
PHYSICAL RE VIE% B VOLUME 15, JAN UAR Y 1977

Theory of bound states induced by disorder and isoelectronic potentials: Ga(As, p):N
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A theory is presented in which bound states arising from a combination of long-range and short-range

isoelectronic potentials are shown to account for recent experimental data in Ga(As, P):N. These results alter

our physical picture in this system. Numerical calculations agree with experiment. They indicate that the long-

range potential may correspond to a deformation potential which arises from a uniform, slowly varying

dilation of the lattice constant in the region of the nitrogen atom. Analysis of experimental data suggests an

expansion of 0.9% of the lattice constant.

I. INTRODUCTION

Motivated by practical considerations, a great
deal of research has concentrated upon the funda-
mental luminescent properties of III-V mixed-
crystal alloys containing nitrogen, an isoelectronic
impurity. The system Ga(As, P):N (of which GaP
is a component) has received most of this atten-
tion' because of the high quality of vapor-phase
epitaxial crystals and the ease with which P-n
junctions are fabricated. ' From these studies, a
picture of the properties of nitrogen in this system
has emerged. The earliest experimental work, ' in

QaP, has shown that, because of its strong lum-
inescent character in that indirect material, nitro-
gen is best described by a short-range electronic
potential, with resulting delocalization in k space
of the wave function. This has led to the conclu-
sion' that the one-band one-site Koster-Slater ap-
proximation predicts (at least qualitatively) the
features of the nitrogen state in QaP, which serves
to justify its almost universal use in theoretical
treatments. ' ' Furthermore, experimental
studies '' jn QaP contajnjng a hjgh njtr'ogen con-
centration (N) indicate that sharp structure arising
from N-N pairs appears and the shape of the total
photolurninescence spectrum manifests a marked
dependence upon ¹ Extensions of these studies'
into Ga(As, P) indicate"'" that N-dependent struc-
ture persists for 0.9~x(1 (i.e. , x is the mole
fraction of P and x = 1 corresponds to GaP).

When, however, x(0.9, the sharp N-N structure
is replaced by a single broad peak which has been
considered, "'-'" until recently, to be the envelope
of the N-N pair structure broadened by disorder
effects in the mixed crystal. Besides the broad
N-N peak, there persists a line corresponding to
that arising from single nitrogen atoms and which
has been labeled the "A. line. "' Studies at still low-
er'" "x (i.e. , nea. r the direct-indirect crossover
at x =x,) indicate effects which have been inter-
preted within the Koster-Slater approximation. "

The first of these is that of band-structure en-
hancement' (BSE), which predicts that the strong
k =0 component of the short-range nitrogen state
increases tremendously as the energy of the state
approaches that of the k=0 band minimum (i.e. ,

Er). Another effect is that the state becomes res-
onant"" for x(x, .

The results of recent experiments, " "however,
suggest that much of the picture for x &0.9 is in-
correct. Systematic studies" indicate that the
shape of the spectrum in this region is n«a func-
tion of N, so that N-N contributions are unlikely.
The measurements" imply that what had been iden-
tified as a broad N-N peak is, in fact, a strong
phonon sideband of the single nitrogen state. More-
over, experiments"" in the range 0.35(x & 0.55
display another peak, higher in energy than that
arising from the single nitrogen. Pressure mea'-
surements" show that this state follows the I"

(direct) minimum for x ( 0.45 and the X (indirect)
minimum for 0.45~x ( 0.55. Although these re-
sults, which alter our physical picture drastically,
must be examined systematically, we accept them
and present an explanation here. A brief version
of some of these results has been published. "

In the theory presented here, "we show that these
phenomena can be understood if there is a long-
range, slowly varying potential (V, ) as well as the
usual short-range potential (V,), associated with
the nitrogen atom. The only property we require
of this potential is that it be strong enough (when

V, =0) to produce bound states associated with both
the X and I' minima (in this work, we make the
conventional' assumption that only the I' and X
minima are important). The energies of these
states, denoted by Nx (energy WN ) and Nr (energy
W„),respectively, and the short range state, denoted
by N (energy WN), which appears when V, =0, are
illustrated schematically as a function of x in Fig.
1(a). When these potentials are combined, the re-
sulting energies are illustrated schematically in
Fig. 1(b). Near the point where W„=WN the states
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split into two branches. The energy of the lower
branch (N ) is parallel to E» (the energy of the in-
direct minima) above this point and to Er below,
as observed in experiment. Examination of the
momentum amplitudes of these states at k=0
(which reflects the strength of the radiative tran-
sition) manifests a strong mixing of the Nr and N

amplitudes. Since V, is assumed to be long range,
the k=0 momentum amplitude of Nr is large. This
results in a strong enhancement of the transition
from the N state well above the point in x where
W~ =WN, even though the energy of this state, E
=W~ in this range, the amplitude has strong mix-
ing from Nr which overshadows the BSE term
[which is proportional to (Er -E } '= (Ez-WN} ',

FIG. 1. (a) Schematic illustration of composition de-
pendence of the energies of bound states associated with
the I (NT) and X(NX) conduction-band minima which are
produced by the long-range potential (V&) in the absence
of the short-range, isoelectronic potential (V~). Also dis-
played is the energy of the state, N, produced by V8 (in
the Koster-Slater approximation) when V& =0, which is
the subject of previous work (Hefs. 3-9 in the text). This
figure corresponds to a V& which is composition inde-
pendent. (b) Schematic illustration of states resulting
from the combined potential V~ +V& (where V~ is treated
within the Koster-Slater approximation). In the region
where the energies of the N and Nr states cross, a
splitting into two branches occurs. Here it is assumed
that the Nr and N~ states are localized in k space about
their respective minima.

«1 in this rangej. Below WN=WN also, the am-
plitude of N has strong Nr character until the
point W„=W„. The upper branch (N„energy
E,) has a, different character. Above W„=W„,N Nr&

E+ -—WN and below E, =W~ (which eventually
enters the I' continuum). In the amplitude, the Nr
and BSE terms enter with different signs. Since
E+ -Er in this case, the magnitude of the BSE
term increases until it cancels the contribution
from Nr for some x below that where Sz —-W& .
At still lower x, the BSE term dominates, so that
the k=0 amplitude of N+ diverges as E+-Er.
When 8'z —-WN, a similar phenomenon occurs.r
These are discussed in detail in Sec. II.

Until now, we have not specified a model of the
long-range potential, V„because the features we
have discussed are general. The origin of such a
potential is not clear. If, however, there exists a
region of expansion of lattice constant surrounding
the nitrogen atom, then, according to the deforma-
tion potential ideas of Bardeen and Shockley, "an
attractive potential, E,„b,(r) is produced [E,„&0 is
the deformation potential constant, and a(r) is the
dilatation, ~6 (volume)/volume classically]. If 6
varies slowly over a wide region, we have an
origin of the bound states associated with the I'
(strong k =0 components) and X (weak k =0 compo-
nents). In Sec. III, we model V& =

E,„s(r) by a
square-well potential of strength U and radius a.
Applying this model to experimental data' at x
=0.35, where both N~ and Nr states are observed,
yields U =-0.262 eV and a =24.'79 A. The magni-
tude of this radius indicates that the Nr and Nx
wave functions are strongly localized in k space
(with the same degree of localization as for hydro-
genic states) about the I' and X minima, respec-
tively, and that the potential has weak components
with high k (so that the effective-mass approxima-
tion applies). In addition, this value of U indicates
that 6=35(d)/d& 0.026 (d is the lattice constant) so
that 6(d)/d = 0.9%%uo. A simple one-dimensional
spring model indicates that the -18%%u& contraction in
going from GaP to GaN would produce s2%%uo dilation
in cells outside the nitrogen cell in a region of
length 2a- 50 L. Such an expansion, therefore,
seems consistent with the potential parameters
extracted from experiment. " We ignore any ef-
fect on the central (nitrogen) cell potential since
the matrix element in the Koster-Slater approxi-
mation" covers a multitude of sins.

The numerical calculations reported in Sec. III
bear out our description of the general features of
the resulting states and agree with experiment.
These points are discussed in Sec. IV.

In short, the theory" we present here explains
the new experiments" "without any apparent,
serious contradictions. We identify the new state
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II. GENERAL FEATURES OF STATES INDUCED

BY DISORDER AND THE ISOELECTRONIC

POTENTIAL

Disorder and lattice-mismatch induced strain
can have manifold and complicated effects which
are poorly understood. For our purposes, we as-
sume that their major effect in Ga(As, P) is to
produce a slowly spatially varying deformation in

a large region surrounding the isoelectronic im-
purity and we neglect all other effects. Then, in
accord with the idea of Bardeen and Shockley' of
the deformation-potential, we can express the en-
ergy of the lowest-energy conduction band E,' in
this region as

E,'(k) =E,(k) +E,„n,(r), (2.1)

where 4 is the dilatation and E,„ the conduction-
band deformation-potential constant. The quantity
E, represents the conduction-band dispersion re-
lation in the absence of the deformation. Opera-

observed with the lower branch, N (i.e., see Figs.
1 and 3). Its sudden onset at x =0.55 coincides
with the strong increase in radiative transition
probability at this composition due to strong cou-
pling to k=0 components of the N~ state. The fact
that all these states exist in the same region of
space indicates a large transition probability from
N to N~. Thus, in the regionx&0. 55, where the
oscillator strength of N is not enhanced, pure
population effects, ' due to the large difference in
energies between E = 8'z and 8z, could explain
the observation of the disappearance of N in this
range of x. Likewise, such transition probabil-
ities are, in most likelihood, higher than tunneling
probabilities to N-N states (which exist in other
regions of the crystal) so that the absence of N-N
lines may be merely a reflection of their being
overwhelmed by N& because of its high electron
population (presumably the N-N states exist at en-
ergies comparable to Wz ).

This article is not intended to explain the manner
in which disorder could produce such a long-range
potential (or, perhaps, region of expansion) which,
data indicate, " is associated with nitrogen. In-
stead, we concentrate on showing how the existence
of such a potential can explain the experimental
data. " " Nevertheless, the insertion of N in crys-
tals of increasing d (decreasing x) would tend to
enhance the expansion immediately outside the cell
containing the nitrogen; this long-range potential
may, therefore, be a product not so much of dis-
order as of composition effects.

Although the theory described here has been ap-
plied to Ga(As, P)," it seems likely that it can also
explain recent observations in (In, Ga)P:N."

I j& = g I R c&(R c
I j& (2.3a)

where, in the Koster-Slater approximation, ""'"
(R, c~ j) =V,G(R, R„E;)(R„c~j) . (2.3b)

The quantity E& is the energy eigenvalue of
~ j) and

G is the retarded conduction-band Green's function
(in the Wannier representation) which obeys the
following equation,

G(R R E) g f, (R )fP(R„)
m& nr g+ g gr

l
(2.3c)

[E,(h Vji) + V, (r) —W„]f„(r)=0 (2.3d)

The quantity 5 0' in our treatment, for simplicity.

tionally, we define E, by empirically measured
parameters (e.g. , effective masses and energies
of conduction-band minima). If the dilatation is
such as to increase the lattice constant, the second
term in Eq. (2.1) corresponds to an attractive po-
tential. " Since the lattice constant in GaN is smal-
ler than that in Ga, (As, P), it is plausible that
E~~ is attractive. In what follows, we assume
that this potential is sufficiently strong and long
range to induce bound sta, tes associated with the I"

and X conduction-band minima and which are local-
ized in momentum about the respective minima. "
In this section, we describe the effect of these
bound states upon bound states induced by the iso-
electronic impurity potential (which is delocalized
in momentum) and show that the general features
of the spectrum are consistent with experiment. '
Furthermore, in Sec. III, we present numerical
calculations which indicate that E,„A is of suffi-
cient magnitude to produce these effects.

The Koster-Slater one-band one-site approxi-
mation" has been shown" to provide, at least, a
qualitatively correct description of the attractive
nitrogen potential in GaP. In order to describe
the short-range portion of this potential consis-
tently in Ga(As, P), we employ the same approxi-
mation. ' ' The matrix element of V„ the short-
range portion of the N potential, between Wannier
states is given by ' '

(R„,n(V, ~
R„m& = v05„,5„5„,5 (2.2)

where the R„and n correspond, respectively, to
the site and band indices of the Wannier states.
The nitrogen is located at R, =0 and we consider
coupling to the lowest energy conduction band only,
denoted by index c. Let us assume that the total
electron potential is V, +V, +V„where V, denotes
the periodic crystal potential and V, a long-range
electron potential (e.g. , V, =E,„n,) Since we c.on-
sider V, and V, which affect conduction-band states
only, a bound state,

~ j), can be written as
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In Eq. (2.3d), we have assumed that V, (r) is suf-
ficiently slowly varying that the effective-mass ap-
proximation' holds [i.e., (R, ciV, iR„,c)
= V, (R )5 „]; in addition, we have extended Eq.
(2.3d) to continuous r values, as is usual in the
effective mass approximation'4 instead of the dis-
crete lattice points for which it is strictly valid
and represent the eigenvalues of f, as W, . The
star denotes complex conjugation.

The energy eigenvalues of
i j) are given by the

solutions of

Re[G(H„H„Z, )] = 1/V, . (2.4a)

The amplitude for localization at 8 is given by
Eq. (2.3b), where, from normalization of the wave
function to unity,

X/2

(R„4[()=1 („R4[G(R„R„R,)] . (4.4(4)

The probability amplitude that the electron in i j)
has momentum k is given by

(k, cl j&
= VGG(k~ H„Z~)(H„cl j& 4 (2.4c)

He[A(Ws)] =1/VG, (2.6a)

1

NG g Z(k) -Z+f5 (2.6b)

G(k, H, Z) —= Q C) (k)f,*(H)/(Z +f5 —W, ), (2.4d)

Gi((4): E8 ' f (R )) (4 48)
p Rg

where N, denotes the number of unit cells in the
crystal.

If the potential I/'& induces bound states associ-
ated with the X and I' conduction-band minima, de-
noted by Nx and Nr, respectively, then Eq. (2.4a)
can be written as

IfNr(0)I' lfNx(0)I'
N +Z N +S

(2.5)

In Eq. (2.5), we have denoted the bound-state eigen-
values in Eq. (2.3d) by WN and WN (i.e., V, =0),
and represented the sum over continuum states in

Eq. (2.3c) by G,. In Fig. 1(a), we represent these
states schematically on an energy versus compo-
sition diagram; the energy of the state Nx is much
larger than that of N~ because the effective mass
at X is much larger than that at I'. Because of the
long-range nature of V„ these states are local-
ized in momentum about their respective minima,
and we ignore the weak hybridization when WN

= WN . We depict, too, in Fig. 1(a), the enerrgy

WN of the isoelectronic state iN& arising from Eq.
(2.4a) when V, =0:

We determine V, from the solution of Eqs. (2.6)
in GaP. This state becomes resonant as in earlier
studies. In accord with experiment, we assume
that WN &&8'N. Previous studies of the problem
have concentrated upon the properties of iN&: be-
cause of the short range of V„ iN& is delocalized
ln momentum.

We can easily understand the qualitative features
of the states arising from the solutions of Eq. (2.5).
Writing G, as an integral over p„ the local density
of states without bound states in the conduction
band, we have

G, (0, Q, R) =f d((4(()l'(R —4 ~ (4) . (2.7)

Although the continuous spectrum is influenced by

V, (e.g. , resonances and antiresonances), G, =A
deep in the gap, where it is independent of the de-.
tails of the density of states (V, induces one bound
state associated with each conduction-band mini-
mum and the total number of continuum states in
the conduction band ls Ãp 2 Np since the total
number of bound and continuum states is NG).
Since we are interested in values of G, in the gap
[we desire the bound-state solutions of Eq. (2.5)],
we assume that G, =A throughout this region in our
calculations.

In Fig. 2, we illustrate schematically the salient
features of the solutions of Eq. (2. 5) for the "w'eak-
coupling" case (i.e., i f i' is small and the bound-
state terms are local in energy). The dotted curve
corresponds to the left-hand side of Eq. (2.5) and

the solid curve represents Vp HeG, . We let G, =A
so that V, Re[G, (0, 0, WN)] =1: in other words, the
eigenvalue of iN& is unchanged except for the in-
fluence of the bound-state terms in Eq. (2.5). The
extremely sharp structure of these terms indicates
that solutions of Eq. (2.5) exist at approximately
the energies Wz, WN, and O'N when these energies

X r
are well separated: this condition is depicted in
Fig. 2(a). When, however, one of the bound-state
energies =WN, a splitting into two branches occurs.
This is illustrated in Fig. 2(b), where WN =(WN

=WN . Denoting the upper and lower branches by
N, (eigenvalue Z, ), and N (eigenvalue Z ), re-
spectively, we observe from Fig. 2(a) that, if
WN &W» E+ ~WN andE WN. If, on the other
hand, WN)S~, E,OWN and E =WN . If WN —WN

the iN, & have a strong intermixture of the iN&

(delocalized in momentum) and iN„ & (localized in
momentum) states In gener. al, however, Z+
2 max[W~, WN ] and Z ~ min[WN, W„]. These
points are illustrated in Fig. 1(b).

These conclusions, which derive from examining
Fig. 2, can be made more quantitative for the
weak-coupling case. Assuming that WN X
[as depicted in Fig. 1(a)], we can write, from Eq.
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(b)

hand)rect

Go (As, Pj

~ ~ ~ ~ V, Re [G(O, Q, E)7

V„Re [Go(Q, Q, E)7

W)„E tr

Direct ' Go(As, Pj

W
N I.

~ ~ ~ ~ Vo Re [G(Q, Q, E)7

Vo Re [Go(O, O, E)]

(2.9c)

where A'=—dA/dE This equation illustrates the
splitting into two branches discussed above and

supports the conclusions drawn from inspecting
Fig. 2. Figure 1(b) depicts the eigenvalues re-
sulting from combining V, and V„and illustrates
the splitting, whose magnitude depends upon our
model of

I f(0)l', expressed in Eq. (2.9a). Notice
that IN, ) becomes resonant higher in energy than

IN). For reference, the energies WN, WN (V, =0)
and WN(V, =0) are presented in Fig. 1(a).

Equation (2.9a) represents the energies of the N-
like portions of the branches shown in Fig. 1(b)
(i.e. , by "N-like" we meanZ, =WN). For the Nr-
like portions (i.e. , by "Nr-like" we mean E,
= W„), we have, from Eq. (2.8),Nr

v. l fN, (0) I'
1 —Ve Re [A (Wi, )]

A similar expression can be given for EN, the
solution of Eq. (2.5) corresponding to W„„(see Fig.
2), for WN «WN) WNX

v. l fNx (o) I

'
"x x 1 —ve Re[A(WN )]

"~x "Nr E~ & x

(2.5),

Ifo,]o)l,e, (olz )])E~ —S~r
(2.8)

Assuming that WN -—WN (so that E+ —-W„), we can
expand A about Mz, which yields

1E = — ( WN +WN)
2

I fNr (o) I'
e (o &o„)]) i '

(2.9a)

FIG. 2. (a) Schematic illustration in indirect Ga(As, P)
of mechanisms governing solution of the eigenvalue
Eq. (2.5). The quantities WN and WN denote the bound-
state energies of N& and Nx, respectively, (V, =0) and

WN denotes the bound-state energy of N(V~ =0). These
energies are illustrated in Fig. 1(a). When these ener-
gies are well separated, the eigenvalues of V& + V, = S'&

(where i =Nr, Nx, and N). The largest (smallest) eigen-
value in this case is always larger (smaller) then any of
the W's. The dotted (solid) line represents Vo times the
Green's function with (without) bound states. The arrows
indicate eigenvalues. (b) Schematic illustration of
mechanisms governing solution of the eigenvalue Eq.
(2.5), for W Nr —WN [see Fig. 1(a)]. The lowest eigen-
value, ENx& WNx. At this point, a splitting of N and

Nr into two branches occurs. The highest, E+
R max[WN, WNr]' and the lowest, E ~min[WN, WNr].
This result depends upon the sharp antisymmetric
structure of the bound-state term (dotted line).

The corresponding expressions for the ampli-
tudes of possessing momentum k [Eq. (2.4c)] are
given by

CNr(k)fNr (0) I//N(&

(-R [A'(W„)]) ' ',
I v,f.„(o)I/~N.

[E, E, (k)] I
1 ——Ve Re [A ( W]] )] I

(2.10a)

+ CN (k)r (2.10b)

I v,fN„(o) I/~x.
[z, -z, (k)]II - v, Re[A(w„)]l

lo * -)oo
] &,(e)f, ]o))

(&N
—

N, ) IfN, (0)l

(2.1Oc)

Equations (2.10a) and (2.10b) correspond, respec-
tively, to the N-like and Nr-like branches of N,
and N far away from the region of splitting. The
amplitude corresponding to EN is given in Eq.X
(2.10c). In deriving these equations, we have as-
sumed that the energies of the bound states are at
least several millivolts from the band edges, so
that Reh' does not diverge and we have assumed
that f(0) and C(k) are real, as for hydrogenic and

square-well states. In addition, we have neglected
the effects' of V, on band states and represented
them by Bloch states. Since V, is long range, this
is reasonable.

In the neighborhood of the splitting (WN = W]e ),
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the amplitudes are given by

(-He[A'(W~)]]-'~'
(k, c)N, )= -)~ +Cg (k)A,) 8.

c

&, =- [(E, —W)))/(E &
—~w )]'~'

(1 ~ g2 )1/2

(2.11a.)

(2.11b)

(2.11c)

Several interesting points emerge from Eqs.
(2.10)-(2.11). First, all the amplitudes involve

band-structure enhancement' (BSE) terms, as in

the usual theory cf N in III-V alloys [these are the

terms involving E, (k)]. In addition, these ampli-
tudes mix the appropriate Nr and Nx momentum

space amplitudes. There is, however, a funda-

mental difference between the N-like [i.e., Eq.
(2.10a)] and the Nr-like [i.e. , Eq. (2.10b)] branches
of N, . When the energy ~E, —W„~ is sufficientlyr
la, rge, the first term in brackets in Eq. (2.10a) is
negligible and the amplitude is in precisely the

BSE form of earlier treatments of nitrogen. Thus,
the properties of the resonant state are unchanged

from those deduced from earlier work. 4 ' All the

terms in brackets in Eqs. (2.10b) and (2.10c) are
independent of this energy difference, however.
One of the consequences of this BSE dependence
is that the Nz amplitude [the Nr state is localized
about the X minimum in k space, so that Cz (0)
= 0] is observable throughout the entire composi-
tion range illustrated in Fig. 1. The energy inde-

pendent BSE term is a direct consequence of the

short-range nature of V, . The energy dependent

term in Eq. (2.10a) is consequent upon the fact that

the energies of N-like states are sensitive to the
Green's function (as in Fig. 2) so that a bound state
in their vicinity modifies their character greatly.
The energies of Nr-like states, however, are
largely dependent upon WN„, and are insensitive to
another solution of Eq. (2.5) at an energy near
WN r

It is clear that the N-like states do, indeed,
achieve the character of short-range (V, =0) states
far from the splitting energy (Wz~ Wz ). Ther '

term "Nr-like" is somewhat misleading, however,

since these states possess short-range nature
through the admixture of BSE terms. For definite-
ness, therefore, we refer to Nr-like branches and

the Nx state as those whose energies are close to
the bound-state energies WN and WN, respective-
ly.

An important point to note is that the strong mo-
mentum component (C„ is localized in k spacer
about the I' minimum) C~ enhances the N-like kr
amplitude of the N state in the region where S@
= WN . This occurs because bothE —WN andNr'
Z -E,(k) are negative so that the Cz and BSE

terms reinforce each other. In the case of the N+

amplitude, Z, & W& while E,&E,(k) so that the C~
and BSE terms have opposite signs. As WN -Er
—= Z, (0), the BSE term increases in magnitude so
that a point is reached where these terms cancel
and the zero momentum amplitude, (k = 0, c

~ N+ ) = 0.
As the band edge is approached more closely, the
BSE finally dominates. In the next section, we
describe the quantitative consequences of this en-
hancement.

A final case to consider is that when WN —-WN ."
X

As in the previous situation, there is a splitting
and, in addition, an admixture of CN into

~ r
(k, c )Nx), which enhances this amplitude. Denoting
the upper and lower eigenvalues by D+ and D,
respectively, we have,

D, =-,'[-a, a (a', —4a,)'~']

a =-WN —8'N -a -ax 3 4

a =
WN WN +a WN +ax r 3 x 4

a, -=1f„,(0)I'/a, ,

a, -=)f)) (0)l'/a, ,

a, —= I/ Vo -A ( W~ ) .

(2.12a.)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

(2.12f)

The momentum amplitudes are given by

(k, ~D
C))r (k)f~r *(o) C~x (k)f~x*(0)

I/~X,
D, —E, (k)

If (0)1' , I f (0)l'

(2.13)

In this case, Wz = W~ «W„[i.e., see Fig. 1(a)].
Therefore, V, A(D, ) & I and we have, from inspect-
ing Fig. 2, max[W„, W~ ] aD„D
min[W&, Wg ], and D &D For W& & W. &, the

Nr& + -' Nr N~&

upper branch has large k =0 components [recall
that C~ (0) = 0] and the lower has small k=0 com-
ponents. If WN & WN, the situation is reversed.

X
Here, too, there is a region in which (k=0, c~ D,)
=O. At compositions for which WN & WN, D

WNr and D & WNX so that the CNr and BSE terms
in Eq. (2.13) are negative for both D+ and D
When, however, WN «W»D & WN &D+& WN .
Therefore, the signs of the terms in the D am-
plitude are unchanged and are enhanced by the

CN terms, as in our discussion of the N ampli-
tude. The signs of the CN and BSE terms arer
opposite, however, in the D, amplitude so that
there is a, region of cancellation (as in the N„am-
plitude) before the BSE dominates.

This discussion applies to the case that the
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bound-state term is local in energy (i.e., ~ f ~' is
weak). If

~
f~' is strong, however, some of our

conclusions about the energies of the N-like
branches of N~ must be modified. Our discussion
of the splittings and the amplitudes is general,
however. These points are illustrated in Sec. III,
where we perform numerical calculations and to
which we proceed.

III. NUMERICAL CALCULATIONS VfITHIN

THE SQUARE-NELL MODEL OF DISORDER

(3.1a)

Ctr, (0) =2/n, A", f;(0)a,

K, =—(2m;AE, jk') "/'

)z, -=[2m, (U —AE;)/)z']'~',

cz, -= 1/[a(A,'. +0z)'~'],

(S.lb)

(3.lc)

(3.lci)

(S.le)

(S.lf)

The subscript i refers to either I" or X. The vol-
ume of a unit cell is denoted by Q. In the notation

In Sec. II, we described the general effects of a
long-range potential, V, E,„b,(r), upon the prop-
erties of an isoelectronic state, without specifying
details. In this section, we represent t/, by a
spherical square-well potential of depth U and
radius 0 centered about the nitrogen-atom lattice
site. The results of the previous section depend
upon V, varying so slowly and having such a long
range that the effective-mass approximation
holds. " Obviously, square-well potentials run the
gamut from completely local in k space (i.e.,
a-~) to completely diffuse in k space (i.e., a
small). We shall show that numerical results" '8

consistent with experiment in Ga(As, P):N require
that a be large enough (i.e. , a = 25 A) that the high
'k Fourier components are small (so that the effec-
tive-mass approximation holds) and that the states
associated with the I' and X conduction-band mini-
rna are well-localized about these minima in k
space. Furthermore, values of U consistent with
experimental" "Ga(As, P):N energies indicate a
dilatation 6, which is consistent with a maximum
average percent increase in lattice constant of
«0.9% in the region of greatest disorder.

In order to represent the strength of radiative
transition in a concise fashion (without going into
details of the calculation of the absorption coeffi-
cient, for example), we choose to calculate the
k=O amplitudes, (k=O, c~ j), given in Eqs. (2.10)-
(2.11).The square-well model yields the appropri-
ate quantities for the lowest bound state corres-
ponding to weak coupling,

of Sec. II, CN (k)=—CN (X+k)))N and CNr—= CN ~N.
In order to apply the analysis of Sec. II to

Ga(As, P):N, we must specify the Green's function
A given in Eq. (2.6b). The model we use is dif-
ferent from that employed in previous analyses.
In it" we describe the conduction band by ellipses
of finite extent in momentum, fg„and 4~, corre-
sponding, respectively, to the I' and X minima of

E, . The quantities k~ and k~ are determined by
requiring that the total number of states in each
minimum be equal to that determined by empirical
pseudopotential densities of states used in pre-
vious work. " This model yields the following re-
sult for A,

A(E) =Ar(E) +SAx(E),

Im [A, (E)] = -(m, O/2zzlz')S, 6 (E E,), -
(3.2a)

(3.2b)

Re[A; (E)] = -(m, Q/wiz ') k,

x 1+—ln 8 -F.,r) 11-r,
2 1+re

-rl~;I)- 'rr/l~gi)~)ED -~)),
(3.2c)

r; —= S(/iz;

Si ——2m;(E Er)/fl' .-
(3.2d)

(3.2e)

In Eqs. (3.2), 6 is the step function [i.e. , 6(0) = —,',
6(lyl) =I, 6(-~ y~) =0]. The unit cell volume, 0
= [d(x)] /4, where d(x) is the lattice constant in A,
d(x) =5.65 —0.20x. From fitting to the empirical
pseudopotential density of states, "we find k~
= 1.397 03/d(x) and kx = 3.797 33/d(x). In numerical
calculations, we set mr/m, =0.068+0.052x and
mx/m =0.35 (mo is the free-electron mass). The
values for the energies of the band minima are E~
= 1.514+ 1.174x + 0.186x' and E~ = 1.977 +0.144x
+ 0.2 11 x' (for 7 = 77 K) .

The advantage of this model is that it can be
readily extended" to treat N-N pairs and incorpor-
ate a nonzero width[i. e. , 6cO' in Eq. (2.6b)]. This
is not the case with other Green's function mod-
els' ' which have been used in the study of the
problem of N in III-V alloys. In addition, results
for the energy of the isoelectronic N-electron
state [i.e. , WN in Eq. (2.6a)] are in at least as good
agreement with experiment as those from the other
models. ' ' In particular, this model predicts that
the nitrogen state becomes resonant as in earlier
work. ' '

Composition-dependent energies resulting from
an application of these models and Eqs. (2.5)-(2.9)
to the Ga(As, P):N experimental data" are pre-
sented in Fig. 3. The quantity V, is determined,
as in the past, ' ' by fixing WN in GaP; this yields
V, = -2.5684 eV. The square-well parameters are
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0.0
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f. 17)

1.0
GaP

determined for states for which both the Nz and

Nx states are in the gap by observing that the ratio
W„ /WN depends upon ar and a» alone

X
[a& ~ (Ua') '~'] for the square-well ground state a.nd

not U and a separately. The potential U is de-
termined from W„, =Ucos'(k&a), where sin(k;a)
= a, (k,a) [such that cot(k, a) &0]. Applying this pro-
cedure to experimental data" at x = 0.35 yields
U = -0.2623 eV=—U, and a = 24.79 A. The same
method can be applied to the entire composition
range in which the Nz and Nx states are ob-
served. " " Since this range is small, we choose
to fix a at this value and allow U to vary linearly
in composition so that U(x = 1)/U, =0.25 (which
gives a state of negligible binding energy in GaP).
If we represent V, =E&„~,' Uo, which is close to
the maximum potential, results in a compression
A =5 (volume)/volume = + 35 [d(x)]/d(x) = 0.026 for
IE&„I =10 eV. This corresponds to a percent lat-
tice constant dilation of ~0.9% in the region of the

FIG. 3. Composition-dependent energies resulting
from application of the theory in Sec. II to a square-
well model of strength U and radius a in order to
represent the long-range potential V&. Analysis of ex-
perimental energies at x -=0.35 yields the values of U —= Up

and are given in the figure. The x dependence of U pre-
sented results from assuming that U(x =1) =0.25Up,
which gives a negligible binding energy of the Nx state
in GaP. The value of Up results from setting TV&

=0.011 eV in GaP. The splitting of W& and W& is not
distinguishable on this figure. In the figure, U& =0 for
x & 0.9 and 0.010 eV has been subtracted to represent the
bound exciton energy. Agreement with experiment is
good, as shown.

potential. The radius a = 25 A corresponds, ap-
proximately, to a cube which has nine unit cells on
a side. If we consider the atoms within a simple
one-dimensional spring model (all of the same
spring constant) in which all the forces are bal-
anced, then a contraction of 18%%uo (which is approx-
im3tely that in going from GaP to GaN} in the cen-
tral (N) cell would correspond to-2% dilation of
the lattice constant in each unit cell within the re-
gion of the potential outside the central cell. Thus,
this effect is consistent with the potential param-
eters extracted from experiment, at least within
this crude analysis. In addition, the CN. (k) have
the same degree of localization in k space as hy-
drogenic states and the Fourier transform of V&

has weak high k components, lending support to
our use of the effective-mass approximation. "

The theoretical energies displayed in Fig. 3
[which are calculated from Eqs. (2.6) and (2.9)]
manifest the splitting into branches which is de-
scribed in detail in Sec. II (on the scale shown, the
splitting is not easily seen). For ease of compari-
son with experiment, all of the nitrogen state en-
ergies in Fig. 3 incorporate a 0.01 eV decrease in
order to represent the bound exciton energy. ' In
addition, we set V, =0 for 0.9&@ in order to agree
with experimental data, ""which shows N-N
structure in this region. The resulting comparison
with experiment in Fig. 3 is very good.

The absolute magnitudes of the k =0 amplitudes
as functions of composition which result from this
model are presented on a semilog scale in Fig. 4.
The amplitudes are calculated from Eqs. (2.10),
(2.11), and (2.13) and discussed in Sec. II. Mani-
fest here is the enhancement of the lower (N )
branch (for 0.4&x &0.55) due to the large k =0
component [CN in Eqs. (2.10)-(2.11)]of the Nr state
as the N-state (energy WN for V, =0) approaches
the I" continuum. Displayed, also, is the vanish-
ing of the upper (N, ) amplitude (for x-0.43) due to
the cancellation of t"N and the band-structure en-
hancement' (BSE) term just before the BSE term
begins to diverge (as in previous treatments). Al-
though this vanishing is interesting, it is not likely
to be observable because it occurs when E, —E,
so that the amplitudes would not be likely to be
distinguishable in this region.

The effect of the splitting of the N» and Nr (or
N ) states is apparent for 0.3&x & 0.4. The lower
branch (N») is enhanced by admixture of CN andr
the upper branch displays the onset of the same
sort of cancellation apparent for(k=O, cIN+) atx
= 0.43. This cancellation occurs over a wider re-
gion than for N+ because Ez makes a more acute
angle with WN than does E, as is apparent inr
Fig. 3.

In the experiments, "the N state does not ap-
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strength) rises precipitously (i.e. , x ~ 0.55 from
Fig. 4). In addition, the large number of elec-
trons in N~ would mask the photoluminescence
from N-N pairs, which are, presumably, in the
same energy range.

Also, the square-well potential can be strong
enough to induce higher P states (associated with

X). The existence and properties of such states,
however, may depend very sensitively on the de-
tails of the long-range potential V, . Because of
the undoubted crudeness of our model, we have
ignored the possibility of their existence in our
analysis (for reference, the P states corresponding
to our square-well parameters have binding en-
ergies =0.050 eV atx =0.3, 0.20 eV atx=0. 5, and
0.005 eV atx =0.6).

In short, this model is in good agreement with
ezperjmental observatjons' ' to date. Thjs pojnt
is discussed in more detail in Sec. IV.

IV. SYNOPSIS AND CONCLUSIONS

too. 0.4 O.S 0.6
X

O.T 0.8 0,9 I.O

FIG. 4. Representation of absolute magnitude of the
k =0 momentum amplitudes resulting from the param-
eters of the square-well model. When x =0.55 the am-
plitude of the lower (N ) branch increases greatly be-
cause of a strong k =0 component N& in addition to in-
creasing band-structure enhancement (BSE). In the
upper branch, N+, these terms cancel for x slightly
greater than the point where WM enters the I' contin-
uum (BSE term ~). A similar splitting and mixing
occurs for x~0.3 where W& W& . This figure does
not include the point where W» reaches Er .

pear until x ~ 0.55. In addition, the shape of the
photoluminescence spectrum is apparently inde-
pendent of nitrogen concentration, "in contrast
with what one would expect" if N-N pairs made an
important contribution.

Since all the bound states in our theory corre-
spond to wave functions located in the same region
of the crystal, the overlap between them is ex-
pected to be much larger than that between single
N and N-N pair states. This large overlap results
in a large transition probability (short lifetime)
between the states (induced, for example, by
coupling with phonons). Such a large probability
would correspond to a high concentration of elec-
trons in the lower state (because of the large mag-
nitude of E E~x). This reason-ing would predict
that the radiative recombination from N& would
overwhelm that from N until the region where
(k=0, c!N ) (and, consequently, the oscillator

In this article, we have described a theory" to
explain recent experimental photoluminescence
data in Ga(As, P):N." " These data" suggest that,
in the region x &0.9, the nitrogen related lumines-
cence is attributable to a single nitrogen isoelec-
tronic state, and associated phonon sidebands, and
not pairs. Furthermore, a new higher-energy
state appears for x ~ 0.55." It follows the X mini-
mum until x~ 0.45, where it follows the I mini-
mum.

We explain these data" "by supposing that a
long-range potential strong enough to induce a
state Nr, energy Wz associated with the l mini-
mum and one (N„, energy W~ ) with the X mini-
mum exists in addition to the usual Koster-Slater
short-range nitrogen state (N, energy W~). In Sec.
II, we describe the general features to be expected
of the spectrum. Near the region where@~ = R~r
(composition x~r) the states split into two
branches. The lower one, N (energyE ), is of
N-like character forx&x~ (i.e., E = W„) and of
N„-like character forx&x„(i.e., E = W~„). Be-
cause the strong k=0 components of Nr mix into
N, this state is enhanced for a composition well
above xq . We, therefore, identify the N branch
with the new one observed. " The N„state we as-
sociate with the lower-energy experimental
l jne

In Sec. III, we report numerical calculations of
energies and k=0 momentum amplitudes for a
square-well model (strength U, radius a) of the
long-range potential. The results bear out the
analysis in Sec. II. Analysis of experimental data
at x = 0.35 predicts that U = -0.262 eV and a = 24.79
A. Assuming that the long-range potential (V&)
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arises from an expansion of lattice constant in a
volume surrounding the nitrogen and assuming
that V, is a deformation potential" yields a percent
lattice constant increase 5(d)/d a 0.9% in that re-
gion. A crude spring model analysis in a region
of length 2a = 50 A surrounding the nitrogen pre-
dicts «2o/q expansion outside the nitrogen cell.
These results suggest that the potential might re-
sult from change in composition, rather than dis-
order.

Since all the states exist in a single region of
the crystal, transition probabilities from N to
Nx are most likely greater than from N to N-N
pairs. Thus, since the disappearance of N for
x R 0.55" coincides with a sizeable decrease in its
k =0 momentum amplitude (the effect of Nr de-
creases), the disappearance may really reflect the
competition between electron population effects
and oscillator strengths (for x ~ 0.55 population
effects may dominate, for x ( 0.55 oscillator

strengths). Likewise, because of the short life-
time for N -Nx transitions, the resulting large
N~ electron population may be much greater than
those of the N-N pairs, and the Nx radiation may
simply overwhelm that of the pairs (which are
presumably at approximately the same energy).

In Fig. 3, the comparison of theoretical square-
well model and experimental energies is very
good.

It seems, therefore, that the theory presented
here can explain all of the experimental data, and,
perhaps, lend insight into the effects of disorder
in III-V mixed crystal alloys.
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