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Perturbed crystals in the kq representation. I. The impurity problem*
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A method is developed for defining localized states and effective Hamiltonians in perturbed crystals. The
method is based on the localization ideas in the kq representation for perfect lattices. An equation is derived

defining localized states for perturbations caused by an impurity, a magnetic and electric fields. In this paper
the impurity problem is considered in detail. A correction term is obtained to the one-band Koster-Slater
effective Hamiltonian. It is shown to be significant for bound states and scattering cross sections of a localized
impurity.

I. INTRODUCTION

The recent interest in the Koster-Slater impurity
problem' was caused by a new idea put forward in
a payer by Kohn and Onffroy. ' The idea consists
in defining one-band generalized Wannier functions
(GWF) that are suitable for expanding the corre-
sponding one-band eigenfunctions of a perturbed
crystal. By doing so the multiband Koster-Slater
equation reduces to a one-band problem. In ad-
dition, the local density of states and the charge
density can directly be expressed in the GWF.
This new idea was followed up in a whole series of
papers. ' ' Originally it was developed for a one-
dimensional case' ' and then generalized to three
dimensions. ' References 6 and 8 present a one-
dimensional model calculation.

The generalized Wannier functions are calculated
in Ref. 2 by a variational procedure with an as-
sumption that the impurity bound state is below the
lowest band. This restriction was removed in Ref.
3 where a criterion was given for assigning the
impurity state to a given band in a one-dimensional
crystal. The inclusion of the impurity levels into
one particular band is not entirely elementary in
the case of a three-dimensional crystal and then
the use of the one-band variational ayproach in
defining the GWF needs further clarification. '

In this paper we postulate an equation for de-
fining localized states and effective Hamiltonians
in perturbed crystals. The equation is developed
in the framework of localized states in perfect
crystals in the kq representation. The localiza-
tion problem on ideal lattices" was recently
solved and the approach here will be an extension
of Ref. 10 to perturbed crystals. A variety of
perturbations will be considered, e.g. , the im-
purity problem, the magnetic and electric fields.
In this payer we shall construct localized states
and effective Hamiltonians for the impurity prob-
lem. In a forthcoming publication yerturbations
caused by a magnetic and electric field are con-
sidered. A short review of this work is in press. "

II. EQUATION FOR LOCALIZED STATES IN

PERTURBED CRYSTALS

Let us start with a number of remarks about the
kq representation and the yroblem of localized
states in perfect crystals.

The connections between a wave function g( r) in
configuration space and the corresponding wave
function C(k, q) inthe kq representation are as fol-
lows:

y i/2

g(r) = —', dkC(k, r),(2m)'

y i/2
C(k, q) = ', exp(ik R)((q —R), (2)

a k/»

C„, (k, q)=( q„, (q)Zq(k —k, -K), (k)

where g„» (q) is the Bloch function in the coordinate
representation (with r replaced by q), ks is the
Bloch quasimomentum, and the summation is over
all the vectors K of the reciprocal lattice. By
definition, a Wannier function a„'„(k,q) in the kq
representation belonging to the nth band and located
on site R~ of the Bravais lattice is

i/2
e„'„(k,q) =( k '), Jq)7~ eke(-(k k( )C„(k,q)

= em(-fk R.)4.»(q) (4)

This is a very simple connection between a Wan-
nier function in the kq representation and a Bloch
function. The orthogonality of the Wannier func-
tions (4) is seen immediately

where Vo is the volume of a unit cell in the Bravais,
lattice, the integration in (1) is over the Brillouin
zone, and the summation in (2) is over all the vec-
tors R of the Bravais lattice. From (2) it follows
that a Bloch function C„» (k, q) in the kq representa-
tion is
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dkdqa„'*(k, q)a„' t(k, q)

exp ik R~ —R, +p g„iI, /kgb

in the kq representation is"
[-is/sq+ k + (e/2c) H && i 8/sk]'

+ I'(q}

= 5„~c5~mr .

For arriving at (5), we used the following relation
that Bloch functions satisfy:

(2v)'
Pna(q)kn'((q) ~q =~nn'.

0

In mhat follows we shall prefer to mork with the
periodic part U(k, q) of the wave function C(k, q}:

C(k, q) =exp(ik q)U(k, q),

where U(k, q) is periodic in q with the period of a
Bravais lattice vector H„and Bloch periodic in k,

U(k+K„, q) = exp(-iq K) U(k, q),

with K a reciprocal-lattice vector. In an unper-
turbed crystal me have

(-"; " "(~)....(.-, e=..(.-.)...(.-, e,
(8)

where U~ (k, q) is the periodic part of the Bloch
function in the kq representation

2& 3 (./a

((„(k,R = ( M„(ij( I (((K- k —K„) ((((
0 E'm

and «„(ks) are the energy bands (ks being the con-
served quasimomentum). The periodic part of the
Wannier functions a„(k, q) is therefore

a„(k,q) =exp(-k ~ R )u„, (q). (10)

In what follows a„(k, q) [and not the a„' (k, q) in (4)]
mill be called the %'annier functions. It is obvious
that the Wannier functions (10) satisfy in the kq
representation the Bloch equation

+Vq g„k, =e„ka„k,q .

It is of interest to compare Eq. (8) for Bloch func-
tions with Eq. (11) for Wannier functions. In Eq.
(8), «„(ks) is a constant independent of the kq co-
ordinates while on the right-hand side of Eq. (11)
we have «, (k), a function of k. We see that the only
difference between the equation defining Bloeh
functions [Eq. (8)] and the equation defining local-
ized functions [Eq. (11)] is in the factor multiplying
the function on the right-hand side. This fact will
be used in postulating an equation for localized
states in perturbed crystals.

The Schrodinger equation for a Bloch electron in
a constant magnetic field H and perturbation v(r)

+v i~ U(k, q) =«U(k, q). {12)
Bk

Equation (12) is the eigenvalue equation (« is a con-
stant) for an electron in aperturbed crystal The
solutions U(k, q) are eigenstates of the problem.
In order to obtain an equation for localized states
we shall use the analogy with equations (8) and

(ll). Equation (8) is an eigenstate equation [with a
constant «„(ks) multiplying the function on the
right-hand side], while Eq. (11) defines localized
states a„(k,q) [the energy «, (k) multiplies a„(k, q)
on the right-hand side]. Having this mind we shall
postulate in correspondence with Eq. (12) the fol-
lowing equation for localized functions in a per-
turbed crystal:

— [-is/sq +k+(e/2c) &@&is/s%]'
+V(

+v i~ A„„(k,q) =E„(k,0 )A„ (k, q), (13)
9

~h~~~ A„(k, q) are the perturbed localized func-
«ons and E„(k, R ) are the effective band energies.
The explicit dependence on the site H appears in
the equation if one follows the structure of local-
ized functions (10) in the kq-representation

A „(k,q) —exp(-ik. R„)U„(k,q) (14)

with U, (k, q) satisfying the equation

[-is/sq+k+(e/2c) Hx (R.„+is/sk)]'
254

+ V{q) + v i~+ R„U„{k,q)
Bk

=E„(k, R )U„(k, q). (15)

In the absence of perturbations (H =0, v =0) Eq.
(15) goes over into Eq. (11) for localized states of
a perfect crystal. In the latter case the localized
functions U„(k, q) and the effective band energies
E„(k,R ) are site R independent

U„ (k, q) =u„p(q),

E„(k,R ) =«„(k) .

This is no longer so when a perturbation is pres-
ent. As is seen from Eq. (15), both the localized
functions U„(k, q) and the effective band energies
E„(k,R ) will, in general, be R dependent (an ex-
ception is the homogeneous electric field case).
One should expect Eq. (15) to lead to localized
states because the solution of the unperturbed
equation [Eq. (11)] are localized and they should
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not be strongly affected by the perturbations. It is
therefore possible, in principle, to solve Eq. (15)
by a perturbation procedure starting with the un-
perturbed equation (ll). This is the ma. in advan-
tage of the localized equation (15} over the eigen-
value equation (12). The eigenfunctions U(k, q) of
the latter are very different from the eigenfunc-
tions U„)) (k, q) of the unperturbed problem (8) and

a perturbation procedure can, in general, not be
applied to Eq. (12).

For comparison reasons let us write Eqs. (11)
and (13) for localized states in the regular r repre-
sentation. The left-hand sides of Eqs. (11) and

(13) will just be the corresponding Hamiltonians
applied to the function in the r representation. In
order to obtain the right-hand side we expand the
band energies e„(k) and E„(k, R ) in Fourier series
and use formula (1). Equations (11) and (13) in the
r representation will be

2—+r( ))a„(r-)k„)=gk„(R.)a„( —R ~ R ), .
S

(18)

III. IMPURITY PROBLEM: LOCALIZEDI FUNCTIONS

In the presence of an impurity perturbation
v (H=0), Eq. (15) for localized states becomes

(-is/s q+k)' - . s
20' +V(q)+v i +R U„(k, q}

Bk

=-E„(k, R )U„(k, q). (23)

We shall solve Eq. (23) by a perturbation procedure
assuming that the unperturbed bands e„(k) are well
separated. This will be needed for defining a
parameter of smallness for the perturbation theo-
ry. Any function U(k, q) can be expanded in the
complete set of functions (10),

U(k, q) =Q B«e xp(-ik ~ R )u„R(cj)

&nk+na q ~

which is a well known expansion in the kq repre-
sentation. " For the solutions U„(k, q) of Eq. (23),
expansion (24) will be

U„(k, q) =g B„,(k, R.)N„(q), (25)

where

= QH„(R„R )A„(r —R +R,), (19)
In this case the expansion coefficients are site R
dependent. We substitute expansion (25) into Eq.
(23), multiply it by u,*~(cj) from the left, and inte-
grate over q. %e arrive at the following equation
for the coefficients B„,(k, R }:

k„(R,)= ', Je '"'" „(k)ak,

«„(R., )T.)=( ', fr '" B (k)T-„)'k"k., „,
(2o)

(21)

, (k)B (k, R„)+Q e„k, i R„)B„(k,R )
~k

=E„(k, R )B~(k, R ), (26)

a.nd a„(r —R ), A„(r —R, ) are the localized func-
tions for the perfect and perturbed crystal, cor-
respondingly. Equation (18) is well known a.nd is
the equation for Wannier functions g„(~) in a per-
fect crystal. " In this case the shape of the func-
tion a„(r —R ) does not vary with the site and all
the Wannier functions for a given band are de-
rived from a single function a„(r). In the perturbed
crystal the shape of the localized function A.„
(r —R,) depends a.iso on the site

1/2

r)„„( —R,)=( ', Bkek«(-(k R, )«„(k, r),

(22)

where C„(k, r) = exp(ik ~ r) U„(k, r) tsee Eq. (I)].
In the regulars representation, Eqs. (18) and (19)
appea. r to be more complicated than Eqs. (11) and

(13) and we find it more convenient to work in the

kq representation.

(27()' " „.sv, ) k, i=+R„, = — u,",(q)v i +R u))k(q)dq.
ek "'

Vo „' Bk

(27)

Expression (27) defines an operator which is to be
applied to the coefficients B„,(k, R ), and the inte-
grand from point of view of the quasimomentum k
is a product of three operators. Equation (26) can
be solved by perturbation theory. " Let us intro-
duce the following notations:

B (k, R„)=B~~(k, R ) +Bi',i(k, R )

+B(R'Bi(kr R~) +

Z„(k, R ) =e„(k}+ei"(k, R )

+c&„'&(k, R )+ ~ ~ ~, (29)

where the superscript denotes the order of pertur-
bation. Up to second order in the perturbation we
have (we apply perturbation theory to band n)



Bt,](k, R ) =5 (30) v„(R, R') = a,*(r—R)v(r)a, (r —R') dr. (37)

(5) ~ Bn(ki Rm)B (k, R ) =
(~ (-),

s55n; Bi"J(k, R ) =0, (31)

[,&(„-
-

) g v„(k, is/sk+R„)B[„",&(k, R.)
e„(k) —e, (k)

v„„(k, R )v, „(k, R„)
[e„(k) —e, (k)]'

(' -) = —
2 ,„„[,„(k)

'
„(k)]

e„'(k, R ) =v„„(k, R ), (34)

(33)

I'i(k, R ) =P v„, k, i ~ R )Bi',I(k„R„)., (55)n & m nt

v„(k, R ) =p exp(-ik R)

In the above formulas in addition to the matrix
operator (27) also the matrix v„(k, R ) appears.
The latter is a, special case of the operator (27)
when it no longer operates on a function of k [the
operator v(is/8k+ R ) in the integrand of (27)
operates in this case directly on the function

u, „(q)]

For results (30)-(35) to have the meaning of
perturbation corrections we have to assume that

q =v,„(k, R )/[e„(k) —e, (k)] «1, (38)

where g is in some sense the expansion parameter
of the perturbation theory.

When (38) holds the localized functions A„(k, q)
for a crystal with an impurity up to second order
in perturbation theory will be

A„(k, q) =exp(-ik R )

x ]. +@&'„) k, R &„„q

+ +~ii k R ++
s &n

iA„.(k, q) i'dk dq= 1+Bi„'„](k,R.) +B&„'„]*(k,R.)

+Q IBi'](k, R )I'=1 (40)
s&n

(39)

where the coefficients B„,(k, R ) are given by
(31)-(33).

The functions (39) by the construction of pertur-
bation theory are normalized to second order in
the perturbation

with

x draB(r —R)v(r+R )a, (r)

=g exp(-ik R)v, ](R +R R )5 (38)

The last equality in (40) is a consequence of (31)
a.nd (33).

Let us now calculate the overlap integral for two
localized functions belonging to different bands
and different sites

A„* k, qA, ~ k, dkdq

V,
(2]t)'

dk exp [ik ~ (R —R~)] 5„, + (1 —&„,)[B[']*(k,R ) +Bi'5]*(k, R ) +B[5'„l(k, R!,) +B['„](k,R],)]

[O'„I (k, R ) (kBRi i)] e52, BI I*(ivR)B[!(k'R)),. (41),
s/n, l

As is seen from (41) the localized functions A„(k, q) for a crystal with a.n impurity are, in general, non-
orthogonal. There is a nonvanishing overlap of the functions coming from both the first- and second-order
perturbation coefficients. Let us calculate in more detail the overlap S„' » from the first-order coeffi-
cients for nial (when n =l there is no overlap from the first-order perturbation),

5!!„=;,J dkexp[ik (R„—Re)][BI'!~ (k, R, „) B[!(k,R, )]

desex [ik (R -R )] (42)
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e„(k) —e, (k) =e„, +b,e„,(k), (45)

where e„, is a constant of the order of the energy
gap. For the assumption (38) to hold it is neces-
sary that be„,, (k) in (45) be smaller than e„„

be „,(k) & e „& (46)

[otherwise the denominator in (38) could vanish].
On the other hand, when (46) holds, it is clea, r that
g„',)(R) &g„',(0) for Ro 0. In what follows we shall
assume that

be„, (k) «e„&.

Using (45) and (47) we find for g(",)(R),

(,) -) 1 -) V, dKe '~'R be„,(R)
g„, — R+(2 ),

(47)

(48)

where higher-order terms in be„,(k)/e„, were
neglected. From (48) and (47) it follows that

g(", (R)«g'„",(0) for R~O. (49)

Another assumption we are going to make is
about the matrix elements v»(R, R') in (37) of the
perturbation potential. %e shall assume that

v„(R, R') =v„(R)6(R, R'), (50)

By using formulas (36) and (37) the last expression
can be given the form

S(&), = P g(jj(H)
R

x[v„/(R, Rp —R) —vga(R~+ R, Rp)],

(43)

where g„',)(R) is the Fourier transform of the ener-
gy denominator in (42),

V, dk exp(-ik R)
(44)(2a)' e„(k) —e, (k)

It follows from (42)-(44) that the overlap integral
of the functions A„(k, q) depends on both the ma-
trix elements of the perturbation potential and the
band structure of the solid. It is seen from Eq.
(43) that the Fourier component g(',)(R) for R=0
does not contribute to the overlap integral because
the expression in the square brackets vanishes for
R=O. g(',)(0) is of the order of 1/e„„where e„, is
of the order of the energy gap between the bands
rI, and l. In the framework of the perturbation pro-
cedure developed above the Fourier coefficients
g(„',)(R) for Re 0 should be assumed to be smaller
than g(',)(0). This assumption is in accordance with
(38) as can be seen by writing the energy difference
e„(k) —e, (k) in the following way:

where

v, &(R) = a,"(r)v(r+ H)a, (r) dr. (51)

With the a.ssumption (50) satisfied, the matrix
elements of the perturbation potential. (36) become

v„(lc, H. ) =v„(H ).
There are many perturbation potentials for which
assumption (50) is satisfied. In the original paper
by Koster and Slater' the concept of a localized
impurity on the origin was used"

v„, (R, H') = v„,6(R)5(R'). (53)

This can be seen to be a special case of assump-
tion (50). Another region where assumption (50)
holds is when the perturbation potential v(r) varies
slowly, e.g. , it does not change much in the range
of a unit cell of the Bravais lattice. " This can
explicitly be proven from definition (37) when the
%annier functions are well localized on one unit
cell. %e then have

v„(R, H')

a,*(q+ H, „-H) v(q+ H.)a((q+ H. —R') dq

= P v(R„) a,*(q+R„—R)

a,~(q+ R„—R)a, (q+ R„—R') dq= 0 for R' 0 R.

(55)

» proving Eq. (54) we have assumed slow variation
of v(r) on one unit cell [v(q+ R„)= v(R„)] and corre-
sponding good localization of the %annier functions
[Eq. (55)]. In general, when the slow variation of
v(r) can be extended on a number of unit cells (say,
p unit cells) then the requirement on the localiza-
tion of the %annier function can be relaxed and the
integration in (55) extended on P unit cells.

With the assumption (50) fulfilled the overlap
integral (43) becomes (for nial)

S(„'&,~ =g(", (R~ —R )[v„,(R ) —v„,(R~)]. (N)

It is of interest to compare in order of magnitude
the overlap integral S ') in (56) and the expansion
parameter )) in (38). The difference of the matrix
elements in the squa. re brackets of (56) is of the
order of one matrix element, say e„„orl.ess.
This means that

xa&(q+H, —H, ') dq= v+((R)6(R —R'),

(54)

where the integration in (54) is on a unit cell and
we have assum. ed that



S&'& g!„',&(R)v„„R~ 0 (57)

(the sign "-"means "of the order" ). On the other
hand, t& gt',&(0)v„, . Having in mind Eq. (49) we
find that

(a) &eg.

S„»= S„~,p, l wn(~) - (1)

and we shall neglect St')» (ion), keeping only the
leading term S(')». However, since S(') has no
intraband elements, the leading intraband overlay
will come from St'&». From (41) we have

(59)

S p
( )g

dk BXP ['l'k (R Rp)]

pa "*ti,R.)a!",(k, R, )) .

Using the expressions (31) and (33) for Bt" and Bt'&

and assuming Eq. (50) for the perturbation poten-
tial, the intraband overlap becomes

St2) = g &(~)(R R )
Sp fl

&&[It�

..(R.)I'+ It..(Rp) I'

-2v,P„(R )v,„(Rp)],

where in analogy with Eq. (44),
fk" R

g "(R) = —'; (62)(2v)' [e„(k) —e, (k)]'

For H~ =8 the overlap S(') „ is zero as it should
be because the functions A„(k, q) are normalized
[Eq. (40)]. Again, with assumption (41) satisfied
we find that the intraband overlap S(') ~ is much
smaller than the square of the expansion param-
eter of [Eq. (38)]

Sam, ~ eel (63)

In developing one-band effective Hamiltonians
for the impurity problem we shall keep terms only
up to the order of q'. The intraband second-order
overlap St„') ~ is much smaller than &&' [Eq. (63)]

This relation will be used later in developing one-
band effective Harniltonians.

The first-order overlap S(' has only interband
matrix elements (there is no intraband first-order
overlap). The second order-perturbation terms
ill (41) will conti" ibute to tile ovel'lap in'tegl'al 1&o'tll

an intraband and interband part. Let us denote the
second-order overlap by S(')». The interband
part (f Wn) will, in general, be smaller than the
first-order overlap.

and will therefore be neglected. In this approxi-
mation the overlap integral (41) will become

A. „* (k, q)A, p(k, q) dkdq =5„,5(R, Rp) +S!'&,p,

In this section a one-band effective Hamiltonian
equation is derived for the impurity problem. The
derivation will be based on the localized functions
A„(k, q) [Eq. (39)] and the effective band energies
(34) and (35). As was mentioned at the end of Sec.
III we shall restrict ourselves with effective Ham-
iltonians uy to second order q' in the perturbation
expansion parameter q. Having this in mind and
using assumptions (47) and (50), the localized
functions A.„(k,q) can be written (up to first order
in perturbation theory)

A„(k, q) =exp(-ik ~ R )

+ +gA, q + +Su
v (R„)

S~n
(65)

The structure of the localized functions (65) is
very simple and they can easily be written in the
r representation

A„(r —R ) =a„(r —R )+Q "' a, (r —R ).
S~n

(66)

Here, A„(r —R ) are the localized functions for a
crystal with an impurity. It is seen that
A„(r —R ) depends not only on the difference
p —8 as in the unperturbed %annier functions
a„(r —R ) but also explicitly on the site R; As
should be expected, the stronger the perturbation
is on site R, the more will the perturbed function

A.„(r—R ) differ from the unperturbed one
a„(r —R ) on this particular site R

Assumptions (47) and (50) simplify also consid-
erably expressions (34) and (35) for the effective
energies. To second order in perturbation theory
we have

e„"(k,R ) = v„„(R ),

(68)

Let us now construct a one-band effective Ham-
iltonian for the impurity problem. For this pur-
pose we expand the solution U(k, q) of Eq. (12)
(with H =0) in the localized functions A»(k, q),

U(k, q) = Q Fl (Rp)A, p(k, q),

(64)

witll S„~p glvell ln (56) ~

IV. IMPURITY PROBLEM: EFFECTIVE HAMILTONIANS
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where the expansion coefficients F, (R~) depend on
the band index l and the site R . Substituting (69)
into (12) we have

Q Z, (k, R~)F, (Rp)A»(k, q) =e Q F, (Rq)A»(k, q),
lP

where

(71)
lR ll 2

E,(k, R~) =e, (k) +v„(R~)+Q — "'
s~g Cls

Let us now multiply Eq. (70) by A.„* (k, q) and inte-
grate over k and q. By using Eqs. (41) and (64)
we arrive at the following equation:

Qh„(R —R ))"„(R ) ~ „„(R )+Q " ))",(R )

1&n,P " kg —f) kJ

2

+ Q v„(R,)+Q " ' S'„" »F)(Rp)=&Fn(R }+& Z S'n', »F)(R))'"
l ~n J s~l his l van, p

where h (R) is the pourier transform of the energy band as given by Eq. (20). Equation ('l2) contains a
number of interband terms: the second line (A), the third line (8}, and the second term on the right-hand
side (g) . The terms B and g contain the small overlapS ' which according to (58) is much smaller than)I, the
perturbation expansion parameter. Let us show that the term A is also on the order S~'. This can be seen
by rewriting the term A [see Eq. (42)],

I Ar, p

dkexp[ik (R —R~)]e„(k) "' ~ "'~ " F,(R~)-e„g S„O». (73)
&en, n

We have shown, therefore, that all the interband
terms in Eq. (72} are of the order of Si'~. If one
attempts to diagonalize Eq. (72) by using well-
known procedures"'" one finds that the interband
terms of the order of S&'~ will lead to intraband
contributions of the order of (S '}'. Since accord-
ing to (58), S&'~&&)7, this means that all the inter-
band terms in Eq. (72) can be neglected if one is
interested in a one-band equation containing terms
only up to second order ()12) in the perturbation
theory. We find therefore that up to terms of the
order of q' the one-band effective Hamiltonian
equation for the impurity problem will be

Q h„(R~ - R )F„(R~)

mation. " Equation (V4) reproduces both mentioned
equations when the correction term is neglected.
However, the second-order perturbation term in
Eq. (V4) is of very simple structure and can lead
to significant contributions in the one-band im-
purity potential. The significance of this term
follows from the fact that while being a one-band
band term it is influenced by the explicit band
structure of the solid. This can in particular be
easily seen in solving the Koster-Slater localized
impurity problem. " Thus, by assuming that only
two bands interact in Eq. (V4) (band s influences
band n) and that the impurity is localized at the
origin, we find that the effective impurity potential
at H =0 is

R
+ v~(R~)+g F„(R ) = eF„(R ). (74)

s~ n &ns

Equation (V4) has a correction term

1.„.(R.)l
s~n

to the well-known one-band classical equations for
localized impurities of Koster and Slater' and for
shallow impurities in the effective-mass approxi-

v„„(0)+ 1 v„.(o) 1'/~„, .
This potential depends explicitly on the band gap
e a,nd the interband matrix elements v (0). The
second-order correction term in (75) can be large
and is restricted only by the applicability of per-
turbation theory. Both the binding energies of the
impurity and scattering cross sections will be
modified by the band structure.

Similar remarks can, in principle, be made



about the significance of the correction term in
Eq. (74) for the shallow impurity problem. In this
ease, however, one should, in general, expect
that for gentle potentials o(r) the second order
term in (74) will be very small. This can be seen
from definition (51). When v(r) is slowly varying,
it can be taken out from under the sign of the inte-
gral for a. large region or r and the integral (51)
will vanish for s c l. One could, however, imagine
cases when (50) and (51) hold and still v»(H) is not
negligibly small. This is only a gue ss and it should
be checked on real problems.

V. SUMMARY

Th'is paper is the first in a series aimed to de-
velop an approach for deriving localized states
and effective Hamil tonians in perturbed crystals.
The main idea is that localized states in a per-
turbed crystal when properly defined should not
differ too much (because of their localized char-
acter) from the corresponding localized states in
the perfect crystal. This is not true with respect
to eigenstates which for a perturbed crystal are
very different from those for a perfect one. The
perturbed localized states can therefore be found

by a perturbation procedure, while for finding the
eigenstates of a perturbed crystal perturbative

methods do not usually work. With the help of the
perturbed localized states one-band effective
Hamiltonians are developed containing interband
effects.

The main tool for developing the approach of the
perturbed localized functions is the kq representa-
tion. The usefulness of the representation in de-
fining localized states on lattices is not surprising.
As was shown in Ref. 9 operators defining the
Bravais and reciprocal-lattice vectors are con-
jugate to the kq coordinates. One should therefore
expect that functions localized on lattices would
assume a simple form when expressed in the Aq

representation. Thus, Wannier functions on dif-
ferent sites [Eq. (10)] differ from one another by
a simple exponential factor. This property appears
also in the perturbed localized functions but is
modified by the explicit site dependence [Eq. (39)].

Another important property of the kq representa-
tion used in this paper is the possibility of coor-
dinate separation. The k-dependent perturbation
theory in Sec. III was built by integrating out the

q dependence of the wave functions. The split of
the radius vector r into k and q in the kq repre-
sentation is therefore a convenient framework for
developing localized functions.
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