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Self-consistent electron-band theories have by now succeeded in producing rather impressive agreement with
experiment for the low-temperature low-pressure bulk properties of metals. An abundance of high-temperature
high-pressure shock-compression data offers an excellent proving ground for extension and testing of these
methods under more extreme conditions. One important problem in such an application is a treatment of the
electronic excitations. This is the concern of the present paper. Finite-temperature self-consistent electron-band
calculations were performed for temperatures up to 22000 K, using the test case of compressed metallic
iodine. Electron-phonon coupling was neglected, and the structure assumed to be a rigid face-centered-cubic
lattice. Results for the finite-temperature total electronic energy and pressure obtained by the fully self-
consistent calculations were found to be in close agreement with model calculations based solely on the
ground-state electronic density of states and Fermi-Dirac statistics. This suggests the possibility of the
significant savings in computational effort for high-temperature equation-of-state band calculations suitable for

comparison with shock-compression data.

I. INTRODUCTION

This paper reports high-tempervature (up to
22 000-K) self-consistenl-augmented-plane-wave—
Xa (SC- APW-Xa) calculations for the test case of
compressed face-centered-cubic (fcc) metallic
iodine. By comparison to these results, a simple
model calculation of the total electronic energy
and pressure based only on ground-state proper-
ties is shown to be surprisingly accurate even up
to these temperatures. The reason for such an
unusual choice of materials for an exploratory cal-
culation revolves around the practical need to in-
terpret what appeared to be some highly perplexing
experimental data on molecular iodine that had
been shock compressed to 110 GPa (1.1 Mbar) and
20000 K.! The need to distinguish between the
properties of the monatomic metal and the molec-
ular crystal while attempting to understand this
data motivated our use of these techniques. The
actual comparisons of theory with experiments on
iodine and the nuances that such comparisons in-
evitably excite are discussed in the paper follow-
ing.? Here we confine our attention to the details
of the finite-temperature electron calculations,
which although applied to iodine, are quite as gen-
eral and applicable as the augmented-plane-wave
(APW) method itself.

At the present time first-principles calculations
of the pressure and energy of metals at 0 K can be
carried out by a relatively straightforward applica-
tion of self-consistent electron-band theory,
principally by the APW and the equivalent Kor-
ringa- Kohn-Rostoker methods. These methods
and their applications are by now well docu-
mented.** They employ local free-electron ap-
proximations to the exact exchange-correlation

expressions that result in enormous computational
simplification without significantly comprising the
final results. The only serious debate is the ques-
tion of the most appropriate approximation. In the
so-called Xa method,® what is essentially a free-
electron expression for just the exchange energy
appears multiplied by an adjustable parameter «.
Different theoretical recipes for a provide the
user with crystal potentials, which, in fact, differ
little. A more unambiguous approach without ad-
justable parameters is provided by Hedin and
Lundqvist.® This approximation is based on free-
electron expressions for both the exchange and
correlation effects, although again the crystal
potential differs little from that of the Xa meth-
od; and the choice would appear to be one of taste
and convenience. While it is tempting to argue
that the latter method is more appropriate since
it is based on theory and contains no adjustable
parameters, any free-electron approximation to
exchange and correlation effects is of questionable
reliability in the case of rapidly varying electron
density as occurs in condensed matter and atoms.”
In spite of this uncertainty, a variety of self-con-
sistent APW and Korringa-Kohn-Rostoker cal-
culations, using both the Xa and Hedin-Lundqvist
approximations, have produced rather dramatic
agreement with experiment for cohesive energies,
equilibrium lattice constants, and isothermal
compressibilities.®"'” The calculations of Moruzzi
et al. for the 3d- and 4d-series metals should be
noted in particular.'®

In broad overview, the understanding of theo-
retical and computational methods required for
reliable low-pressure low-temperature equation-
of-state calculations on metals is already avail-
able. A next logical step is the extension and
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testing of these methods under more extreme con-
ditions of pressure and temperature. There have
already been a few comparisons of 0-K theory
with static high-pressure measurements of room-
temperature isotherms.'®'® (The correction be-
tween 0-K and room-temperature isotherms can
in general be reliably managed.) Unfortunately,
there are only limited static high-pressure-
versus—-density results available above 10 GPa or
so. Most static work at higher pressures is on
resistivity versus pressure. In contrast, there
are by now abundant pressure-versus-density
data on a variety of materials from shock-com-
pression experiments.?® Such experiments com-
monly achieve pressures up to a few megabars
(200 GPa), but with concomitant heating of the
sample to high temperatures.

In the case of alkali metals, the traditional
testing ground of solid-state theory, temperatures
can be as high as a few eV (20000 K). The shock
data must then be reduced to 0 K. Since a com-
plete theory of the thermal equation of state of
metallic solids is not available, the interpreta-
tions of the data have had to resort to rather crude
phenomenological theories. An example of the re-
sulting ambiguity is well demonstrated in the work
of Grover et al.,?* where it is shown that the reduc-
tion procedures commonly followed by different
shock-wave groups may result in very different
0-K isotherms for the alkali metals. As a rule
the high-temperature theory of matter used to
reduce the shock data to 0 K is less good than the
0-K calculation, which is presumably to be com-
pared with experiment. In the case of materials
such as the transition metals, temperature rises
are modest and the reduction procedures may be
adequate. In general, however, the theorist who
compares his calculations with reduced shock data
will often be undertaking a questionable exercise.
An important point we wish to make here is that
the theorist who desires to compare his high-pres-
sure calculations to the primary experimental
data may have no choice but to pursue his calcula-
tions to higher temperatures.

Any theory of metals must account for the
properties of both the electronic and the nuclear
degrees of freedom. This effort is complicated by
the electron-phonon coupling, and by the loss of
crystal symmetry if temperatures are above
melting. In attempting to formulate a first-ap-
proximate theory, the appropriate treatment will
depend on the particular density and temperature
range of interest. Thus, for example, the 0-K
treatments described earlier assume that electron-
phonon coupling is negligible, and, of course,
have no concern with liquid disorder. In this ap-
proximation the electronic properties are calcu-

lated, assuming a rigid lattice of nuclei. Small
corrections for the zero-point motion of the nu-
clei are obtained from simple harmonic models
and added to these results to obtain the total en-
ergy and pressure of the solid.

What about shock-wave data? For temperatures
extending into the electron-volt range, it is im-
mediately clear that special attention must be
paid to a treatment of the electronic degrees of
freedom that explicitly incorporates electronic
excitations. From the point of view of computa-
tional ease, however, one hopes it may still be
possible in a first-approximate treatment to use
a rigid-lattice calculation for the electrons in con-
junction with, 'say, a harmoniclike Griineisen mod-
el for the lattice thermal motion. In spite of the
very high temperatures involved, such an approxi-
mation is, in fact, not totally unreasonable. It
should be emphasized that the high temperatures
in shock compression occur simultaneously with
much increased density, and thus the ratio of tem-
perature to melting temperature may only get as
high as a factor of 5 or so. It is this ratio that is
important to these approximations. At least for
temperatures somewhat higher than melting,
Stroud and Ashcroft® have indeed found that the
free energy of normal-density crystalline sodium
can be well approximated by such a rigid-lattice
band-structure calculation combined with a pseudo-
harmonic treatment of the nuclear motion. Fur-
thermore, the rather weak temperature depen-
dence of their pseudoharmonic Debye temperature
suggests that even the further approximate
Griineisen model might suffice for the nuclear
motion.

There is somewhat more evidence that neglect
of liquid disorder is a reasonable first approxima-
tion in a theoretical calculation of shock-compres-
sion curves. It is, of course, intuitively clear that
at any given instant the local environment ex-
perienced by an atom in a liquid is about the same
as in a solid. In fact, both the solidlike Lennard-
Jones—Devonshire cell model and liquid-perturba-
tion theory predict results for the shock-compres-
sion P-V curve of initially solid argon that are in
reasonable agreement (i.e., within experimental
error) up to temperatures fully a factor of 4 larger
than the melting temperature.?® Furthermore, it
is generally not possible to distinguish where
melting has occurred by inspection of the experi-
mental shock-compression data.?*

The preceding discussion was intended to moti-
vate a practical approach for a theoretical treat-
ment of high-temperature high-density metals
suitable for comparison with shock data. As a
first approximation we propose to separate the
nuclear and electronic degrees of freedom, using



720 A. K. McMAHAN AND M. ROSS 15

self-consistent band theory for the high-tempera-
ture electronic degrees of freedom (assuming a
rigid lattice of nuclei), and treating the thermal
nuclear motion separately by means of a Griineisen
model. To date considerable effort has been ex-
pended in treating the thermal motion of metals;
however, the high-temperature, electronic prob-
lem has received little attention and is the sole
concern of the present paper.

The organization of this paper is as follows. In
Sec. II we review the SC-APW-Xa method and cal-
culations with specific attention to its finite-tem-
perature form. Finite-temperature SC-APW-X«
calculations were carried out at five temperatures
up to 22000 K, all at a single density. In Sec. III
we introduce an approximate model for computing
thermal energy and pressure based only on the
ground -state density of states and Fermi-Dirac
statistics. Results of these model calculations
are compared with the above finite-temperature
SC-APW-Xa calculations, and are in excellent
agreement up to the highest temperatures con-
sidered (22 000 K). We present our summary in
Sec. IV.

II. SELF-CONSISTENT AUGMENTED-PLANE-
WAVE Xa METHOD

The zero- and finite-temperature electronic
properties of fcc monatomic iodine were calculated
by means of the SC-APW-Xa method in the non-
spin-polarized and nonrelativistic form.* In its
customary ground-state form, this method may be
simply viewed in terms of the variational minimi-
zation of a particular approximate expression for
the total energy.?® Since the variational point of
view is a well-established principle of statistical
thermodynamics, it permits a straightforward
generalization of the derivation to finite tempera-
tures, carried out by applying this principle to the
minimization of the Helmholtz free energy.

A. Zero-temperature theory

Consider the following expression for the total
energy of a system of NZ electrons within a rigid
lattice of N nuclei:
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The index 7 runs over orthonormal spin orbitals
u;(T); the index a runs over the lattice sites.
Atomic units are used throughout this paper.2¢
The constant C = —3a(3/7)!/3. For the time being
we shall be concerned with zero temperature, in
which case the occupation numbers #; are either
zero or unity and serve to restrict the sum over ¢
to occupied spin orbitals.

Equation (1) may be recognized as the Hartree-
Fock expression for the total energy with two ap-
proximations: (i) The correct nonlocal-exchange
interaction is replaced by Slater’s p'/® approxima-
tion multiplied by an adjustable parameter a (thus,
the name Xa). There are well-prescribed methods
for choosing « that generally indicate a ~ 0.7 for
all but the lightest elements.?”?® It has been
argued that some correlation energy is included
in this method, and that it may yield a better ap-
proximation to the correct many-body energy than
does the Hartree-Fock approach.® (ii) In the poten-
tial energy terms the correct charge density

p(F)=3

is replaced by its muffin-tin approximation. In-
scribe contiguous muffin-tin spheres of equal size
about each lattice site. The muffin-tin approxima-
tion to a function f(T ), designated by fyr(T), is
taken to be the spherical average of f(T) within
these spheres, and a constant in the interstitial
region equal to the average value of f(T) within
that same interstitial region. The muffin-tin ap-
proximation is believed to be quite good for close-
packed monatomic metals in which a relatively
small fraction of the electron density exists out-
side of the muffin-tin spheres. The approximation
is considered less reliable for more open-lattice
structures and also where any significant com-
ponent of covalent bonding introduces strong
orientational dependence into the electron den-
sity.*

In spite of the muffin-tin approximation, Eq. (1)
is a well-defined functional of the spin orbitals.
The SC-APW-Xa method serves rigorously to
minimize Eq. (1) with respect to these orbitals.
The resultant differential equation for the orbital
u; and its energy €; may be written

niluy(F) )

[- v+ Wyr{ orert, T) + C g Paar (F)' /2] (F)
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wdp},7)= Z L -ZZ fda v ZP(I‘) @)

IF=-71"

The total energy in the SC-APW-Xa method is
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given by Eq. (1), evaluated with the optimized
orbitals. Since the potential energy terms all
scale as V ~1/3, a direct consequence of the varia-
tional minimization is that the SC-APW-Xa kinetic
energy [first term in Eq. (1)] and potential energy
(remaining terms) must satisfy the virial theorem

PV=%Ekin+§Epot' (5)

when these expressions are evaluated with the
optimized orbitals.?®

B. Finite-temperature theory

We turn to the finite-temperature version of the
theory. Following an approach used by Slater,®
we consider the Helmholtz free energy

F=E+kgTy, [0l + (1-n)In(t =n,)] , (6)

where E is as in Eq. (1), and the entropy is that
appropriate to a Fermi gas. The sum over ¢ runs
over all the energy levels. Equation (6) is now to
be minimized with respect to both the spin orbitals
and the occupation numbers, subject to the con-
straint 2n,= NZ. The variational principle leads
to Eq. (3) as before, but now the orbital-occupa-
tion numbers are represented by the Fermi-Dirac
distribution function as to be expected

n;={exp[Be; - w)]+ 1} . (M

The chemical potential u is, of course, fixed by
the constraint on the sum over n;. Because of Eq.
(7), the self-consistent charge density and the
self-consistent potential in Eq. (3) are tempera-
ture dependent. Note that the virial theorem, Eq.
(5), still follows from the finite-temperature
derivation.

The major uncertainty in the finite-temperature
SC-APW-Xa method is the suitability of the local-
exchange approximation. We have admittedly
taken the simplest logical generalization of the
zero-temperature form, the same p /3, although
with the local charge density now temperature
dependent. However, we emphasize that this ap-
proximation is only to be used within the region of
electron degeneracy, 7/T»=0.2. In the case of
shock compression, this criterion may often be
satisfied even at electron-volt temperatures.
These high temperatures occur simultaneously
with much increased density, so that the Fermi
temperature is also much larger both because the
volume is substantially decreased and because
more electrons are pressure ionized.

C. Calculations

A series of zero-temperature SC-APW-Xa cal-

culations were performed at a number of densities.

Finite-temperature SC-APW-Xa calculations were
performed at one density. The value of @ was
taken to be 0.7001, chosen so that the energy for
the isolated atom as calculated with the Xa approx-
imation would equal the isolated-atom Hartree-
Fock energy.’® It is to be emphasized that all elec-
trons are included and treated self-consistently,
although the localized core electrons are treated
in a self-consistent atomic fashion. At zero tem-
perature, monatomic crystalline iodine has a %—
filled 5p band. The 5s, 5p, and higher states were
treated in the band mode, using the equivalent of
256 points in the full Brillouin zone. This number
was judged to be adequate when a calculation with
2048 points yielded a total energy different by only
0.003 Ry and a pressure different by only a few
kbar. The radial mesh was of the Herman-Skill-
man® doubling form, with 225 points out to the
muffin-tin sphere.’? Sums over angular momentum
were truncated after 13 values. Running time on
the CDC-7600 was about 1 min/iteration for the
ground-state calculations (about 2 min at T
=22000 K), and generally ten iterations were re-
quired for convergence of the total energy and
pressure to about +0.0005 Ry and +0.5 kbar, re-
spectively.

The density selected for the finite-temperature
SC-APW-Xa calculations corresponds to a rela-
tive volume V/V,=0.4738, where V, is the volume
per atom of normal-density diatomic molecular
iodine (V,=25.674 cm®/moleI).*® Five tempera-
tures were taken ranging from 0 to 22000 K.
These choices are compatible with conditions
actually encountered in shock compression of
iodine. Furthermore, in shock compression to
the above volume, the temperature achieved would
be sufficient (presuming a monatomic phase) to
have excited a significant number of electrons into
the previously empty 5d band, lying just above the
5p-valence band. The relation between these
bands (at 7=0,[100] direction) is illustrated in
Fig. 1. Our exploratory calculations, thus, not
only have some relevance to experimental data,
but also offer a more interesting test of the ef-
fects of temperature in the excitation of electrons
across a band gap.

The finite-temperature SC-APW-Xa calculations
included excited states up to at least 7kzT above
the chemical potential for each of the tempera-
tures considered. The chemical potential was
never more than 0.04 Ry larger than the Fermi
energy. It is to be emphasized that the local
charge density was computed by summing over
all of these states up to the cutoff, weighted, of
course, by the Fermi-Dirac distribution func-
tion. This spatial and temperature-dependent
charge density was used to compute a new tem-
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FIG. 1. Band structure of fcc monatomic iodine. The
T=0 band structure is given in the [100] direction for a
relative volume of V/V,=0.4738. The 5s, 5p, and part
of the 5d-6s bands are shown. The Fermi energy (€ )
is given by the dashed line. All energies are measured
relative to the constant potential outside of the muffin-
tin sphere.

perature-dependent one-electron potential and the
whole process iterated to convergence. It was not
necessary to take into account temperature depen-
dence of the occupation numbers for the core elec-
trons. At T=22000 K, there was essentially no
excitation from even the lowest (5s) band.

Qur results for the electron thermal energy and
pressure are presented in Figs. 2 and 3. These
thermal properties were obtained at four nonzero
temperatures as the differences between results
of finite- and zero-temperature SC-APW-Xa cal-
culations, given by

AEe(V, T) = E(V, T) - E(V; 0) 2
APV, T)=P(V,T)-P(V,0) .
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FIG. 2. Thermal energy, [E(V,T)-E(V,0/N, of fcc
monatomic iodine at V/V;=0.4738. The data points were
obtained as the difference between finite- and zero-
temperature SC-APW-Xo calculations. The dashed
curve is the resultof Eq. (10). Close agreement between
the model calculations and the SC-APW-Xo calculations
is evident. A separation of the total thermal energy
into kinetic and potential energies is shown. The
change in behavior of these curves for temperatures
larger than about 12600 K is due to the onset of thermal
excitations into the 5d band.

The pressures were obtained from the viral theo-
rem.

The apparent simple temperature dependence of
both energy and pressure hides some interesting
structure as can be seen in Fig. 2 in a separation
of the finite-temperature SC-APW-Xo energy into
kinetic and potential contributions. The change in
behavior of both curves at a temperature of about
12600 K is a result of the beginning of thermal
excitations into the 5d band. This phenomenon is
evident in the self-consistent charge density also.
Up to temperatures of about 12600 K the different

I I I |
=
a 15 ,,x'
A -
g /"/
w 10— PR —
wv -~
£ X~
a Pl
g 5 e ]
< JRe
2 -
=
0 i | | | ]
0 5 10 15 20

Temperature (103K)

FIG. 3. Thermal pressure, P(V,T)- P(V,0), of fcc
monatomic iodine at V/V,=0.4738. The data points were
obtained as the difference between finite- and zero-
temperature SC-APW-Xa calculations. The dashed
curve is the result of Eq. (11). Close agreement be-
tween the model calculations and the SC-APW-Xa
calculations is evident.
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angular-momentum components of the charge den-
sity interior to the muffin-tin sphere stay nearly
constant. Between 12 600 and 22 000 K, however,
the amount of p-character charge density de-
creased by about 3% with the loss being made up
largely in increased d character and to a lesser
extent with an extension of more charge outside

of the sphere. These changes are on the whole
rather small. Even at 7=22000 K, the self-con-
sistent charge density is nowhere different by more
than £% from its 7=0 form.

The finite-temperature SC-APW-Xa calculations
also show a distinct temperature dependence of the
eigenvalues. The dominant effect is first an up-
ward shift in their energies, reaching a maximum
at about 12600 K. With subsequent onset of
thermal excitation into the 5d band, the eigen-
values begin to decrease and continue to do so up
to the highest temperature considered, where they
are coincidentally about the same as they were at
zero temperature. At T=12600 K the shifts range
from about 0.008 Ry for the inner-core eigenvalues
to about 0.002 Ry for the valence-band levels.
These seemingly small shifts add up to 0.32-Ry
contribution to the total energy at this temperature.
This is a large number as may be judged from the
energy scale in Fig. 2.

III. MODEL CALCULATIONS

To circumvent the need to carry out fully self-
consistent finite-temperature calculations at all
the temperatures and densities of interest, we de-
scribe an approximate method of calculating the
finite-temperature electronic energy and pressure
that requires only input from ground-state self-
consistent band-structure calculations. It is to
be recalled that we have restricted ourselves in
this paper to calculating the energy and pressure
for a system of electrons moving within a static
lattice. For the purposes of the present approxi-
mation, we subdivide these quantities into ground-
state and thermal contributions

E(V,T)=Ey(V)+AE,(V,T), (82)
P(V, T)=P,(V)+ APV, T) . (8Db)

We shall take E (V) and Py (V) to be the results of
zero-temperature SC-APW-Xa calculations. The
approximation to which we refer has been an ob-
vious choice to many and makes use of the zero-
temperature SC-APW-Xa electronic density of
states and Fermi-Dirac statistics in order to cal-
culate the electronic thermal parts AE,(V, T) and
AP (V, T).

It is rigorously the case that a variation of the
ground-state electronic energy given by Eq. (1)

with respect to the occupation numbers yields
dE=Y" ¢;dn, . 9)
i

This expression is, in fact, obtained for any choice
of the exchange or exchange-correlation energy,
which may be expressed in terms of the local
charge density. It does not obtain from the
rigorous Hartree-Fock energy expression, as

has been emphasized by Slater.® Given Eq. (9),

a very natural approximation for the electronic
thermal energy is

BE(V, T)= 3 (V) n(T) -n,0)] , (10)

where €;(V) are the zevo-temperature SC- APW-Xa
eigenvalues in Eq. (3), and »;(T) is the Fermi-
Dirac distribution function, Eq. (7). This approxi-
mation is rigorously equivalent to a finite-tem-
perature SC-APW-Xa calculation in the limit of
small electronic excitation, i.e., low tempera-
tures. Differentiating the corresponding Helmholtz
free-energy expression, one obtains for the elec-
tronic thermal pressure

LD ) -m@] . 1)

AP (V,T)=-
i
Equations (10) and (11) constitute the approximate
or model calculation of the electronic thermal ef-
fects.

Much has been made of the fact that the Xa
eigenvalues do not satisfy the Koopmans theorem.®
Yet it is stressed that these discussions have ap-
plied largely to very energetic optical excitations
of essentially a localized and, thus, atomic char-
acter. In the case of a transition between two de-
localized band states, the charge density in the
vicinity of a given atom should change by only
O(1/N). For this situation, the difference between
the Xa eigenvalues is expected to be reasonably
close to the change in total energy.® This expecta-
tion is, of course, less clear for highly excited
states that are nevertheless still generated from
the ground-state self-consistent potential. In the
final analysis, we justify our use of Egs. (10) and
(11) by comparison with results of finite-tempera-
ture SC-APW-Xa calculations.

To evaluate Egs. (10) and (11), ground-state
SC-APW-Xa calculations were performed at a
number of densities to determine the eigenvalues
€;(V) and their volume dependence. In all cases,
excellent fits to the volume dependence of the
eigenvalues could be obtained using the functional
form a+bV+cV™% Equations (10) and (11) were
evaluated for V/V,=0.4738, including 5s, 5p, and
higher states up to a cutoff of 75T above the
chemical potential. The results for the thermal
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electronic energy and pressure are shown in Figs.
2 and 3 as the dashed curves. Close agreement
between these approximate calculations and the
finite-temperature SC-APW-Xa results is evident,
up to the highest temperature considered

(22 000 K).

Equation (10) would be trivially valid if the finite-
temperature SC-APW-Xa eigenvalues and poten-
tial energy terms showed negligible temperature
dependence. It is to be emphasized that this is
not the case here. We have noted in Sec. II that
the temperature-dependent shifts in the finite-
temperature SC-APW-Xa eigenvalues contributed
as much as 0.3 Ry to the total energy, a very large
number judging from the energy scale in Fig. 2.
The evident success of Eq. (10), which is based on
zero-temperature eigenvalues, must, therefore,
imply that considerable-cancellations occur be-
tween the temperature-dependent variations in the
finite-temperature SC-APW-Xa eigenvalues and
potential energy terms. We suspect that the rea-
son for this cancellation and for the success of
Eq. (10) lies in the variational nature of the
ground-state Xa eigenvalues, namely, 0E/on; = €.

IV. SUMMARY

In seeking a first-approximate theory of metals
suitable for comparison with high-temperature
high-pressure shock data, we have suggested that
one might use a rigid-lattice finite-temperature
self-consistent band-structure calculation for the
electronic degrees of freedom in conjunction with
a Griineisen model for the nuclear-vibrational
motion. Such an approach, of course, neglects
electron-phonon coupling, anharmonic nuclear-
vibrational effects, and liquid corrections. While
these approximations must certainly be tested, our
concern in this paper has been with the first part
of the problem—self-consistent electron-band

structure calculations up into the electron-volt
range.

We have reported finite-temperature SC-APW-
Xa calculations up to a temperature of 22 000 K
for the test case of compressed-fcc monatomic
iodine. Although more time consuming, these cal-
culations are no more complex than the familiar
ground-state method. The effect of electronic ex-
citations is discernable in the temperature depen-
dence of the kinetic and potential energies, pres-
sure, self-consistent charge density, and one-
electron eigenvalues. The onset of thermal ex-
citations across the 5p-5d band gap alters the
temperature dependence of these quantities. Even
at 22000 K, however, the self-consistent charge
density is nowhere more than 3% different from
its zero-temperature form.

We have compared the finite-temperature SC-
APW-Xa, total energy and pressure with the same
quantities as obtained from a simple-model compu-
tation that requires as input only results from
ground-state SC-APW-Xa calculations. The en-
ergies and pressures obtained by these two meth-
ods were in close agreement up to the highest
temperatures considered. It should, therefore,
be possible to calculate the shock-compression
P-V curve for a metal, according the rough meth-
od outlined above, with no significant increase in
computational effort over that already expended in
the established self-consistent electron-band meth-
ods for determining the zero-temperature iso-
therm.
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