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Recently one has seen a growing interest in systems, like modulated crystals and crystals with charge or spin

density waves, which can be considered as crystals with a distortion which is periodic in space or in space
time. The Euclidean symmetry of these systems is, in general, not a three-dimensional space group and is

fairly low. It is shown that enlarging the admitted group of transformations the symmetry group is a space
group with dimension higher than three. For static systems the additional dimensions are related to internal

degrees of freedom associated with relative Euclidean motions of the distortion with respect to an average
crystal structure and for time-dependent ones to the time. A discussion of the symmetry is given, both for
point particle systems and for continuous density distributions. These higher-dimensional space groups are
relevant for the physical properties of such crystals, as shown here in particular for systematic extinctions
occurring in their diffraction patterns.

I. INTRODUCTION

For a long time the three-dimensional space-
group symmetry of a perfect crystal has been con-
sidered as one of the main characteristics of the
solid state. From this, important consequences
for the physical properties follow. However, in
recent years one has increasingly become in-
terested in condensed-matter systems without this
three-dimensional space-group symmetry. Ex-
amples a.re a number of systems (some of them
given in Appendix A} which can be considered as a
perfect crystal with a deviation, in the sense that
the deviation itself has symmetry properties, e.g. ,
it is a periodic distortion. In this way the system
has in general a lower Euclidean symmetry, but
is still perfectly ordered. This latter feature is
revealed by the sharpness of the spots in the (x-
ray, electron, or neutron} diffraction pattern.

The presence of periodic crystal distortions can
be seen in the diffraction pattern from so-called
satellite reflections. These are associated with
peaks in the diffracted intensity distribution in the
reciprocal space regularly distributed around (and
generally weaker than} the so-called main xeflec
tions. This explains the name. Conversely the
presence of satellite reflections can be interpreted
as due to periodic distortions associated with den-
sity and/or displacive wave deviations from an un-
distorted crystal structure called basic structure'
(in Ref. 2 the name "reference structure" is used).
This basic structure is not always uniquely de-
termined by the diffraction pattern. In many cases
it has the same symmetry group as that of the
crystal at a temperature just above the appearance
of the satellite reflections. But there is not always
an undistorted state corresponding to the basic
structure.

The distinction between satellites and main re-
flections cannot be made on the basis of intensity
only. Satellites stronger than corresponding main
reflections can very well occur. Furthermore
the deviations from the basic structure need not
to be small. Nevertheless in all practical cases
known, the identification of the main reflections
gives no problem. In some cases the determina-
tion of the basic structure is not as easy, as will
be discussed further on. Therefore another struc-
ture is considered more directly related to the dif-
fraction pattern: that of average structure. This
is the structure one obtains by disregarding satel-
lites and by taking into account the main reflec-
tions only. The real distorted state then appears
as the result of a structure refinement with re-
spect to the average structure. Note that both
average structure and basic structure are invari-
ant under the same group of discrete space trans-
lations, generating a three-dimensional lattice A3,
so that their symmetry (which in general is not
the same) is given by a (three-dimensional) space
group. If this is the case for the (periodically)dis-
torted crystal, the latter is said to form a suPex-
structure (of the basic one). Characteristic for a
superstructure is the fact that with respect to the
reciprocal lattice A3* of the basic structure, the
satellites occur with rational indices. Equivalent-
ly one can say that such satellites belong to a lat-
tice Z, containing A3*. The index of A,

* in Z3* ex-
presses the number of times the elementary cell
of the basic structure is contained in that of the
superstructure. In the case of long-period struc-
tures this number is large compared to one.

There are crystals in which the positions of the
satellite reflections vary continuously with respect
to A, a.s a function of the temperature (in a given
temperature interval). Interpretation of such a.
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diff rac tion pattern in terms of three-dimensional
space groups is possible, but not meaningful, be-
cause it would require for that given temperature
interval an arbitrarily large number of different
superstructures, whose elementary cells would

mostly be of macroscopic dimension. Much sim-
pler is the situation if one admits satellites in-
commensurable with the main reflections, i.e.,
nonrational indices. The corresponding crystal
is then characterized by a periodic distortion in-
commensurable with respect to the basic struc-
ture and has a so called modulated crystal struc-
ture. Clearly the symmetry group of a modulated
crystal cannot be a three-dimensional space group,
as the unit cell has an infinite volume. The aim
of the present paper is to show how, by consider-
ing additional dimensions and operations, the sym-
metry of periodically distorted crystals can still
be described by crystallographic space groups (of
dimension larger than three).

One has to distinguish between whether or not the
distortion is a time-dependent or a static one. In
the time-dependent case considered here, time is
the additional dimension required: the symmetry
of the distorted crystal is in fact the space-time
symmetry of its world lines. In the time-inde-
pendent case the relative positions of the periodic
distortion with respect to a basic structure can be
associated with internal degrees of freedom of the
system considered as a two-component system:
the additional dimensions are used to describe the
(Euclidean) relative motions of one component (the
deformation) with respect to the other (the basic
structure). So the product space is here maximal-
ly of dimension six.

This situation is comparable with that one finds
in molecules having a degenerate ground state in
the Born-Oppenheimer approximation, where also
internal degrees of freedom are used for describ-
ing relative motion of subsystems. ' One can in-
deed show that, e.g. , in the case of incommensu-
rate deformations (modulated crystals) the ground

state of the system is also degenerate for shifts
of the deformation relative to the basic structure.
In both cases these crystallographic groups of di-
mension higher than three are physically relevant:
in particular, they allow for a simple formulation
of extinction rules for diffraction, which are the
result of correlations between atoms in the crys-
tal not simply expressible in terms of Euclidean
symmetries in the three-dimensional space. The
bigger the supercell, the more useful can be this
approach.

Before going into details let us briefly discuss
different types of periodic distortions: periodic
lattice distortions and periodic density distortions.

The periodic lattice distortion is conceptually

the simplest case: the distortion is of the displa-
cive tyPe. The distorted structure is obtained by
periodic displacement from the corresponding
positions in the basic structure. Superstructure
formation of the displacive type is typical for many
structural phase transitions, in particular for the
ferroelectric or antiferroeleetric ones. The case
of the displacive modulated crystal y-Na, CO, has
been analyzed in detail by de Wolff and his col-
laborators. 4 Furthermore, any crystal vibrating
in a single normal mode (of nonzero frequency)
shows a lattice distortion periodic in time and, at
any fixed time, periodic in space.

The description of a distorted crystal by means
of displacements with respect to a basic structure
becomes rather an arbitrary one if the relevant
distribution function is not sharply peaked, i.e. ,
if the point-particle approximation is not a good
one. An extreme example is that of a crystal
where the conduction electrons are considered to
move nearly free in a jelliumlike medium: the
relevant distribution function is then a charge
density or a spin density that is nearly constant.
The periodic distortions that may occur, in the
well-known'form of charge-density waves (CDW)
and spin-density waves (SDW), respectively, ca.n

hardly be seen as displacements from an undis-
torted basic structure, even if they can produce
a periodic lattice distortion. The same can be said
in the ca,se of solid solutions (as in alloys) where
the position of a given atom is described in terms
of a probability function attached to given crys-
tallographic positions and where periodic devia-
tion from a uniform distribution is expressible in

terms of concentration or occupation probability
&eaves. Quite generally, these density waves also
give rise to satellite reflections, but that can be
distinguished from those due to displacive waves. '
Very often distortions of various type occur to-
gether. In some of these cases the concept of
basic structure is still a natural one, in others
not. In all cases, however, the concept of average
structure can be used. Even if this last is some-
times more difficult to be visualized, the average
structure shares many of the useful symmetry
properties of the basic structure.

In the following, the same problem, that of a
suitably defined symmetry of a periodically dis-
torted crystal, is considered from different point
of views, depending on the type of distortion and
on the way the crystal is described. Time-depen-
dent distortions are considered in Secs. II and V,
static ones in Secs. III and IV. The following two
sections are based on a pointlike atomic descrip-
tion of the crystal, the last two on that by means
of a density function. Appendixes give more de-
tailed information on some specific points.
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II. PHONON-TYPE SYMMETRY described by the space- time distribution

where

r, (n, j)=n+r, , ncA, (2.1)

and j =1, 2, . . . , s labels the atoms with mass m& in
a unit cell of the three-dimensional lattice A, . The
space group G, is defined as

6, =fgc E(3) ~gx, =X,], (2.2)

where E(3) is the Euclidean group of the three-di-
mensional space V,. For the elements of G, we
write as usual g=(R ~a]. The vibrating crystal is

In crystal physics many different elementary
excitations occur which transform according to
irreducible representations of the space group of
the crystal under consideration. ' The knowledge
of the symmetry group of a given elementary ex-
citation is helpful when constructing normal co-
ordinates. ' But usually, since many different
elementary excitations occur at the same time,
only the symmetry group of the ground state is the
relevant one. There are situations, however,
where one mode (or a given set of modes) plays a,

dominant role, is occupied macroscopically, and
gives rise to collective phenomena producing as a
new ground state, that of a distorted crystal. '

As a typical example we consider a crystal un-
dergoing a structural phase transition induced by
a so-called soft phonon, just above the critical
temperature. The symmetry of the crystal driven
by such a vibrating normal mode is relevant for
that of the crystal in the distorted phase. We will
show that, indeed, such a relation is expressible
in group theoretical terms. (The genera. l situa-
tion, however, deserves further investigation. )
Moreover, in such a situation the macroscopically
occupied soft phonon state does not represent any-
more an elementary excitation: the ground state of
the crystal is no more the static one but that of a
crystal vibrating according to the corresponding
critical mode. Consequently its elementary exci-
tations should transform according to irreducible
representations of the symmetry group of the vi-
brating crystal, a point of view that we hope to
analyze in a subsequent paper.

The model adopted here is that of a harmonic
point particle crystal vibrating in a single normal
mode. ' Our system is thus a periodically distorted
crystal, and the basic structure is that of the
particles at their equilibrium positions. We denote
by X, the mass distribution and by G, the space
group of this basic structure.

The distribution X0 can be written

X, =Q m,.5 (r —r, (n, j)),

X= m, & r- r n~j,

in the four-dimensional space-time V4, where
r(n, j), denotes the position in space at time t of
the particle j with equilibrium position in the unit
cell denoted by n.

Writing

r(n, j),= r, (n, j) + u(n, j)„
we see that the world lines described by X deter-
mine a time-dependent vector field u of displace-
ments with respect to the basic crystal. The mo-
tion being harmonic, the time average of all dis-
placements vanishes:

(2.3)

(u(n, j),) —= lim—
T

u(n, j),dt =0, (2.4)

so that

(2.5)

The symmetry group G of the vibrating crystal is
here defined as

G =(gc IG(4) igx = X], (2.5)

where IG(4) denotes the inhomogeneous Galilei
group in four dimensions.

The determination of G proceeds in three steps.
One first looks for a relation between G and Gp as
a consequence of that between X a.nd X, [see (2.5)].
One then looks at the transformation properties
of the displacement vector field u with respect to
G„which are known from the classification of the
normal modes according to irreducible represen-
tations of G,. Finally, the problem of finding G
appears to be one often met when the group of ad-
mitted symmetry transformations is enlarged
[here from E(3) to IG(4)]: that of determining the
so-called compensating transformations. ' In the
present case these appear to be time translations.

Indeed, the following lemma shows that in G un-
der conditions usually satisfied in vibrating crys-
tals as described here, only elements belonging
to the group E(3)x E(1) occur.

This group generated by the Euclidean motions
in space, the time translations and the time re-
versal, plays an important role in symmetry con-
siderations for many nonrelativistic physical sys-
tems, but has not yet received a generally accepted
name. We have called it first "generalized mag-
netic group" and later on "Shubnikov group. " Ba-
cry et a/. proposed the name "Aristotle group"
Ar'(3) and Opechowski introduced the name "New-
ton group. "

Lemma 2: Consider r(n, j), as defined in (2.3).
Suppose
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g(r, t) = (Rr+ v t+ a, et y r), (2.7)

where R c O(3), a is a space translation, 7 a time
translation, E =+1 and v a velocity vector.

So that for g E G one has

(r(n, j),) = ro(n, j),
then the group G leaving invariant X determined by
r(n, j), is a subgroup of E(3) && E(1).

Proof: A general elementg=(R, v, a, &, r) L-IG(4)
transforms a point (r, t) E V, into

A

B
I

0/2
f

0/2
~=—— X

g(r(n j)„t) =(Rr(n, j),+ vt+a, e t+ 7')

= (r(n', j '), , t'), (2.8)

where n', j', and t' depend, in general, on n, j, t,
and g; of course, for the masses one has m; =~,

By taking the time average one gets

r, (n', j ) =R r.,(n, j) +a+ lim (a vT),

implying v=0. Note that if r(n, j},would be de-
fined on points of a space-time lattice only, then
(2.8) would only involve discrete values of t and
the time average would not be (2.9).

It is because point particle world lines are con-
tinuous, that nontrivial (i.e. , with v W0) Galilei
transformations are excluded.

According to this lemma we can write the ele-
ments of G as elements of E(3) && E(1) in the form

(2.9)

g = (R, 0, a, , a, r) =—({R ) a), {e[ r)). (2.10)

{R
~
a) is called the space component, and {e

~
rj the

time component of g. For E =1, g is orthochro-
nous, for E = —1, it is antichronous.

The projection w: V, -V„defined by n(r, t) =r,
induces a, homomorphic mapping v: E(3)& E(1)
-E(3), defined by

(2.11)

and because of (2.5), (2.8), and (2.9), these last
for v=0, one has

(vG)XO = Xo,

implying

GcG

(2.12)

(2.13)

G ={gc E (3) && E(l) igu = uj. (2.14)

The symmetry condition forge G as in (2.10) gets

Therefore the action of G on the vector field u
is well defined and any symmetry of X is a symme-
try of u; also note that this is not true in general
but a consequence of the assumptions appearing in
Lemma 1, whereas any symmetry of the vector
field u is always a symmetry of X (see Fig. 1).
Accordingly we can adopt for G the more con-
venient definition

FIG. 1. In this example ~aero is a symmetry of the
displaced world lines (A) but not of the displacive vector
field u defined on the positions of the basic structure (8)
only (-,'ay G,).

the more explicit form

u(n', j '),.=Ru(n, j)„ (2.15)

where the transformed positions are given by

=68+7, n' + r&, ——R (n+ r&) + a. (2.16)

According to the standard theory of lattice vibra-
tions of a harmonic crysta, l we write (in the nota-
tion used in Ref. 10):

u (n, j), = Z u, (q,j),e""
gEBZ

=g g Q' ,e( jn~q-X)e' "" i~" + c.c., (2.17)

where n = 1, 2, 3 numbers the components of u(n, j),
with respect to a suitable basis; Q~, are (complex)
normal coordinates; e(n j

~
qA) can be seen as en-

tries of a 3s x 3s (complex} matrix, the so-called
polarization matrix; and c.c. means complex con-
jugation.

The case considered here arises when the coef-
ficient of a. given mode, say (q, X), dominates all
the others. It is therefore natural to disregard at
first the latter and to consider a system in what
we call the single-mode approximation. Improve-
ments can then be obtained either by taking into
account the neglected normal mode vibrations by a
perturbative treatment, or by considering the vi-
brational excitations of a crystal whose ground
state is that in which the atoms move according to
the mode (q, X). In both cases it is important to
know the symmetry group of the crystal in the
single-mode vibrational state. According to (2.13)
the spatial component% g ={R~a j of an element of
G belongs to the space group G, of the basic struc-
ture.

Let us therefore consider how the normal mode

(q, X) transforms under such an element. One has'o
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Rr, +a= ri, +u(ng, l), (2.20)

and 6, , is the Kronecker symbol (see Ref. 10 for
more details). Hence the mode (q, » transforms
into a mode with wave vector Rq and frequency

Under time reversal the same mode trans-
forms into the mode (-q, X) with the same fre-
quency ~~„. Finally, under a time translation
(ll7) the mode gets a phase shift &d;,&. Therefore
a necessary condition for g = ((R la, fa lr)) to be an
element of G is given by

Rq—= eq(modA, ") for f.R lajc Go. (2.21)

Let us first look at the subgroup G' of G formed by
its orthochronous elements. Then one has

mG'L G-=${Rla)c G, lRq=-q(mod A, )). (2.22)

Therefore 77 projects G' on a subgroup of the little
group of the wave vector q. As is well known G;
is an equitranslational subgroup of G, (i.e., both
space groups have the same translation subgroup,
U~ = U,). The group G; acting on the complexified
3s-dimensional configuration space M, spanned by
all possible displacements from equilibrium of the
atoms in the unit cell of the basic structure (i.e. ,
generated with complex coefficients) defines a uni-
tary representation I'& of G; by

1";(go)=1'(go, q), gob G', (2.23)

with F as in (2.19). This representation can be de-
composed into its irreducible components D'"'.

F;(g.) =—&(g., q) =g D '"'(g.). (2.24)

The polarization vectors labeled by X=1,2, . . . , Ss
and with components e(ixj l

qX) form a, basis of M, .
In the case of natural degeneracy, and after a
suitable ordering of these vectors according to the
eigenfrequencies, it is precisely by referring the
representation I'; to this normal mode basis, that
one gets the desired reduction. Indeed

&(g., q) =e(q) 'F(g. , q)e(q), (2.25)

where e(q) is the 3s x 3s polarization matrix whose
column vectors are the polarization vectors con-
sidered above. Furthermore, each polarization

(e" u). (n, ~) i = QL ~ &(~g, q);i'e(&&
I q»

B=lg 2y 3
l=l, 2, ...)s

g ei(Rq n-co&~&t) + ~ ~ P

(2.18)
where

F((R l J )a8 R 6 e-isg u(rg, i) (2.19)

with the lattice translation u(wg, l) c A, determined
by

vector belongs to a (unitary) basis of one of the
irreducible representations D'"' occurring in
(2.24). Using (2.25) and because of (2.22) one can
write for (2.18)

3

(sg u). (n, i), = e(cia lqp)A. x(4 q)

x Q-,e' "'-";z"+ c.c. (2.26)

Actually, due to the block form of A(g» q) only
polarization vectors belonging to the same irre-
ducible representation D'"' as the chosen (q, »
mode occur. Therefore if this representation is
not one dimensional, the symmetry group of a
given (q, X) mode depends in general on the par-
ticular choice of the polarization vector in the
corresponding irreducible representation space.
Keeping this in mind let us now determine the sub-
group U of all translations occurring in G. Ac-
cordingly we put in (2.10) R = 1, e = 1. Now any lat-
tice translation fl

l
ni of G, gives rise to a phase

shift (- q n) in (2.26) which can always be com-
pensated by an appropriate time translation 7

satisfying the relation

q n- id;, v =0 (mod 2'). (2.27)

Therefore all nc A, occur as spatial components
of the elements of U and mU = U, . It follows that U
is a four-dimensional lattice translation group
generated by

a, = (a, , q ~ a.,/(u;, ), i = 1, 2, 3,

a, =(0, —2n/(d J, (2.28)

where a„a„a,generate U, and form a basis of
A„whereas the a„(v = 1, 2, 3, 4) form a basis of a
four-dimensional lattice denoted by A4. Note that
its reciprocal A4 can be obtained by adding q
=(q, m;~) as a fourth basis vector to the other three
a,*=(af, 0) of A, so that we can write

A,
* =(A,*,q). (2.29)

m'K 'L:K~. (2.30)

Mutatis wutandis this same translational symmetry
was shown to hold in the case of a crystal in the
field of an electromagnetic plane wave of four
vector q. "Therefore G is a four-dimensional space
group, and according to the general theory" itis
determined by the group of primitive translations
U, the point group K, and a set of nonprimitive
tra.nslations ai(K). For mutually degenerate modes
the group U is the same.

From (2.13) it follows that iiK& Ko, where Ko is
the point group of G,. So we can write P = (R, e)
cK, with R and e satisfying the relation (2.21).

Denoting by K' and by K; the point groups of G'
and G;, respectively, one ha. s with (2.22)
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If now the mode (q, A) belongs to a one-dimensional
representation of G;, then (2.26) becomes

[(vg)u], (n, j),=e(aj lqx)Q'. e"~'""'""9"+c.c.,

(2.31)
with P(wg) real, and there exists always a com-
pensating time translation r = $(T7g)/&u;~ making
g u =u, so that P = (8, 1) belongs to K' for all 8
cK~. If now w(B) is a nonprimitive translation
corresponding to 8, so that vg ={A lw(B)), then
that corresponding to P can be chosen as

w(P) =(w(R), P(vg)/(o;), ). (2.32)

If the mode (q, X) belongs to an irreducible repre-
sentation D'"' of Gq of dimension greater than one,
then only those elements goEGq Gq occur in wG',
for which the vectors e(n j lqX), a = 1,2, 3 and j
=1,2, . . . , s are eigenvectors of D'"'(g, ).

This is equivalent with the condition: g, belongs
to G- if and only if

A„,(g., q)q =e"'"'0., (2.33)

and for these elements only, a compensating time
translation exists, given as above by (2.32). The
elements g, c U, always satisfy (2.33), so that, as
already said, 77U= U, .

Summarizing the orthochronous space group G'
is given by

U generated by a„(v = 1, . . . , 4);

SC ={P=(Z,1) lg, ={IIlw(II))~G'-, ],
~(P) = (w(&), 4 (g.)/~.-~) .

(2.34)

Let us finally describe briefly the situation for
antichronous symmetry elements. If G does not
coincide with G', the latter is a subgroup of index
two. We define a subset M; of the space group G, by

M;={{&la)~Gal&q=--q(mod A.*» (2»)
If q g —q (mod A, ), the unitary representation I';
of G; induces a 6s-dimensional corepresentation
I";"of the group G;"={G;,M~), where now M~ forms
the coset of G-" represented by the antiunitary
operators.

If q
—= —q(mod A, ), then M; = G- and I'; induces a

3s-dimensional corepresentation of G; x C, also
denoted by I';". In both cases the irreducible com-
ponents of the corepresentation F;" characterize
the different branches of normal modes. Again
the elements go(= G;", and only those, for which
the polarization vectors e(n j lqX) of the mode

(q, A.) are eigenvectors, admit a compensating time
translation 7', with 7tg= g, and occur thus as spa-
tial part of the elements of G. The procedure for
finding K and sv(K) is the same as above.

The essential results obtained so far can be
formulated in following proposition:

III. PERIODIC STATIC DISTORTIONS

As in Sec. II, a periodic lattice distortion
is considered of a basic structure described by a
point mass distribution Xo having a three-dimen-
sional space group G, as symmetry. The set of
atomic positions {r(n,j)j in the distorted crystal
is given by a displacement vector field u defined by

r(n, j)= r, (n, j)+u(n, j), (3.1)

with r, (n, j) as in (2.1), and u a periodic vector
field

f,.(q)e"",u(n, j) = (3.2)q~- D

qtcB Z (A ), tl/0

with D„* a, d-dimensional lattice (d & 3), and q re-
stricted to the first Brillouin zone of A, . The
mass distribution is

X=Q m, 5 (r —r(n, j)).

One is interested in the relations between the
diffraction pattern and the atom distribution X.
One can of course in principle calculate directly
such a pattern, which amounts to the evaluation
of the Fourier transform of X. The point is that
due to the periodicity of u one gets extinctions that
do not follow from the Euclidean symmetry of X,
which in general can be very low. This is in par-
ticular the case when D„ is three-dimensional and
completely incommensurable with respect to A3

(i.e. , if D~ A A, =0). Therefore in addition to the

PxoPosition 2: The symmetry group of a vibra-
ting harmonic crystal in the single-mode approxi-
mation is a four-dimensional crystallographic
space-time group G, which is a (3, 1) reducible
subgroup of the inhomogeneous Galilei group IG(4).
The components of G acting on the space only form
a three-dimensional space group jG which is an
equitranslational subgroup of G„ the symmetry
group of the basic structure.

If several normal modes become relevant, then
the space-time symmetry of the crystal vibrating
according to the superposition of these normal
modes will, in general, be lowered. Its symme-
try will only be described by a four-dimensional
space group if the basisvectors of A3* and the re-
levant wave vectors (q, &u;,) span a, four-dimen-
sional lattice. This is, e.g. , the case if these
vectors are of the special form q, = (zq„zv; ~) for

qo)t

z c Z (Z being the ring of integers). This case is
expected to occur only if the relevant dispersion
relation is a linear one.

In Appendixes B and C one can find the groups G

that can occur for a crystal of the Na, CO3 type
(Go =C2/m) vibrating in a single mode.
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rigid Euclidean transformations of X as a whole,
one also considers relative motions of the periodic
distortion with respect to the basic crystal.

So that instead of (3.2) we put

g(r(n, j);,t) =(Rzr(n, j)",+az, Rzt+az}

=(r(n', j')",„t' }.
This proves the lemma. Hence

(3.10)

u(n, j);= Z f (q)e"""
gCD&

(where it is sufficient to take for t arbitrary vec-
tors in the d-dimensions. l space spanned by D~) j
and also

(3.3)

r(n, j);= r, (n, j) +u(n, j);.
We introduce

(3.4)

X",= m,.6 r —r n,j;
as a generalization of Xo. Looking at the symme-
tries of X; (and those of X as a special case) it is
natural to extend the admitted transformations,
adding to the "external" three-dimensional Eu-
clidean ones in V, the "internal" d-dimensional
relative motions in V„. Considering V„as sub-
space of V, the latter are not Euclidean: they can
be made Euclidean by treating V~ as a Euclidean
space V~ different from V„by imbedding X; into
the product space V, SV„. This imbedding denoted

by X is not unique. A natural one which is a gen-
eralization of that considered in Sec. II is given by

I:r(njj)„-(r(n,j-);, t). (3 s)

The admitted transformations are accordingly ex-
tended from E(3) to the direct product group E(3)
x E(d). The transformation law for an element
(x, y) c-. V, (9 V, by g = (gz, g,) c E(3) x E(d ) [with gz
c E(3) and gjc E(d), where gz and gj represent
the "external" and "internal" part, ."espectively,
of g] is given by

(gz, g,)(x, y) = (gzx-
= (Rz x+ azr R ~y+ aj). (3.6)

In this way the symmetry group of X is defined as

G =(g c E (3) x E (d ) igX =X]..
I emma 2: If gX=X, then (wg)XO=XO.
proof: Introduce the average of r(n, j)"„over a

unit cell of D„of volume V:

(3 'I)

(r(,j);)-=—f »rr(» j);=»+r, , (3.8)

because q=0 does not appear in the spectrum of
u(n, j). Consider g such that gX =X. Then

())g)(n+ rj) = (vg)(r(n j),) =(Rz ~azJ(r(n j);)
= (r(n', j')-„.) = n'+ r,.„ (3.9)

because the invariance of X can be expressed more
explicitly by

~Gc G,. (3.ii)
The relation in Eq. (3.10) between primed and un-
primed variables is given as follows:

Rzr +az=rj+u(gz j)
Rz n = n' —u(gz, j),

(3.12)

and the invariance of the displacement vector field
is expressed as

Rzu(n, j)„-=u(n', j');„
t' =Rr t+a (3.13)

To find the elements of G, occurring in 77G we
consider the transformation of the displacement
field (3.3): g = (gz, g,) c G if and only if gz c G, and

R~ScS,
where S is the spectrum of u,

Rrq=Rzq qES

(3.14)

(3.16)

R f (R 'q) = f .(q)e' (3.16)

In this way we can easily determine the translation
elements of G. If we identify m and (1~ mJ for m
c U„ it follows from (3.12) that u(m, j)= m for all j.
Hence(m, az) c Gifq az —=q m (mod 2w). Denotingthe
projection of m on V~ (considered as subspace of
V,) by b,m, one has

(m, hm) c G, m c U, . (3.17)

Furthermore, because of the periodicity of the
distortion u,

(O, d) c G, dcD~ (3.18)

follows from Eq. (3.16). All these translations
form a group U generated freely by a basis of a
(3+d)-dimensional lattice Z„~ in V, S V~. If
(a, ,j =1, 2, 3j forms a basis of A, and(b„l.
=1, . . . , d}, one of D„one ha.s

G 2 U =((a, , 4aj), (0, b,), j = 1, 2, 3;

/=I, . . . , df=—Z"~. (3.19)

The point-group elements are R = (Rz, RI) and the
set of nonprimitive translations follows from Eq.
(3.16). The distribution X", is defined for all t c V~.
One can also generate a distributionX in V, SV„
by the action of G onX„because U spans V, SV„.
However, in this case the positions in the unit cell
of Z„~ are, in general, discrete. Let us consider
now the positions taken by the atom j of X,. From
Eq. (3.3) we get the relation
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u(n, j),=u(0, j) ~;, (3.20)

from which we deduce, that for each j there cor-
responds as many different positions as the car-
dinality of equivalence classes of the relation in

A, :
n-n' if and only if An:—An' (mod D~). (3.21)

If A3 0 D„ is a d-dimensional lattice, then A, and

D~ are called commensurable. The restriction A3
fl V~ is a lattice containing D„as a sublattice of
finite index s':

D~ L (A3 A U~), (A, A V~): D~ = s '. (3.22)

If A, AD„ is not d-dimensional, then A, and D„are
called incommensurable and the number s' of
classes with respect to relation (3.21) is infinite.

This increase from s to ss' particles per unit
cell in going from A, to Z„„does not depend on the
product-space description adopted here. In fact,
looking at the (external) Euclidea. n symmetry only,
the unit cell (in V,) of a periodically distorted lat-
tice is s' times larger than that of the basic lat-
tice A, . This situation is not changed if in addition
one considers elements g(= G for which mgc G, .
No new different positions arise, they only get
possibly equivalent. However, since now we con-
sider a set of points in V, EB V„, Lemma 2 can no

longer be used. Possibly there are elements g
of E(3) && E(d), or even of E(3+d), which have not
the property zgcG, or for which z™gis even not de-
fined. This situation may occur only if special
correlations exist between the positions r,. in Xo
and the distortion u. The additional symmetry ele-
ments may be considered as accidental. Although
they are interesting, we shall not discuss them
here. So we have:

PxoPosition 2: Disregarding accidental symme-
tries, the symmetry group G of a periodically
distorted crystal is a (3+d)-dimensional space
group, and a subgroup of E(3) & E(d). The external
space components of G form a three-dimensional
space group gG, which is an equitranslational sub-
group of G„ the space group of the basic struc-
ture.

This proposition recalls that of Sec. II. The dif-
ference is that there X describes a discrete set of
continuous lines, here (in general) a discrete set
of points. Furthermore in Sec. II the metric rela-
tion between the (external) spa. ce a.nd the time
space is given by a dispersion law, here by the
fact that different motions are considered in the
same Euclidean space.

To make the link more explicit, let us consider
a crystal vibrating according to the single mode
(q, a;~). At any fixed time f =f, its symmetry can
be analyzed according to the present section for

the case d=1. One then gets for the lG,. and the

b, appearing in (3.19) (i = 1, 2, 3 and j = 1)

»;=(~~;~l~j')q, »=-(2~/lql')q. (3.23)

Identification of V, with the space spanned by the
time and comparison with (2.28) shows that the
group V (a,nd G also) is the same as in the time-
dependent case if the metric relation between V,
and V, is that given by

(3.24)

which corresponds to choose units such that the
phase velocity becomes v;~ = 1. The restriction
mentioned at the end of Sec. II implies that this
still can be done even if several q's occur. As in
Sec. II one can, here also, apply the results of the
representation theory of G„based now on the
transformation properties of u(n, j)-„under G, . We
do not want here to go into more details. An ex-
ample can be found in Appendixes C and D, where
the case of Na, CO, in the modulated phase is trea-
ted. Before showing that it is indeed possible to
derive extinction rules for diffraction from sym-
metry elements of the product space, which is one
of the main justifications for the present approach,
it is convenient to treat first a more general mod-
el for the crystal than that in terms of point atoms
only.

IV. STATIC DENSITY DISTORTIONS

In this section we consider a crystal described
in terms of a density function p= p(r), defined on
a three-dimensional Euclidean space V„ that ad-
mits a Fourier decomposition

p(k) = d'~e "'p(r), (4.1)

S =Sm+Ss&

such that: (i) the main reflections generate a
three-dimensional lattice A,

(4.2)

A,* =I'S.); (4.3)

(ii) the satellite reflections generate, modulo A, , a

then p, the Fourier transform of p, is a function on
the dual space V, . We denote by the spectrum S
of p the support of p

S =(k c V, l p(k) g 0).

The elements of S give rise, in the geometrical
approximation of a diffraction experiment on the
crystal, to the well-known Bragg reflections. We
now suppose, as discussed in Sec. I, that one can
distinguish between "ma.in reflections" (belonging
to S ) and "satellite reflections" (belonging to S,)
and that there is a unique decomposition
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d-dimensional lattice (1 - d - 3) D~

D„*=(S (mod A, )); (4.4)

This last condition implies that D~ and A,* scale
in the same way as a function of T.

It was precisely because of the experimental
evidence of cases in which the variation of D„with
temperature was different from that of A, , that
the concept of modulated crystal' has been intro-
duced, for which Eqs. (4.6) and (4.7) are not both
satisfied. Therefore either Z3 does not exist or is
not physically relevant, and the symmetry of such
a crystal is not properly described by the Euclide-
an symmetry elements of V, only. This because
there are crystals with infinite fundamental cell
having a region of coherent scattering as big as in
crystals with a finite fundamental cell. So that the
correlation function between two atoms in the
structure is in both cases (at least in principle) of
infinite range. In the case of a modulated crys-
tal this ordering of many atoms in the same funda-
mental cell often gives rise to systematic extinc-
tions not due to space-group symmetries, a situa-
tion shared by long-period superstructures. But
even in modulated structures (for d ~ 1) condition
(iii) needs not to be true. The point is that, strict-
ly speaking, the satellites commensurable with the
main reflections can always be included in a new
defined set S' of main reflections, such that the

(iii) reflections belonging to a. given fixed lattice
D~ are satellite of a uniquely determined main re-
flection. This last condition is satisfied in the case
that,

A,*nD„*=O, (4.5)

which implies that D„and A, are incommensura-
ble, and is not true for superstructures because
these arise from a commensurate deformation.

Strictly speaking, and because of the presence
of the experimental error, it is not possible to
decide whether satellite reflections are commen-
surate or not with the main reflections. Therefore
condition (iii), as well as the uniqueness of the
decomposition (4.2) deserve some comments.

In the case of a superstructure A, and D~ gene-
rate a three-dimensional lattice Z3*

(A,*,fl„*)= Z,*, (4.6)

implying Sc Z, . Therefore the symmetry group
of p is a three-dimensional space group. For Z3*

to be physically relevant one actually also requires
that the change of Z, as a function of the tempera-
ture, in a given finite temperature interval outside
the phase transition point, is continuous. Thus

lim [Z,*(T d+,T) - Z,'(T)] =0 for T, &T &T,. (4.7)

new subdivision S=S' +S,' satisfies the above con-
ditions. From a practical point of view, however,
even in the case of superstructures (the long-
period ones in particular) ambiguity in labeling the
vectors k is present only with reflections giving a
negligible contribution to the structure determina-
tion. Here, and from now on, we assume that
conditions (4.2)-(4.5) are satisfied for the relevant
reflections at least.

It then follows that any element k of S can be
written uniquely as a 1inear combination with in-
tegral coefficients of three linearly independent
main reflection vectors a*; (i = 1, 2, 3) generating
A, , and d linearly independent satellite reflections
b,*. generating 0„:

(4.8)

so that k=k' implies z, =z»/=1, . . . , 3+d. On.e
can assume without restriction that

C JBZp f ~p ~ ~ ~ ) (4.9)

where BZ denotes the (first) Brillouin zone de-
fined by A, . In this case the b,. are called basic
satellite reflection vectors.

We are now able to imbed the spectrum S into a
(3+d)-dimensional reciprocal space V,*63V„*, in-
terpreted as reciprocal of the direct sum of the
external space V„and the internal one V„. The
imbedding is not unique, but there is a natural
one, compatible with that considered in (3.5}.

In the reciprocal space the spectrum S is im-
bedded linearly into S c V,*SV~ in such a way that

7t'~ S =S, (4.10)

when m~ is the projection: V, 8V„-V, . Since
rela, tion (4.8) is 1 to 1, we know the imbedding of
kcS, as soon as that of a*, and b,. is given. The
a,. being associated with translational symmetry
in the external space V„ they have a vanishing in-
ternal component

(4.12)

v=1
(4.13)

We extend the improduct defined in V3 and in V~ to
one in V38V„by

(a, b) (k, T) —= ak —bl. (4.14)

l~: a, , -a, —= (a,*. , 0}, i=1, 2, 3. (4.11)

The bz are associated with the periodicity in the
internal space V„, so that their internal component
has to be b&. Since they occur also in S, according
to (4.10} their external component is also b, :

For k cS as in (4.8) one has
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This gives a natural isomorphism between V,
SV„and V3$V~. Then Z+ induces a mapping Z

from functions on V, to functions on V3$ V„:Zp= p,
where

A~S CS (4.24)

For main reflections d k = 0, according to (4.11),
and only for those. This implies by (4.23) the
condition

or

t) g p(k)ei ( g(") (r, ()
kE. S

(4.15) and, because $ generates A, , also

8 A3 =A,*. (4.25)

p() ) = Q p(k)e"".
0E'S

(4.16)

The action of g = (g» g,) (= E(3) x E(d ) on the scale. r
function p is the standard one

(gp)()') -=p(g ') )

or

[(gs, g,)p)(r, t) = p(ge' r,g, ' t).

(4.17)

The symmetry group G of the imbedded p is now

well defined:

G ={g (=- E(3) x«(d ) lgp = p} (4.18)

One now easily verifies that p is left invariant by
the (3+d) linearly independent translations a„
which form a basis in V, SV„reciprocal to that
given by the a„of (4.11) and (4.12). One finds

a, =(a, , ha, ), i=1, 2, 3,

a„,. = (0, —b,.), j = 1, . . . , d,
(4.19)

p ~ @3+4 (4.20)

As U generates in V, 63V~ a. (3yd)-dimensional
lattice Z3„ the group G is a (3+d)-dimensional
space group.

Writing now a general element g c G as

g =({R,la.,},{R,la.,}),

the symmetry condition (4.18) implies for the
Fourier component p(k) because of (4.16),

+~$C $,

(R k) (k)
- ('(e@k)~ aE (R~kk) 8~)-

&(R„k)=R,(&k) for all kcS,
&(Re a) =RI(da) (mod D~) for a, ll a (= A, .

(4.21)

(4.22)

(4.23)

where as in Sec. III, ~a,. is the projection of a,. on
V~ (considered as subspace of V,). We are back to
(3.19) up to a sign due to the definition of recipro-
cal basis. Again these are not the only possible
symmetry translations, but the additional ones
can be considered accidental, in the sense that
they do not follow from the existence of A,* and D„*

only.
Disregarding accidental symmetries, the sub-

group U of G of all translations is freely generated
by the basis {a„.. . , a,.~}and

It is therefore convenient to consider the so called
"average structure" associated with the density
function p obtained by taking into account the main
reflections only

p (r)—= Z p(k)e'~'" = Z p(r —n).
kES n&A

(4.26)

This last equation explains the name average
structure.

Because of (4.26) the symmetry of p is a three-
dimensional space group G . Considering again
the projection )(: E(3) )& E(d ) -E(3), one directly
verifies that in pG all those elements of G occur
for which a compensating internal transformation gr
can be found satisfying (4.22) and (4.23). This is
in particular the case for the elements of U, so
that wG appears to be a three-dimensional space
group, which is an equitranslatic:. 1al subgroup of
G . These results can be summ:~. rized in the fol-
lowing proposition:

Proposition 3: Disregarding accidental symme-
tries, the symmetry group of the density function
describing a periodically distorted crystal is a, (3
+d)-dimensional space group G. The components
of the elements of G that act on the external space
form a three-dimensional space group gG, which
is an equitranslational subgroup of G, the sym-
metry group of the average crystal structure.

The only difference with proposition 2 is that
here the symmetry group G of the average struc-
ture appears instead of G, of the basic struc-
ture. As the case described in Sec. III is a special
case of the present one, proposition 2 remains
true if one replaces there G, by G and thus by G

0 G, also, which is again a three-dimensional
space group having the same lattice translations.
Besides this property, the mutual relations be-
tween G and G, are not easily characterized.

For sufficiently small deformations, and in a
point-atom description, we show in Appendix E,
that G is a subgroup of G, . There, the connection
between deformed, basic and average structure is
explicitly given.

For the determination of G for a given struc-
ture, the following lemma can be useful.

Lemma 3: Suppose ({Relac},{RIlar}) (= G. Then
the point-group components satisfy the relation

Rz b, =—R z b,. (mod A, ), (4.27)



SVMMETBV OF PKRIODICALI. V DISTORTED CR YSTAI. S

where bj represents basic satellite reflections.
Proof: Use (4.8), (4.12), and (4.23). Notice that

(2.21) is a particular case of (4.2V).
%e are now able to discuss briefly the extinc-

tions due to the elements of G. There are two

types of extinctions: those due to nonprimitive
lattices, and those due to nonprimitive transla-
tions. "

A. Extinctions due to nonprimitive lattices

/. Product spuce notution

Equation (4.16) can be written

p(r) = Z p(k)e'"",
k'&C

with Z„~ generated by the a„of (4.19). Any cor-
responding nonprimitive lattice I'„„gives rise
to the relations

I'„{Z, thus Z* {:F,*,„.
Writing

one gets the extinction rule

p(k) = 0 for all k c I",*,
~ but k +Z3,~. (4.28)

2, Three-diinensionu/ Euc/ideun spuce notation

Consider the projection v~'. k = (k, 4k) -k. Then
ii follows that Sc:7f+Z3~~ because p(k) = p{k) one
has

p(r) = Z p(k)e'"',
PY ~== 9' I'

glvlng the extlnctlon rule

p(k) =0 for all km v~1'„„but kEv~Z ~ (4..29)

As the mapping E~k =k is 1 to 1, (4.29) is equivalent
with (4.28).

p(Rk) p(k)e" t(RR)'w(R) (4.30)

This condition gives rise to the following extinc-
tion rules:

Rk =k and k ~ w(R) $0 (mod 2v)

implies p(k) =0.

(4.31)

B. Extinctions due to nonprimitive translations

l. Product-space notation

The invariance of p with respect to g=(R In

+ur(R)) c G where n c U and su(R)E U, for co(R) 0 0,
lIQp lies

implies

p(k) =0. (4.32)

But (4.31) is equivalent with (4.32). . Indeed Rk = k

implies 8~k =k.
Conversely: from RRk=k follows by (4.23) also

Rk =k. The phase condition is then the same.
Concluding this section we see that indeed sys-

tematic extinctions for p(r) are interpretable as
space-group extinctions of p(r), not necessarily
given by Euclidean symmetry properties of p(r),
as already recognized by de WoUf' (and by I a
Fleur as mentioned in the same reference).

V. TIME-DEPENDENT DENSITY DISTORTIONS

Considered here is a crystal described by a
time-dependent density function p(r, f) which is (i)
perlodle ln time

p(r, t+ T) = p(r, t), (5 1)

with II =2&/T «10"Hz, a typical x-ray frequency;

(ii) pe»odicaiiy distorted at any given time t.
(5.2)

A vibrating crystal in the single q-mode approxi-
IQRtlon sRtlsf les the Rbove condltlons Rnd + = GD;,
(see Sec. II), and we restrict here also our con-
siderations to this single-mode case. Then p(r, f)
RdIQlts R Fourier decomposition

p(r) = Q l(k)e"" (5.3)

where we used the notation r = {r,t) c V, S V, ; k
= (k, u&) & V,*8 V, and k ~ r = k ~ r —&ut cR. Because
of the assumptions made, the x-ray scattering is
determined by the instant density distribution p(r)
= p(r, f,), for fixed f,. Because of Eq. (5.2) and on
the basis of the results of the previous section, a
natural subdivision occurs in main reflections 8
and satellite reflections 8, in the projected spectrum

(5.4)

with m'~ defined as above, a,nd where 8 and 8,
satisfy Eqs. (4.3) and (4.4), respectively, for d = 1.
This subdivision corresponds to that one observes
in the Bragg diffraction spots.

The imbedding of p(r) into the space time is here
already given Lp(r) = p(r, f). The corresponding
imbedding in the reciprocal space giving S=l, 8

2. Three-dimensionu/ Euc/ideun spuce notation

Denote g as above by g = (gs, g,); R =RR GER, and

w(R) =(w(RR), v(R,)), gR =(RR In+ w(RR)), g,
=JR„Idn+v(R, )I, g=(R ~n+co(R)). Then from
(4.22) one gets the extinction rule

Rsk=k and k w(RR) —hk v(R, ) p'0 (mod 2v)
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needs some care. The dispersion relation k =k(&o)
fixes the imbedding l„k = (k, ar) for the vector q of
the single mode only according to the relation

q = L„q = (q, v;,), q c BZ of A, , (5.5)

the imbedding / is defined by

k=l~k=(k, z,(o-,), (5.6)

which is exactly what one finds on the basis of a
point-atom approximation of a vibrating crystal.

Once this step is done, one can apply straight-
forwardly the results of the previous section for
finding the symmetry of p(t'). The only difference
is that here the internal space can be identified
with that of the time (after the choice of the natu-
ral unit v = v;~/ ~q ~

= 1.) Aga, in the question arises,
whether or not in this time-dependent case non-

(3, 1)-reducible symmetry elements can occur.
These transformations should also leave the under-
lying space-time structure invariant and thus be
nontrivial Galilei (or Lorentz) transforms, tions.
As we have seen in See. II, such transformations
do not leave a simple world line pattern invariant.
With p(r) more general patterns a,re possible, and
then additional symmetry elements are possible,
in principle at least.
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APPENDIX A: EXAMPLES OF MODULATED CRYSTALS

The occurrence of commensurable distortions
in crystals giving rise to superstructures is a very
common phenomenon. Also well known is the case
of magnetic structures incommensurable with the
periodicity of the crystal lattice. But it is only
in recent years, that one became increasingly
aware of the existence of solid state systems with
long-range order without three-dimensional lattice

but not for all other satellite reflections. Note
that a single q appearing in the distortion [like in
Eq. (2.18)] does not mean that it is the only one
appearing in S, (see Appendix E). However, D, is
generated by q, so that it can be taken as the basic
satellite, and this fixes the imbedding l~.

Writing a general element of S as
3

a,*+z4q, z, —~, E =. 1, 2, 3, 4
4=1

TABLE I. Examples of modulated crystals. (PTZ:
phenothiazine; TCNQ: tetracyanoquinodimethane; TTF:
tetrathiafulvalene; TMTTF: tetramethy1tetrathiaful-
valene; CuAu II: modification of superlattice near the
stoichiometric composition CuAu stable between 380 C
and 410 C.)

Ionic crystals with disp1acive modulation
y-Na2CO3 (Refs. 4, 15), K2Mo04 (Refs. 15, 16),
Rb2WO4 (Refs. 15, 16), RbmZnC14, R12ZnBr4
(in general, A.2Zn&4) (Ref. 17), KO2 (Ref. 18),
NaNO2 (Ref. 19), SC(NH2)2 (thiourea) (Ref. 20),
FeSi' 6H20, MgSiF6' 6H20, MnSiF6' 6H20 (Ref.
21), .Mn~5Si26(&) (Ref. 22), Ba5FesSis (Ref. 23),
plagioclase (Ref. 24), Kq (H(ON(803) 2]2)' 1.5820
(Ref, 25)

Conducting crystals with displacive modulation (and CDW~j
One dimensional: K2Pt(CN)4Brp 3 xH20 (Refs. 26, 27),

PTZ —TCNQ (Ref. 28), (TTF),I5
(Ref. 29), (TMTTF) f 3(TCNQ)2,
(C(OHuS4) t,3(C&2H4N4)2 (Ref. 30),

Two and three dimensiona1: TaS2 (Refs. 31—33), TaSe2
(Refs. 34, 35.),Ta Te2 (Hef. 36),
NbTe& (Ref. 32), NbSe& (Ref.
35), In2Se& (Ref. 36).

Occupation waves and concentration waves
TaS2 (Ref. 37), CuAu II (Ref. 38), La2O3- CeO2 (Ref. 39),
Fe& S (Ref. 40), Fe~ 0 (Ref. 41), Plagioclase (Refs.
24, 42), Labradorite (Ref. 43)

Spin-density waves
Cr (Ref. 44, 45) (and others)

Helica1 magnetic structures
MnAu2 (Ref. 46), Er (Ref. 47), Tm (Refs. 48, 49)
(and o thers)

periodicity. Since general attention has been fo-
cused on CDW's and on SDW's one has realized,
that the number of such systems could be fairly
large and was not restricted to CDW and SDW phe-
nomena only. Without trying to be exhaustive, a
member of concrete examples of crystals showing
incommensurable periodic phenomena (modulation)
are indicated in Table I.

APPENDIX B: SPACE-TIME SYMMETRY THAT CAN OCCUR

IN A VIBRATING CRYSTAL OF THE Na2CO3 TYPE

(Go = C2/m) IN THE SINGLE MODE

APPROXIMATION

In Table II, four-dimensional space groups are
indicated compatible with normal-mode vibrational
modes q occuring in the Na, CO, structure. The
basis vectors generating the lattice A, are accord-
ing to Eq. (2.28) given by

and

a, = (0, —2v/(o~, ),
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TABLE II. Four-dimensional space groups compatible vrith C2/m.

Wave vector q

of the mode Generators
Lattice A4

Bravais class

Occurring four-dimensional space group (Ref. 14)

Point
Centering group Extensions

0 =(0,0, 0)

A =(0,0, ~)

R =(—,—,, 0)1

S =(——-)25 2%2

BR =(1-0,, a, 0)

CS =(1-n,n, ~
)

I=(e,n, p)

T =(g, 0, 0)

D =(g, O' 2)

ag —a2 a4 ay +a 2 a3

a4 a1 a2, 2as-a4,
a~+a2

a4, a g
—a2,a ( +a 2

—a4,
a3

a4 a ( —a2,a ) +a 2
—2a3

2a3 —a4

a3 a g+a2 a g -a2 a4

a g+a2, 2as-a4,
ag —a2 a4

a g
—a2,a ) +a 2,a4, a3

a4, 2a g
—a4, a2, a3

a4, 2a g
—a4 a2,

a~-a3

IV G

II C

II C

2/m 1 O, eg, e5, eg+ e5

2/m 1' O, e(

2/m 1' O, e4, e5, e4+e5

2/m1' O, e,

2/m'

2/m' 0

O, e&

O, e&

O, e&

D= —0—01 1
2 2 p

V= ——0,ill
222

G =-0-01 1
2 2 p

M=O—011

0—0—1 1 ll 11
2 2y 2222'

C =2200.1 1

where the a, span the basis of A, indicated in Fig.
2. There the fundamental cell of A, spanned by the
reciprocal basis (a*,) is also indicated. The funda-
mental region of the BZ is: OBPACQ. The Bra-
vais classes and the space group in four-dimensions
are noted following the conventions used in Ref.
14. In particular the centering looks as follows:

APPENDIX C: FOUR-DIMENSIONAL SPACE GROUPS G

COMPATIBLE WITH THE SPACE GROUP G~ = C2/m OF
THE AVERAGE STRUCTURE, AND WITH A BASIC

SATELLITE VECTOR b1 LYING IN THE
MIRROR PLANE

The basis (a., j chosen for the lattice A, of the
reference structure is indicated in Fig. 2 (see
Appendix B). The group G is generated by

{a„a„a„m„2„T],

A2 A2

FIG. 2. Direct and re-
ciprocal unit cell for C2/m
(unique axis y).

02
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where a, —a, is oriented along the positive y axis
(unique axis). Furthermore a, —a, &a,, and a2 —a,
+ ay + a, . The wave vector is b, = na] + Qa2 + pa3
(see Appendix B). The little group G; [defined in
(2.22)] is generated by

space group G(P)=C2/m. (iii) y phase: below
360 'C; modulated structure; Euclidean space
group Pl (one dimensional).

Basic structure: G, = C2/m;

a/ p a2p a3) 62

a.nd M~ [see (2.35)] is given by

m-, =16;.

(C2)

The four-dimensional lattice translation group V
is generated by

Positions r, : 2Na(1):
2Na. (2):
4Na. (3):
4C
40(2)
80(1)

(0,0,0 ) 1(0,0,0.5000) 2

(0.1706, 0.5000, 0.7478) 3,
(0.1641,0.5000, 0.2496) 5,
(0.2897, 0.5000, 0.1771) 7,
(0.1016,0.2940, 0.2855) 8,

a, = (a„o.b, ), a, = (a„nb, ),

a, =(a„Pb,), a, =(p, b,).
(C3)

It depends on the properties of the Fourier com-
ponents p(k), which elements of G admit a. com-
pensating internal transformation. %e have in
particular: writing g =(R laj and using for R the
magnetic notation (Rz 63 1-Rz, Rz 631-Rz)

APPENDIX D: THE STRUCTURE OF Na2CO3 (REF. 4)

The compound Na, CO, is known to exist in three
different solid phases, called the n, P, and y
phase: (i) o. phase: above 489 'C; hexagonal struc-
ture; space group G(n) =P6,/mmc. (ii) P phase:
between 360 and 489 'C; monoclinic structure;

{rn, l(0, v)] c G if p(K+zb,*)=e "~i*'p(m, K+zb,*),

(1'l(0, v)}EG if p(K+zb, ) =e"bi'p(-K —zb,*),

&,'I(o v)] cG tf p(K+zb„) =e" i'"p(2„K —zb,*),
(C4)

where Kc A, and z c Z. These relations are a
consequence of (4.22), and can give rise to extinc-
tions as indicated in Table III. As in Appendix B
the notation used for the four-dimensional space
group G is that adopted in Ref. 14.

Polarization f;(q) (relative to A„A„A,)

(0, 0.0284e "',0)
(0 P P328eo. sushi P)
(0~ 0 0345ex. o62~a 0)
(P P P294eo »3«P)
(0, 0.0128e "",0)
(0.0166e""' 0.0387e'""'
0.0215e'""')

Four-dimensional space group: G =C2'/m, e„
generated by

There are 24 atoms in the unit cell of the cen-
tered lattice (see Fig. 2). The six positions r~ in-
dicated are given relative to the basis A] A2 A3.
The positions of the remaining 18 atoms can be
obtained by applying appropriate space group ele-
ments to the indicated six positions. The primitive
translations are generated by a, = —,'(A, +A, ), a,
= z (A, —A, ), and a, = A, .

Average structure: G = C2/m. Modulation:
single-mode modulation: wave vector q = 0.182A,
+0.318A, (room tempera. ture) going continuously
to 0.154A,*+0.286A,* (300 'C').

TABLE III. Four-dimensional space groups for modulated crystals with average structure
C2/m and basic satellite reflection in the mirror plane.

Space group 6 Point group K
Nonprimitive
translations

Space group
extinctions

C 11',0
C 11',e&

C 1', O

C 1',8&

P1
Pl

2'/rn
2)m

I1
2'

1

~ ~ ~

p(mq) = ~a4

~ 4 ~

p (m~) =
2 a4=i

~ ~ ~

p(K+zb+) for
m3, K=K and z odd

~ ~ ~

p(K+zb~) for
m~K= K and z odd

~ ~ ~
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R =1, R,=-1,
then

a,r=0,

f (q) f (q)e ia u&R@, i).

Rz=m, Rr=+1~ ar=2b

({Ila ),{Il(q a /lql )q))

({Ilo), {II») ~it b= (2v/lql')q

generating U,

({m,le, {Il-, b~),

({2,lop, { ll-,'b)).

The group G is equivalent to C11', e, occurring in
Table II for the q vector M.

Fourier components f,.(q) transform according to
Eq. (5.16): for (JLRe lo), {R,la, })c G one has the
following: If

and inversely,

e i&sin@ ~ el14g (@)
oo

one gets for the Fourj. er components

p(Q) = P m„e '~'" ~& J,(-%~ f, )

(E3)

x g 5$ —K —Iq).
Kf: A~

3

(E4)

We associate the reflections %=-lq(mode f), I 40,
with the satellites. Thus D*, is generated by b *,

=q. Then condition (4.5) of Sec. IV implies

le&A* only for 1=0,

i.e., p(r) describes a modulated structure. Note
that even if one has a singl. e-q distortion al.l multi-
ples of q occur, in principle, in 8, . The reference
structure is then given by

then

f,.(q) =2, f,.(q);

1Rz=2, R

then

p, (r) = Q m, 5( r —r, (n, j ))
Il (A3 =1

and the average structure by

~.( )= —J &sE t
IleA3 ~=&

(E5)

v w

f .(q) =m f*(q)e ""'se". x 5(r - r, (n, j ) - f, sing) .

APPENDIX E: AVERAGE STRUCTURE AND BASIC

STRUCTURE FOR A CRYSTAL WITH A SINGLE-q

PERIODIC DISTORTION (IN THE POINT-PARTICLE

APPROXIMATION)

Consider the periodically distorted crystal de-
scribed by the following density function:

8

p(r)= g g m,
n.g A3 4=1

Introducing a function &(r) as

(] /p)(] g2)-I/2
&, (r)=

0 otherwise,

one can write

(E6)

x5(r —ro(n, j) —f, sin(q n+Q, )},

(El)
where use has been made of the notation adopted
in Sec. III, and q~BZ.

Using the Jacobi-Anger generating function for
Bessel functions

J (e) t QPek(-l4+esin4) & ~g y~R i~@
7T 0

(E2)

p (r) =$ m, a, (r —ro(n, j)). (E7)

Notice that Eq. (E6) is a special case of

f (r)= Q f(k)e'" ' ' = lim —g f(r —n),„N
k cA+3 N „e

which expresses the average distribution of the
function f(r) over a unit cell of A, .
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