone and the joint density of states
is infinite there. This is a typical behavior of
one-dimensional systems.

For furtherreference it is convenient to deter-
mine the hopping integrals f3, and P, of an alter-
nated chain equivalent to the superalternated one
so that the smallest and largest gaps a,re equal
in both chains; one obtains

p [P2+ ~P2pp (LP2+P2)1/2]1/2 (3.22)

C. Two coupled bond alternated chains

We only consider the case of coupling between
two identical simply bond alternated chains and
denote by 2P' the coupling hopping integral (Fig.
3). There are four atoms per unit cell whose
length in the direction of the chains is a. The

2.0-

CL
~ 'f.5
4

0.5

~ 0.0

LLI

-0.5

-1.5

FIG. 3. Band structure for the two coupled bond alter-
nated chain system (short-range coupling) in the' centro-
symmetric (a) and noncentrosymmetric (b) configura-
tions. The band structure for zero coupling (single bond
alternated chain) is represented with the dotted curves;
the values of parameters are P&/P2 =0.75 and P'/P2 =0.10.
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As can be seen in Fig. 3, there are two possible
configurations for the coupling, the centrosym-
metric and the noncentrosymmetric. '9

For the centrosymmetric case applying the
periodic boundary conditions and the Bloch the-
orem for each chain one obtains

(n —e)c, +(P, +P, e ' )c,+0+0=0,

(P, + P, e' )c, + (n —e)c2+ 0+ 2P'c,' = 0,

0+0+ (n —e)c,'+(P2+P, e ' )c2=0,

0+2P'c, + (P, +P, e'e)c', + (n —e)c,' = 0,

which has the following four band solution:

e; = *[(e'.+ p")"+p'] = p.r;,

(3.23)

(3.24)

wave function is
N

(C2n-142n-1 + C2n 42n + C2n-1 42n-1 + C2n 42n)

it is likely that the centrosymmetric one is the
most common.

IV. TRANSITION MATRIX ELEMENTS: DELOCALIZATION

Before proceeding to the description of the
linear optical. properties and the way they are
affected by the constraints along the chain, a pre-
liminary insight into how these constraints re-
strict the extension of the m electrons can be
gained by calculating the rr-electron delocaliza-
tion. This can be expressed in terms of the tran-
sition matrix elements between two bands
(nk( x) n'k') which are directly related to the quan-
tities Q„„(k) needed for the calculation of the
linear susceptibility; there is a cl.ose relation-
ship between this latter quantity and the delocal-
ization. Following Blount' we have

xd„d*= ' —
I d"„«d„dx n„„(k(k(k —k')).

(4.1)

where

+e '"[(&./C;)y, '.+e'"y,'.„l&,
(3.25)

The delocalization is most conveniently defined
as the extension of the Wannier functions" as-
sociated to the valence band. The Wannier func-
tion centered on the nth unit cell is defined as

en = p2&, = (p ', + p2+ 2p, p, cos 8)'1 ',
e" (p +p=e*')"/(p +p e *')" +„"(x)=~g e '"" p„(x).

k
(4.2)

C,. =g,. /(g', +g21 P';
I

in Eq. (3.24) the "+"sign is for i =3, 4 and the"-"sign is for i = 1, 2.
On the other ha.nd, for the noncentrosymmetric

case with the appropriate modifications in (3.23)
one obtains the following four band solution:

y,. =
(2~),g, g e*"'([0,„+(&,/&, )e- ne, „.,]

n

+ [el.+(C./t; )e '"y.'. ,1]

(3.26)

Thus in both cases the same band structure is
obtained but the band wave functions are different.
The variation of the band energies over the Bril.-
louin zone is shown in Fig. 3. The difference be-
tween the two configurations in symmetry and
wave functions is strikingly reflected in the ab-
sorption spectrum as wilI. be shown below. In
a forthcoming paper it will be shown that the non-
linear optical properties are strikingly different.
The occurrence of one configuration rather than
the other in any particular case will depend on
many factors, energetic, chemical and structural. ;

Wannier functions belonging to different unit cells
are orthogonal to each other. A measure to their
extension is the mean square spread to the el.ec-
tron position coordinate in the Wannier function

representation

( ax') -=((x -( x) )') =( x') —( x) ', (4.3)

(4x') = Q Q ( Q„,(k)~',
2

where the factor 2 takes account of the two spin
states. On transforming the summation to an in-
tegration and introducing (9' = Ad, where d is the
unit cell length one has

1 7)

i n„, (e )['de'=D'.
mS v, c

(4 4)

Thus the calculation of D reduces to that of 0„,
already defined by (2.18).

In performing the integration over x in expres-
sion (2.18) the quantities f/*„Q„xd arxe needed;
we adopt the Hiickel approximation"

(4.5)

where the angular brackets ( ) denote the aver-
age over the Wannier states. One ean easily show
that for the valence-electron states
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(v' —v") —$' [ v' ——,'(1+ v")]
5'[&'- '--'( + ")] (4.16)

which shows that the superalternation further
reduces the delocalization. Here also one can
define the parameter //2=4I Q»(8=11)l /a, and we

have

The reduction to two independent chains is not
possible; transitions between any two bands are
allowed. As will be seen below this strongly af-
fects the one- and two-photon absorption spectrum
and other nonlinear optical properties. The de-
l.ocaliz ation is

C. Two coupled bond alternated chains

The two configuration, the noncentrosymmetric
and the centrosymmetric ones, differ according
to whether even sites of a chain are coupled to
even sites or to odd sites, respectively, of the
other chain. This is reflected in the wave func-
tions which are in general of the form g =g,
+ e' g2(p =0 for the noncentrosymmetric andi$

Q = 1) for the centrosymmetric configuration),
where {{P, and I{I2 refer to the two chains of the pair.
In the limit of no coupling this relative phase Q

is irrelevant; hence, care should be taken while
evaluating the transition matrix elements Q„„i
so that with &' =0 one recaptures the uncoupled
chain results, Eqs. (4.6) and (4.9). With an ap-
propriate modification in the Genkin-Mednis ap-
proach, discussed in detail in the forthcoming
paper on nonlinear optical properties of one-di-
mensional semiconductors, we obtain the fol. lowing
expressions for 0„„.and D in the two configura-
tions.

For the noncentrosymmetric configuration one
has

a 2 (1 —v ) 2v6 sin{I
12 2'1 4 r (g2 + 6I )1/22 g (g2 QI2)

(4.17)

26" 1+v' '] a-D~+ 2
—1+3—

1 —v' 1 —v' 4' (4.23)

which shows that the absence of inversion sym-
metry reduces the electron delocalization.

%e now proceed to calculate the contribution
of the chains to the dielectric constant at optical
frequencies. This contribution, 4w){2{'I(u1), is
given by (2.19). The o-bond contribution can be
incorporated according to (2.14) and will be con-
sidered in Sec. VI for some particular systems.

The case of the heteroatomic simply alternated
chains is the simplest to deal with and allows one
to gain a lot of insight on the role played by the
different constraints. The expression of ){,' (1u)

is obtained by simple substitution of (3.4) and
(4.6) in (2.10). The integration can be performed

0
)IC

0 50-
fh

C

V. OPTICAL PROPERTIES. DISPERSION AND ABSORPTION

0„=ta(1 —v')/2(i;22+ g2 ) (2 = 1, 2, 3, 4),

all. the other elements vanish. Thus in the non-
centrosymmetric configuration the coupled bond
alternated chains behave as two uncoupled atom
and bond alternated chains with an effective hetero-
atomicity (atom alternation) 6' =p'/p2. The de-
localization is

a (1+ v')'/'
I1 4 g [(1+ v)2+ 6I2] 1/2[(1 v)2 6I2] 1/2] 1/2 I

(4.18)

and one sees that it behaves as (4.7).
For the centrosymmetric configuration one has

3

OI

10-

0
CI

50-
th

C

30-
3

E 10-

0.1 0.3

(a)

iQ22 014 4 '1 a( v 1 )//II

ia
Q- =—1l

1 v2—1+ 2
Ep

012 =0„=-,'a2v6' sin8/g (&2+ 6")

0,,= Q3~= 0)

(4.19)

(4.20)

(4.21)

(4.22)

0.1 0.3 0.5 0.7 4~/p

FIG. 5. Heal and imaginary parts of the linear sus-
ceptibility pi {uI) {in units of It 2

= e oa/4ptl for a bond
alternated chain (infinite polyene) for three different
values of the relaxation time (P&/P2 =0.75, 5//'P&Tp = 0.005).
(a) w=~p, (b) 7'=10 7p, (c) ~=10 7'p. %ith slight changes
these curves also valid for a polydiacetylene.
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by computing the real and the imaginary parts
of )Il~'~(((() given by (2.19). In Fig. 5 we have shown
the behavior of these two quantities for v=0. 75
and three different values of the relaxation time

The relaxation time T was assumed to be k
independent. Unless 7 depends strongly on the
wave vector k, only the value of v' near the edge
of the Brillouin zone, where the density of states
is infinite and the electrons are deloealized to
their maximum extent, is relevant. In fact as
can be seen from Fig. 5 the system behaves al-
most as a single oscillator of frequency E~/k.

This appearance is sometimes used as an argu-
ment to support the hypothesis of this being an
exciton sta, te rather than band-to-band transi-
tions. " There are no real crystals directly
related to the case of simply bond alternated
chains which can be used to estimate 7; But from
other more complicated systems it ean be in-
ferred that T-10 "-10 "' sec at room temper-
ature indicating an electron-electron scattering
mechanism. For r -~ one can obtain X

' (((() in
closed form in terms of elliptic integrals; one
has

e'gg 2 c d —gr g' c —d c2 —d2 C2 d2(i)(~) c2F
8P zS"c' c' —8' c' —g ' ' c' C2 0 0 0

(5.1)

where E(k) and II(n, k) are the complete elliptic integrals of the second and third kind, respectively,
c' = p

' + (1 + v)~, d ' = l(,
' + (1 —v)', and Wo = km /2 p, .

Of particular interest is the quantity )I, (0) given by (2.22), which is related to the refractive index n
in the transparency region, a«E /h Agai. n the integrals can be performed in terms of the first and
second kind of elliptical functions and we obtain

(5.2)

where P = (4 v/[ p,
' + (1 + v)'] }"( '. A case of specific

interest corresponds to systems with no hetero-
atomicity (p, =0) and large delocalization (v=1);
we expand the elliptical functions in powers of
the delocalization pa, rameter and keep the leading
term with maximum contribution:

e 2 82 E 2

12mP2
"

3nP2
(5.3)

(5.4)

which shows the same dependence on the Energy
gap E~ as one obtains in Penn's model, " the
crudest band model used to estimate g

' in a
cubic semiconductor. This remarkably same
square dependence on Ez/E obtained for a one-
dimensional system in the tight-binding approxi-
mation as well as in the pseudopotential Penn's
model indicates that the latter is in essence a
one-dimensional model. This statement gets
further support by the identical gap dependence
in both models for the third-order susceptibility
as well. '

Penn's model has been used as a starting point
for the Phil. l.ips-van Vechten24 dielectric descrip-
tion of the tetrahedrally coordinated heteropolar
and homopolar semiconductors. For the case of
an heteroatomic chain as mell, the inverse-square
dependence of the energy gap persists as long as
the electrons are sufficiently deloealized so that
v is close to 1. Using (5.2) we obtain

where now E, =2P, [(u'+(I —v)']'~'. This is to
be compared with the expression postulated by
Phillips and van Veehten. We stress that the
inverse-square dependence on E~ of y('l(0) is a
consequence of strong delocalization (v= 1). Al-
though delocalization introduces a band structure,
the details of the latter are irrelevant, the oscil-
lator strength being maximum at the Bril.louin-
zone edge, and the system can be approximately
described by a single energy gap E, as assumed
in the Phillips-van Vechten theory. Their pa-
rameters E„and C correspond to 2P, (I —v) and
2p2g, respectively, in our case.

For the ease of localized bonds, v=0, expres-
sion (5.2) becomes

(5.5)

This energy-gap dependence of g
' is the same

as the one obtained by" Harrison in his description
of the tetrahedrally coordinated semiconductors.
This is not totally surprising since his approach
is a tight-binding one and the bands are construct-
ed by coupling of four chains in the four directions
of the bonds in the crystal. Moreover he computes
the susceptibility by adding the bond polarizabil-
iti.es (v=0).

Thus these two descriptions can be viewed as
limiting cases of the present one indicating their
region of validity. It also gives an indication for
the reason of their success in the ease of the
tetrahedrall. y coordinated semiconductors. The
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valence electrons there, despite the three-di-
mensional character of these systems, keep mem-
ory of their being bonded along the four 111 di-
rections conveying thus to the system a one-di-
mensional character.

The case of the superalternated homoatomic
chains is more interesting because it is directly
related to polydiacetylene polymers; large defect-
free crystals with good optical quality of such
polymerized chains have been grown. " The ex-
pression of g~'~ is quite involved algebraically
to be given here; it contains four terms as in-
dicated in (2.19) arising from transitions between
the two valence and the conduction bands. The
calculation shows that only the contribution from
the pair of bands (1, 4) and (2, 3) are important
and the other two. have been neglected; between
these two the contribution from the pair (2, 3) is
by far the most important one. Viewed in the
extended Jones zone this result can be easily
understood when compared with the case of a
simply conjugated chain. In Fig. 5 we have plotted
Re)t,' (~) and Im)t, ' (~). Again the details near
the gap are strongly sensitive to the re1.axation
time 7 and the conclusions drawn previous1y pre-
vail here too. From Fig. 5 we find that both the
real and imaginary parts are simply peaked and
this has been observed experimentally too at room
temperature. However, experiments show" that
below a critical temperature both quantities,
Reg," (v) and Im)IP (~) consist of two peaks of
roughly equal strength and form. The origin of
this splitting will be discussed in the next section;
it is ascribed to the chains being coupled in pairs.

For the refractive index of the polydiacetylenes,
in the transparency region, E~/ff» u, the quantity
of interest is y„' (0). An analytic expression like
in the case of polyene chains could not be obtained.
However, by plotting this quantity versus D' or
N, , given by (4.15) and (4.16), respectively, a
square dependence is again obtained; the depen-
dence on the gap E, , given by (3.19), on the other
hand, seems more involved except for v™1

0

0

200

100

0
0.48 0.50 0.52 0.54 0.56 0.58

m')

where one obtains the results of the simply al-
ternated chain. For crystallized monomers with

P, =0 and interchanging JB, and P, one obtains the
result which can also be obtained by adding their
polarizabi lities.

The case of the two coupled simply alternated
chains and polyacenes, shows some very inter-
esting features. The noncentrosymmetric con-
figuration is the simplest to deat. with since it
reduces to two uncoupled heteroatomic bond al-
ternated chains. Indeed the expresston of )f (~)(i)

for this case has the same behavior as the one
in Fig. 5 and for &=~ is given by the same ex-
pression (5.1) provided we replace p, by the ef-
fective heteroatomicity &' .

Far more interesting is the case of the centro-
symmetric configuration. In this case transitions
between any two bands are allowed and )I (to)(j.)

is given by the sum of three terms, as follows:

FIG. 6. Real and imaginary parts of the linear sus-
ceptibility g (co) in units of go=e oa/8P2) for two
coupled bond alternated chains polymer in the centro-
symmetric configuration (P, =4.00 eV, P&/P& =0.75,
4P'/P&=0. 015, adnh/)&~=0. 00)3. The values of the
parameters were chosen so that each chain is equivalent
to a PTS-diacetylene chain (see text). The two peaks
come from the 2 3 and 1 4 band-to-band transitions
near the edge of the Brillouin zone.

(5.6)

Clearly the main contribution to each of the three
terms comes from the edge of the Brillouin zone
8=m where the joint density of states of each pair
of bands is infinite. However not all three terms
contribute equivalently. Because 0» = Q, 4 van-
ishes there, the contribution of the third term
in (5.6) is completely masked by that of the other
two; both Im)t ' (m) and Re)ti'i(&o) show each two
peaks corresponding to the gaps E» and E„, re-

spectively. The distance ~& between the two
peaks in Imx '

(&o) is ha-4p'/lf and for p'-0 the
two peaks emerge to the one expected for a sim-
ply bond alternated chain. In Fig. 6 we have
plotted the behavior of imp '

(&u) and Re)t ' (to)
for the special case of 4P'/P, =0.015 using the
relaxation time K/P, v = 0.003 for the two peaks.
As we shall see such a behavior in the absorption
spectrum has been seen in polydiacetylenes and
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is a general feature of coupled systems. In a
forthcoming paper it wil. l. be shown that this has
some important implication on the two-photon
spectrum as well.

VI. SPECIAL CASE: POLYDIACETYLENE POLYMERS

We shall specialize the parameters of the pre-
vious models to treat some particular one-di-
mensional systems. In doing so the idealizations
and simplifications incorporated there shouM be
clearly borne in mind. The most crucial ones
are the neglect of the electron-electron correla-
tion and the assumption of independent and in-
finite chains. The interpretation to be given to
the parameters a and P as well as their compu-
tation strongly depend on these assumptions. This
is because these parameters are obtained either
by fitting empirically a physical property (op-
tical spectrum, delocalization and ionization ener-
gies) or by semiempiricai calculations. "

These different methods quite often yield dif-
ferent set of values for n or P for a given sub-
stance. For the carbon-carbon bonds in the aro-
matic substances there have been fairly detailed
studies' for the values of P and empirical relations
between P and the bond length have been proposed.
These values, however, cannot be used for the
linear carbon chains like the polyenes or poly-
diacetylenes; there it seems that higher values
for P must be used"' than those adopted for aro-
matic substances. Further in the case of the
linear carbon chains the choice of the values of

P is drastically affected by the assumption made
about the electron-electron repulsion" "; when

electron-electron repulsion is neglected in order
to reproduce the main features of the optical spec-
trum the appropriate values of P and the ratio
@= p„/p, are much lower than those used when
electron-electron repulsion is included. It is
clear for instance from (5.3) that even small
changes in the ratio P, /P, can lead to order of
magnitude changes in the computed values for
x"'

There are difficulties in synthetizing polymers
with polyene chains or other simply bond alter-
nated chains and there are no data concerning
optical properties of such systems. Polydia-
cetylenes is a more convenient class of materials
where the considerations of Sec. I-V can be ap-
plied. This is because many such polymers have
been grown"'" as large defect free crystals of
good optical quality so that reliable measure-
ments can be performed. In Table I we give a
list of some polydiacetylenes differing from each
other by the attached molecular sidegroups R,
and R, . Because of the mesomeric and inductive
effects' of the sidegroups on the chain electrons
there is an apparent heteroatomicity along the
chains, in Secs. I-V this heteroatomicity has
been altogether neglected because it was found
that it affects only slightly the linear optical prop-
erties. As will be seen in a subsequent publica-
tion this approximation is not justified in some
cases when it comes to reproduce the nonlinear
optical properties. Further because of the overlap
of the sidegroups of neighboring chains short
range coupling between the chains seems to play
an important role in some of these polymers as
will be discussed below.

TABLE I. Optical coefficients for polydiacetylenes. The energy gap E~ is calculated from (3.19). The values P~
——3.2

eV and p3/p2
——1.50 are used for all polydiacetylenes, those of p&/p& are given in column seven. The dielectric constants

E~((0) and e~(0) are calculated from (2.2 1) and (2.12), respectively. In column five we give the values of the polarizability
& needed for the calculation of e,~(0) and ej (0); they are calculated by adding the average polarizabilities that form the
two radicals R; per unit cell (see Fig. 1) (those of the four C-C 0 bonds per unit cell of the chain backbone are not in-
cluded). The volume of the unit cell v =N~ =2a/cr, where 2a (=4.9 A) is the unit cell length along the chain (see Fig. 1)
and cr is the density of chains per unit cross-sectional area; the values of 0 for the PTS [bis-poly(toluene sulfonate)]-
and TCDU [bis(phenylurethane) of 5, 7-dodecadyine-1, 2-diol]-diacetylenes are known experimentally (Refs. 27 and 30),
those of the other polydiacetylenes listed incolumn six are computed by assuming that n/v is a constant, equal to its
value for the TCDU-polydiacetylene. The adopted simplifications and uncertainty in the choice of the appropriate values
for the bond polarizabilities given in Table II introduce an over-all uncertainty of 10% in the calculated values.

Poly-R;-diacetylene

Calculated
Q 0

(eV) E~~(0) e~(0) (10 cm ) (10 cm ) P f/Pp

Experimental

(eV) E~t(0) E'g(0)

CH2-0- CO- Q
CHp-0-CO-NH- f
CH2-0-SOg-Q-CH3 (PTS)
(CH2) 3-0-CO-NH- f
(CHp)4-0-CO-NH- Q (TCDU)
CH2-0-CO-NH- Q-CpH5
(CHg) 3-0-CO-NH- Q- CgHg

2.02 3.95
2.02 3.85
2.02 3.70
2.27 3.20
2.27 3.10
2.02 3.4
2.27 3.1

2.7
2.7
3.0
2.7
2.7
2.7
2.7

0.284
0.312
0.372
0.384
0.420
0.388
0.464

1.26
1.17
1.05
0.92
0.86
0.92
0.78

0.90
0.90
0.90
0.86
0.86
0.90
0.86

2.02 3.53 2.5

2.27 3.24 2.72
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TABLE II. Values of the average polarizabilities for the different bonds and molecular groups used for the calcula-
tion of the B;-polarizabilities e given in Table I; the values are taken from Tables 18 and 19 of Ref. 12. The value of
the SO-bond polarizability is uncertain.

Bonds or molecular group C-H C-C C-0 C =0 C-N N-H S-O -CH2 -CH3 -p -Q-CH3 -p-C~H5

Polarizability (10 cm ) 0.066 0.050 0.057 0.130 0.069 0.070 (0.141) 0.171 0.200 1.00 1.20 1.37

In Table I we give the values of e, i (0), e~(0),
and 4& for some polydiacetylene polymers dif-
fering from each other with respect to the attached
molecular sidegroups 8, . The contribution of
the latter to the dielectric constant was evaluated
using (2.12) and (2.14); an isotropic polarizability
was assigned to each molecular group and the
additivity assumption way used. The values of
the polarizabil. ities for different molecular groups
are given in Table II. The contribution of the
m electrons along the chain direction was evaluated
along the lines of the previous section. The agree-
ment with existing measured values is good. In
Table I we also give the values of the optical gap
E~ as calculated from (3.19).

For all the polydiacetylene chains the same
values for P, was used. This value was chosen
to be 3.2 eV for a "double" bond of length 1.36 A.
Further the same value, 1.5, for the ratio P3/P,
was chosen irrespective of the attached sidegroups
A, ; the effect of the latter was included by using
different va, lues for the ratio P, /P, and these values
are given in Table I. The same value for n was
used for all. four carbon atoms in the unit cell.
Cl.early this is an approximation since the four
carbon atoms of a unit cell are not al.l in the same
environment. The band states can be explicitly
obtained even when two different values are used
for n for the two pairs of carbon atoms; no at-
tempt, however, was made to compute the di-
electric properties in this case because of dif-
ficulties in assigning a P&i«i values to n.

The ref lectivity of the PTS [bis-poly(toluene
sulfonate)j-polydiacetylene is depicted in Fig. 7
where the absorption and dispersion curves are
also included and compared with the experimental
results of Bloor ««."at room temperature.
The agreement is satisfactory. A constant re-
laxation time T=10 "sec was used for all. band
states. This is rather drastic approximation in
view of the singular character of the density of
states near the edges of the Brillouin zone. The
appearance of the curves is extremely sensitive
to the values of 7 and in particular to its depen-
dence on the wave vector k along the Brillouin
zone. The theoretical curve for the ref lectivity,
with a constant relaxation time, independent of
the wave vector, seem to fall off much slower

in our opinion this is not justified within the Huckel
approximation and as we show here this is not
necessary when the Genkin-Mednis" expression
for the linear susceptibility is used. The ad-
vantages of this approach are particularly trans-
parent when one considers nonlinear properties

60-

40

20
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I

18000 20 000 22000 4l (cm=')

FIG. 7. Reflectivity of a PTS-diacetylene polymer
crystal along the chain direction: (a) calculated curve
(b) experimental curve from Bloor et al . (Ref. 28). In
the calculation the following values were used P& =3.2 eV,
p&/p2=0. 9, p3/p&

——1.50, v=0.86&&10 cm, 2a=4.9 A,
k/P2w =0.002.

past the main peak at &u, =E,/g= 16300 cm ' (=2.02
eV) than the experimental curve. The two weaker
peaks in the experimental results, situated a
distance ~~ =2100 cm ' and &co= 1500 cm ', re-
spectively, from the main peak correspond to the
expected'9 frequencies of the vibrational modes
of the C=C and C =C bonds; These peaks cannot
appear in our calculated curves because we have
altogether neglected coupling of electronic and
lattice motion. This would clearly affect the fal. l
off of the calculated curves.

Wilson' has also performed a calculation of
the optical properties of a polydiacetylene; be-
sides the unnecessary approximation to compute
the Bloch states stated previously, this author
introduces a drastic assumption concerning the
matrix elements of ( nk( P, ~

n'k), where P, is the
electron momentum operator and which amounts
in assuming an explicit form for the atomic or-
bitals Q, in order to compute quantities like
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as will be shown in a subsequent publication.
The above used experimental results of the

optical properties of the polydiacetylene polymers
were obtained at room temperature. The picture
drastically changes at lower temperature; it
has been found by Bloor et al."that the absorp-
tion spectrum of the PTS-polydiacetylene polymer
at 4 'K has two main peaks -500 cm ' (0.062 eV)
apart and of comparable strength. When the tem-
perature is raised the spacing between the two
peaks diminishes, the two peaks moving simul. -
taneously, and at -160'K they emerge to each
other to a single peak, namely the main peak at
+~ =16300 cm ' observed at room temperature.

This behavior of the spectrum of the PTS-poly-
diacetylene polymer at low temperatures is simi-
lar to the one predicted for two coupled chains
in the centrosymmetric configuration (see Fig. 6)
and indicates that in this polymer at low tem-
peratures the chains are coupled in pairs. This
chain pairing may be due to hydrogene bonding,
van der Waals forces, or direct interaction through
the sidegroups of two neighboring chains; the
separation of the two peaks is a measure of the
coupling of the two chains. We should point out
that the coupling takes place between the two chains
of the neighboring unit cells along the crystallo-
graphic a axis. Although x-ray studies"' in-
dicate that there are two chains per unit cell along
the c axis, these chains can be assumed to be
essentially independent at low temperatures. This
chain pairing should result in the doubling of the
a-direction unit-c ell parameter and the r ecent
observation of such a phase transition below
160'K supports our point of view. In order to
obtain an idea about the magnitude and the effect
of this coupling at 4'K let us replace each poly-
diacetylene chain by an equivalent simply bond
alternated (polyene) chain with interchain reso-
nances energies P, and P, defined by (3.20) and
let us suppose that these chains are coupled in
pairs in a symmetric configuration forming a
"polyacene"-type chain. For such a system the
results of Sec. III C give the absorption spectrum
depicted in Fig. 6 which is strikingly similar to
the one obtained by Bloor et al. for PTS-poly-
diacetylene at 4'K; in particular the absorption
spectrum clearly shows two peaks of equal
strength. According to (3.24) and the bands struc-
ture shown in Fig. 4 these peaks arise from tran-
sitions at the edge of the Brillouin zone between
the bands 1-4 and 2- 3 and are 4P' apart where
2I3' is the coupling strength between the two chains.
The experimental value of the separation of the
peaks at 4'K is 500 cm ' (= 0.062 eV) which gives
P'= 0.015 eV. In order to account for the tem-
perature dependence of the separation of the two

peaks the actual origin of this coupling must be
clarified and the statistical mechanics of the
coupling must be worked out. Because of the
low value of P' we can safely rule out the hydrogen
bonding between the chains in favor of a short
range coupling through the side groups of two
neighboring chains. Further the fact that the
double peak appears once the polymerization starts
and that this behavior is independent of the degree
of polymerization indicates that the chains start
polymerizing in pairs.

The previous considerations refer to two coupled
simply bond alternated chains and not to the actual
coupled polydiacetylene chains; the main features
and order of magnitude of P', however, should
prevail even there. Further experimental. study
of the temperature dependence of the one- and
two-photon absorption spectrum together with
resonant Raman effect will be needed before a
more detailed theoretical study of the realistic
system can be undertaken.

VII. DISCUSSION AND CONCLUSION

In concluding this work some comments are
called upon the assumptions inherent in the model.
As stated in Sec. VI we have totally disregarded
electron-electron repulsion and on the same token
any excitonic structure in the optical spectrum
of these systems; further we have assumed that
the chains are independent and infinite.

The main effects of a short-range coupling be-
tween two chains have been treated in the present
work and the ones expected when the assumption
of independent chains is abandoned and a long-
range, two- or three-dimensional ordering is
established will be considered in a forthcoming
paper. The main modifications that are expected
when the chains are of finite extent have also been
discussed elsewhere. "' An important aspect,
treated therein, is to what extent the main char-
acteristics of the optical properties for an in-
finite chain pertain to a finite one; this is a crucial
point since chains in many one-dimensional sys-
tems because of impurities or other defaults,
break down to a succession. of chains of finite and
variable length N while others have never been
synthetized with a very long length. In Refs. 9
and 31 it is shown that for simply bond alternated
chains (e.g. , finite polyenes) within the present
one-electron tight-binding approximation as long
as N~&N, where N„ is the delocalization parameter
of the infinite chain, then the electron in the finite
chain with same values for the parameters n and
I3 doesn't feel the end points of the chain and be-
haves as in an infinite chain; in particular the
linear polarizability for a finite chain shows a
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square dependence on the delocalization parameter
and for a given N„one obtains only slight changes
in the optical properties by increasing the chain
length N as l.ong as N„& A Similar conclusions
were obtained when superalternation or short-
range coupling is included.

The effects arising when allowance of the elec-
tron-electron repulsion is made are much more
difficult to evaluate and they are expected to be
quite drastic. In fact the whole picture changes
when the electron-electron repulsion energy on
one site y is comparable to the intrachain hopping
(resonance) energies p. As a first step instead
of the tight-binding one-electron Hamiltonian used
here one should proceed from the Hubbard Ham-
iltonian" and use an approximation scheme in
order to obtain the electron states; the Hartree-
Fock approximation" or the somewhat more in-
volved Parr-Pariser-Pople approximation' are
the most often used. In such a scheme the lower
states are interpreted as exciton"'" states. From
the existing studies along these lines it seems that
the effects arising from electron-electron re-
pulsion are negligible as iong 2y/Po«1, where
P, is the mean value of the intrachain hopping
energies along the chain, and this is the situation
adopted in the present work. Consequently the
narrow peaks in the optical spectrum were at-
tributed to band-to-band transitions. To our
opinion because of the discrepancies in the choices
of values of J3 and because of the involved theo-
retical background needed to describe excitonic
states no clear cut argument can be given in favor
or against the present description. The agree-
ment with the experimental results is good and
as will be seen the present description allows
one to satisfactorily account for the nonlinear op-

tical properties, as well. We remark that the ab-
sence of photoconductivity" at the absorption peak
has been used as a strong argument in favor of
the exciton theory. However such a behavior is
expected even in band picture and owes to the one-
dimensionality of these materials. The absorption
peak occurs at the Brillouin zone edge as there
the dipole transition strength shoots up at a dra-
matic rate. At the same point, however, the
joint density of electronic states J is infinite .

leaving the electrons totally immobile (eiectron
velocity v-t '). Alternatively we may say that
the effective mass of the electrons is infinite and
at the absorption peak they cannot respond to the
external voltage. The ability of the band theory
to quantitatively account for most of the experi-
mental observations in a simple and unified way
and the lack of such a quantitative support for the
exciton theory puts the former on a more firm
basis.

Although our description was intended for the
one-dimensional systems we were able to obtain
a connection with the Phillip van Vechten theory"
as well as the Harrison's bond orbital model"
both developed for the dielectric characterization
of the tetrahedrally coordinated semiconductors.
It turned out that in a certain sense these two
treatments are extreme cases of the present one.
This is due to the characteristic singularity in the
moint density of states at the edge of the Brillouin
zone in one-dimensional systems.
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