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Roughening transition in the solid-on-solid model
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It is shown that the failure of the Temkin approximation to predict a roughening transition in the solid-on-

solid model is due to the neglect of certain correlations perpendicular to the interface. The inclusion of these

correlations is essential to any consistent description of roughening. Taking them into account leads to a

divergence of the interface width even within the framework of a mean-field approximation.

I. INTRODUCTION

In 1949, Burton and Cabrera' suggested that
the width of the interface between two phases in

a three-dimensional Ising model should diverge
at a "roughening" temperature T~, which is
lower than the bulk critical temperature. Since
they were considering this system as a model
for the solid-gas interface, the phenomenon of
roughening would have a direct application to
the theory of crystal growth. '

This suggestion has been suyyorted by low-
temyerature series expansions' and Monte Carlo
studies, ' but the microscoyic description of
the roughening transition has not been satisfac-
tory.

In 1966, Temkin' used a Bragg-Williams anal-
ysis to obtain an approximate description of the
solid-on-solid (SOS) model (high-anisotropy limit,
described in Sec. II). His results for the thermo-
dynamic properties of the interface are in good
qualitative agreement with Monte Carlo data, ~'
but his failure to find a roughening transition
presented a serious problem, since mean-field
approximations are usually reliable for predic-
tions of the existence of phase transitions in more
than one dimension. The absence of an explana-
tion of why the Tempkin approximation gives a
finite interface width at all temperatures cast
some doubt on the existence of the roughening
transition.

In this paper, we show that the Temkin approxi-
mation neglects certain correlations that are es-
sential to an understanding of the roughening
transition. The inclusion of these correlations
leads to a divergence of the interface width even
within the framework of a mean-field ayproxi-
mation. The divergence can be described by
roughening exponents, which we also calculate.

In Sec. II, we discuss the relationship between
the models of an interface under consideration.
We then rederive the naive-mean-field and Tem-
kin results in Secs. III and IV to show why such

approximations cannot describe roughening. In

Sec. V, we present an approximation that pro-
vides a microscopic description of the roughening
process.

II. ISING AND SOS MODELS OF AN INTERFACE

We begin with an anisotropic Ising model

R(ising) = —g g Jz, Sz S;—g p, s H g 8&, (1)

R(SOS) =lim [R(ising) -E,] . (3)

For the theory of crystal growth, we set J =&

and gp. ~H =Ay, and write

with 8& =+—,'. We shall restrict the discussion to
nearest-neighbor interactions with positive ex-
change constants: J in the g and y directions and

J in the z direction. Below T„aninterface is
produced by imposing antiperiodic boundary con-
ditions in the z direction. The free energy asso-
ciated with the interface is then obtained by sub-
tracting the free energy with fully periodic bound-
ary conditions and taking the thermodynamic lim-
it. An immediate consequence is that the energy
(and free energy) of the interface at T =0 is J'
for each site in the x, y plane.

In the lattice-gas interpretation used in the
theory of crystal growth, a site is said to be
occupied if Sf'=+-,' and empty if Sf'= ——,'. The con-
centration of particles (up spins) in the nth layer
yarallel to the interface is then

(2)

The SOS model, which plays a prominent role
in the theory of crystal growth, is simply the
high-anisotropy limit J'-~. The bulk critical
temperature becomes infinite in this limit, as
does the free energy of the interface. It is con-
venient to subtract the (infinite) ground-state
energy in the definition of the SOS Hamiltonian:
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~(sos) =e gg (li „-a,,„j
+lh, , -h,.„., I) -~i P P&;,,

where i and j are the x and y coordinates and

5„.is the height of the surface. %e shall restrict
further discussion to the equilibrium condition,
sp, =0.

The width of the interface can be measured in
several ways. ' lf the ground state of the system
is taken to be c„=1 for n «0 and c„=0 otherwise,
then the reciprocal of (c,—c,) provides one mea-
sure. Qther measures are given by the moments

Case

Configuration
Above Below
(n+ 1) (n —1)

1
2

1
2

Concentration
in nth layer

Cn+ f

~n-i

Cn -1-Cn+g

0 (not allowed)

&Sf

+—12
1
2

TABLE I. Spin configurations in the SOS model above
and below a given site in the nth layer. Case 4 is ex-
cluded because it would require an excitation energy of
2J'= (0- =+ t and 0+

(n") = g n"(c„-c„„),
where p is a positive integer.

III. NAIVE-MEAN-FIELD APPROXIMATION

The simplest application of the mean-field
approximation (MI'A) to the anisotropic Ising
model consists of supplying indices to the usual
equations to specify the layers involved. For
the magnetization in the nth layer g„=(S~)„,, we
have

o„=-,' tanh[p Jzo„+pJ'(o„,+g„+,)j, (6)

where Z is the number of nearest neighbors within
the x, y plane. In addition to the homogeneous
solution p„=o,there exist solutions with the prop-
erty

lim g„=+lgl,
$ 40

which have been shown to give a plausible de-
scription of an interface for J' = J.' However,
naive MFA fails completely in the SQS limit.
If g„,+o„„is not exactly zero, then l o„l

=
l ol = —,

'
and we have the incorrect prediction of a per-
fectly sharp interface for all temperatures. The
difficulty lies in the neglect of correlations in
the z direction (longitudinal correlations). These
correlations become increasingly important as
J' increases and their neglect leads to an averaged
(infinite) interaction with all spins in neighboring
layers.

IV. INCLUSION OF LONGITUDINAL CORRELATIONS
BETWEEN SPINS (TEMKIN APPROXIMATION)

Fortunately, the longitudinal correlations be-
tween spins can be treated exactly in the SQS
limit. Table I shows the four configurations of
the spins directly above and below a given spin
in the nth layer. In cases j. and 2, the spin is

"frozen" and only in case 3 it is free to take on
both positive and negative values. Case 4 is for-
bidden because it would require an additional
energy of 2J' =~. For the magnetization of the
free spins, g„',we again use MFA, so that now

o„'= ~ tanhx„

"n =pe zon =p~ z (cn

Combining this with the exact consistency con-
dition (found by combining the last two columns
in Table I)

g„=n c„„--,'(1-Cn, )+gn (cn, -Cn„),
we find the recurrence relation

Cn+1 Cn (Cn-1 Cn) 8

which is identical to that found by Temkin' using
a different method. As Temkin showed, this
equation is easily solved by numerical iteration
starting from an arbitrary value of x, = -xo. The
normalization condition in Eg. (7) (with g = —,')
determines the corresponding value of the tem-
perature and the full temperature dependence is
found by varying x,. The energy contribution
from the nth layer is

&„=«(n-o„')=«c„(1-c„),
and other quantities of interest can be calculated
using the usual thermodynamic identities. ' These
predictions are in good qualitative agreement
with the thermodynamic properties found in Monte
Carlo simulations. '

The iterative procedure is extremely efficient
since Eg. (11) converges exponentially. Unfor-
tunately, this also implies that the width of the
surface is finite for all temperatures, so that
the Temkin approximation fails to predict a
roughening transition.
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V. INCLUSION OF LONGITUDINAL CORRELATIONS

BETWEEN SPIN PAIRS

When spins are frozen into position in the SOS
limit and no longer contribute to the thermal
properties of the interface, the interactions be-
tween such frozen spins are also frozen and do
not affect the behavior of the free spins. To take
these correlations into account in a mean-field
approximation, we need a new expression for the
effective field, which contains contributions from
interactions with those frozen spins that bound
regions containing free syins. To calculate the
extent of such boundaries, we introduce the num-
ber of antiparallel spin yairs in each layer a„.
The layer energy contribution is then exactly

P.„=ca„. (13)

If we neglect height differences of more than two
lattice constants, the number of interactions with
boundary spins in the nth layer that are frozen
into the plus (minus) one-half state is just a„+,
(a„,).

To approximate the effect of the frozen boundary
spins by an external field, we replace Eq. (9) with

an+~+ an- ~ 2 PE (Q„„l0„l) (14)X =P&g z-
n j n

+
Cn 1 Cn+1 Cn-1 Cn+1

Note that we have included a correction term to
avoid double counting interactions between free
syins. Taking this term proportional to a„„+a„,
gives the correct low-temperature yroyerties,
but it is an overestimate due to contributions
from height differences of more than two lattice
constants. However, this is not crucial to the
essential result and the term could be neglected
completely (a substantial underestimate) without
affecting the existence of the roughening tran-
sition. The term proportional to an„-a„,is
not affected by height differences of more than
two lattice constants.

The layer energy contribution is obtained by
the usual MFA method, ' taking into account the
condition that E„(o„'=+—,') =@a„,. Equation (12) is
replaced by

E„=e [-,' —(o„')'][r(c„,—c„„)—(a„„+a„,)]
—e(a„„-a„,) g„'+-,'e(a„„+a„,), (15)

to get a closed set of simultaneous equations,
namely, (8), (10), (11), and (13)-(15).

Far from the interface (n large), x„=xindepen-
dent of n and, after some algebra, we find

x = 2 P e tanh(2x) .
This equation has nonzero solutions for x as long
as Pe & —,'. For higher temperatures, only the
solution x =0 exists and the recurrence relation

ksT/8

FIG. 1. Interface specific heat as a function of tem-
perature.

(11) shows that the interface width diverges; our
new approximation gives a roughening tempera-
ture k~T~ =4m. As is usual in mean-field approxi-
mations, the predicted transition temperature is
higher than the best estimates from low-tempera-
ture expansions' (1.23' to 1.32m) or Monte Carlo
simulations (1.15')."

To obtain a full numerical solution, we first
set x„=xfor all n&1 and then, beginning with
n =1, solve the equations for the nth layer, hold-
ing the parameters for the other layers fixed.
The process is repeated until convergence is
found. The procedure is quite fast, except close
to Tz, where many layers must be taken into
account.

1.0

co-c

0.5—

2 3

kBT/e

FIG. 2. co- c& as a function of temperature.
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The thermodynamic properties, such as the
specific heat shown in Fig. 1, do not show any
singular behavior at T~. These properties are
quite close to those found in the Temkin Bpproxi-
mation and, at low temperatures, the predictions
of the two approximations become identical for
all quantities of interest, including the various
measures of the width.

As k~7.' 4q, all measures of the width diverge
in the new approximation. Near T~, we can de-
scribe the singularities by "critical" exponents

and find that (c,—c,) goes to zero with the square
root ot' (Ts —T) as shown in Fig 2. , (n') diverges
with the first power, and(g~) diverges with the
second power.
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