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The reflectance of an anisotropic crystal is generally a tensor quantity even at normal incidence. Phase
differences among the tensor components can be obtained from polarized reflectance measurements. A simple
method for doing so is described and tested here. Possible applications of phase-difference information range
from checking Kramers-Kronig evaluations of absolute phases to substituting for the Kramers-Kronig
procedure. In addition, the following is proved, subject to some simple assumptions: If reflection extinction
directions exist, the standard Fresnel equations may be used to derive optical constants (n’s and k’s),
regardless of the anisotropy of the crystal. Moreover, extinction directions come in perpendicular pairs.

I. INTRODUCTION

The optical properties of a solid, such as its
complex dielectric constant, are frequently de-
termined by reflection spectroscopy at normal
incidence. The amplitude of reflection is mea-
sured directly, and the phase is inferred from the
amplitude spectrum by means of an integral (Kra-
mers-Kronig) transformation.! Phase information
obtained more directly, even for just a few fre-
quencies, could be useful in a number of ways.
Section III of this paper elaborates on this point.

The phase of reflected light can be measured
directly by interferometric procedures,®® though
with a microcrystalline sample of interest in this
laboratory, we have been unable to obtain satis-
factory precision with one such procedure. For
an anisotropic material, the reflectivity even at
normal incidence is generally a tensor with four
components, each of which has its own magnitude
and phase. In the absence of absolute phase mea-
surements, a direct determination of the difference
between the phases of two reflectivity components
could be useful. Such information can be extracted
from the state of polarization of the light reflected
from an appropriately polarized incident beam.

The state of polarization of a normally reflected
beam may be investigated by a number of meth-
ods,*5 e.g., the analogs of methods used for ob-
lique incidence on isotropic materials.® Several
methods have, in fact, been introduced.”® A very
simple method for thus obtaining quantitative
phase-difference information at normal incidence
is described in Sec. IV, along with an experimen-
tal test on a highly anisotropic dye crystal.

Even for highly anisotropic absorbing crystals,
there usually are directions of polarization for
the incident beam (“extinction directions”) such
that the reflected beam has the same polarization.
It is common practice to extract optical properties
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by application of the Fresnel formula to the am-
plitude and phase of reflection for such polariza-
tions. It is not obvious a priori that this procedure
is always justified. Justification is given in Sec.
V on the basis of mild assumptions about the di-
electric tensor and the not-so-mild assumption
that the parallelism between incident and reflected
polarizations is mathematically exact. It is also
shown that the existence of one extinction direction
implies the existence of another at right angles to
the first. The reader who is interested only in
Sec. V may skip Secs. III and IV with impunity.
Section II collects some necessary preliminaries
for the rest of this paper.

II. PRELIMINARIES

Consider reflection of monochromatic light, at
normal incidence, from a crystal surface lying in
the x, y plane. (See Fig. 1.) Let the electric vec-
tors of the incident and reflected beams have com-
plex amplitudes E,- and ﬁ,, which are parallel to
the surface. They are related by

io io
Vi€ ¥ Tx:ve i Eix

r =—_13'_Ei’

(1)

where R is the reflection amplitude tensor, and
the minus sign ensures that the ¢’s are zero for
reflection from an isotropic, transparent medium
with refractive index >1.

Polarization of the incident and reflected beams
will be construed as the polarization of ﬁ,. and ﬁ,.
If the incident beam is polarized along an extinc-
tion direction, then E,II ﬁi. If the reflecting sur-
face has two perpendicular extinction directions,
these may be used as x and y axes, and R be-
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FIG. 1. Coordinate frame, polarizgr angle 6p, ana-
lyzer angle 64, and analyzer vector A.

comes diagonal: 7,,=7,=0. Then two phase data,
¢, and ¢, characterize R. The method de-
scribed in Sec. IV concentrates on the determina-
tion of the phase difference

A=y = by (2)

For an isotropic medium, one may replace R
in (1) by a scalar, ve'®. The Fresnel formula

gives!
rei®=(m+ik-1)/(n+ik+1), (3)

where »n is the real part of the complex index of

refraction and % is the imaginary part (i.e., ex-

tinction coefficient). This formula can be solved
for » and k&, e.g.,

k=2rsing/(1+7% - 2rcos¢). (4)

For an anisotropic material, it is commonly as-
sumed that (3) or (4) can be applied to 7,, and ¢,
to obtain the optical constants pertaining to x-
polarized light, n(w) and %,(w), and similarly for
y polarization (see Sec. V).

In the Kramers-Kronig procedure, the phases
are computed from the amplitude spectra accord-
ing to*

<7>(w)=-271“i Pf

4]

* In[#»(w’

ol aw, ®)
where P stands for the “principal part”® o and
w’ are circular frequencies, and to ¢ and » one
may attach any of the pairs of subscripts xx, yy,
Xy, Or yx.

III. USES OF DIRECT PHASE INFORMATION

The value of directly measured phase-difference
information does not seem to be generally appreci-
ated. The method described in Sec. IV should make
it rather easy to obtain phase-difference informa-
tion, but, of course, the uses for the information
are not tied to this method. Here are a number of
possible uses for such information.

A. Test of Kramers-Kronig phase calculations

It is always desirable to check an indirect calcu-
lation against more direct measurements. In the
present case, such a check may come from com-
parison with independent phase data or compa-
rison of the derived optical constants with those
obtained from oblique incidence reflection mea-
surements or from transmission spectra. Each
approach has been used occasionally.®!'"'5 Trans-
mission data are hard to obtain at wavelengths of
strong absorption.'® !¢ In particular, for some
strongly absorbing organic materials, crystals
thin enough for transmission spectroscopy grow
in a different form (possibly a different crystal
structure) from that of larger crystals!® so that a
direct comparison of results from transmission
and reflection spectroscopy is not possible.

There are several specific motivations for
checking a Kramers-Kronig phase computa-
tion. An empirically based motivation is the re-
ported gross failure of the procedure in a case
where the phase has been measured directly'! to-
gether with the significant discrepancies that are
sometimes found between the computed optical
constants and those obtained by more direct meth-
0ds.'? An a priovi motivation is the number of
possible sources of error in applying the standard
Kramers-Kronig procedure such as the necessity
of relying on a guessed model of the reflection be-
havior outside the experimental data range!?:1%:17:18
and the sensitivity of the method to errors in the
measured reflectance.'® Although the resulting
uncertainties are usually not too large, additional
assurance may be welcome in specific cases.
Finally, the expression for the phase as an inte-
gral over the reflectivity spectrum may itself not
always be correct. It is recognized that the pres-
ence of a surface layer structure may invalidate
this expression.'**?° Even for reflection from a
simple interface between vacuum and bulk materi-
al, the Kramers-Kronig formula (5) is less than
securely founded.?

B. Absolute phase determination

Often, a crystal is opaque to y-polarized light,
but is transparent enough to x-polarized light to
allow the corresponding extinction coefficient %, to
be measured by transmission. Then the Fresnel
formula (4) (with 2—-%,, r—7,,, and ¢ = ¢,,) can be
solved for ¢,,, and ¢, itself can be obtained from
a measurement of A¢p=¢, ~¢, . Then one can test
the Kramers-Kronig results for the absolute phases
as well as for their difference. If this procedure
can be applied over the whole spectral region of
interest, the Kramers-Kronig procedure may be
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avoided altogether, a fact of some value in cases®
where the Kramers-Kronig procedure cannot be
applied. Materials to which the present treatment
is applicable include the present cyanine dye,
tetracyanoquinodimethane (TCNQ)'® 2 and its com-
plex with tetrathiafulvalene (TTF-TCNQ),?* the
mixed-valence compound K, Pt (CN), Br, , * 3H,0, **
quinhydrone, *® and xenon difluoride.??

If the material is nearly transparent to x-pola-
rized light, one can take ¢, = 0 without really
measuring k,. A procedure of this sort has been
used previously on CdS,!! ZnO,'! and stressed
ZnTe.® A criterion for ¢, ~0 is obtained from (4),

sing, <k, (1+7,)2/27,,. (6)

If the reflectance 7,,?~0.05, it suffices to have
k,< 1072, Now, k, =107 still represents absorption
strong enough that crystal thicknesses of tens of
microns are necessary for transmittance mea-
surements. If, for this or some other reason, it
is not possible to check that %, is small enough,
frequently a good indication is that 7, is small
(e.g., 5-10% for organic materials) and slowly
varying through the spectral region of interest.

It is not hard to find the explicit solution of (4),

Gpy= ¢ = O" (7a)
or

Pux= 1= @ = B", (o)
' . k(147 2)

o =arcsin (327 7Hire)

8)

n — j kx

¢” =arcsin <W> .

One must judge between the two roots (7a) and 7(b)
on further physical grounds. Typically, both ¢’ and
¢” will be small, and root (7o) will give ¢,, in the
second quadrant (7/2< ¢ _ < 7). Ifn >1, one can
refer to the Fresnel formula (3) to show that ¢,,
lies in the first quadrant and therefore, to select
the root ¢,,= ¢’ — ¢”. Similar remarks apply to

the use of (6). [Equations (7) and (8) naturally ap-
ply to isotropic materials as well.]

C. Introduction of measured phase information
into the Kramers-Kronig procedure

The contribution of frequencies outside the ex-
perimental data range to the Kramers-Kronig in-
tegral is usually estimated by use of a model or
extrapolation of the reflectance to those frequen-
cies. Directly measured phase data can be added
to the set of constraints used to adjust the model
or extrapolation. Absolute phase values can be
used to estimate this contribution to the integral
directly.?® (It should vary slowly, so few phase

determinations should be required.) A variant of
the Kramers-Kronig procedure can be used to re-
duce the sensitivity of the integral transformation
to the unknown portion of the reflection spectrum
by incorporating a known phase value at one fre-
quency into the computation.?”

If the Kramers-Kronig procedure is reliable for
x polarization but not y (say), perhaps because of
structure in the y reflectance continuing to the
highest frequencies accessible, one could obtain
¢,, from the Kramers-Kronig computation of ¢,,
plus a direct measurements of A¢.

IV. SIMPLE METHOD FOR MEASURING A¢
A. Principle

If the incident beam is linearly polarized ob-
liquely to the two extinction directions, the re-
flected beam is in general elliptically polarized.
Information about its state of polarization is ob-
tained from the intensity passed through a linear
analyzer as a function of analyzer position. The
oblique incidence precursor of this method is the
infrared work of Conn and Eaton, of Beattie, and
of Hodgson.?®, More recently, Yamamoto and
Miyauchi have used a phase-difference spectrum
observed at normal incidence with crossed polari-
zer and analyzer to observe optical band gaps in
the anisotropic semiconductor CuGas,.® The pre-
sent study appears to be the first attempt to ex-
tract quantitative phase information in this way
for normal incidence on anisotropic materials.

Suppose the incident beam is linearly polarized
at an angle 6, and the reflected beam is analyzed
for linear polarization at an angle 6,, where both
angles are measured from the x axis towards the
y axis. (See Fig. 1.) The intensity passed by the
analyzer is 1(6,,60,)=(c/87) |A-E,?, where A is a
unit vector in the analyzer direction and c is the
speed of light. By expanding this expression ac-
cording to (1), one can see how it expresses
phase-difference information about R. If the x
and y axes are extinction directions,

I(6 p, 6,4)/1,= B*+ C?+ 2BC cosA¢ , (9)
B=v,,c0s0 ,cos0,,

C=v,,8in0psind ,, (10)
AP=dyy = Dy,

where I, is the intensity in the incident beam.
Measurements at three angles suffice to deter-
mine cos A¢. These might be 6,=0 and 6, = /2,
to obtain 7,, and 7, and 6, equal to something
else to obtain cos A¢. Since 7, and 7, are gen-
erally required anyway, the cost of obtaining cos
A¢ is measurement at one additional angle. If
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one wishes to avoid measuring absolute reflec-
tances, one may normalize the reflected intensity
to unity at, say, 6,=0°. That is, one may mea-
sure an intensity ratio,

M =1+ (D? - 1) sin®0 ,+ D sin(26,) cosA ¢,
1(65,0)

D=(r,,/r,)tan6,. (11)

From cosA¢, one can determine A¢ except for
its quadrant (1 or 4, 2 or 3); i.e., one can deter-
mine |A¢] modulo 27. For some purposes, this
information may be enough. Or one may be able
to guess the quadrant from physical considera-
tions. If not, the proper quadrant can be deter-
mined by measuring sinA¢ just accurately enough
to determine its algebraic sign. One can do so by
putting a fractional-wave plate (not necessarily a
quarter-wave plate*®) inithe reflected beam
ahead of the analyzer, with the axes of the plate
parallel to the extinction directions of the re-
flecting surface (x and y axes). The effect is to
replace A¢ in (9)-(11) by A¢+ 6, where 6 is the
phase difference caused by the fractional-wave
plate. From (9) or (11), one now evaluates
cos(A¢+ 6)=cosA¢ cosd — sinA¢ sind, from which
sinA¢ and A¢ modulo 27 may be extracted. Sev-
eral variant procedures are obviously possible.
Note also that few determinations of quadrant
should ever be necessary on a given sample, since
if the quadrant is known at one wavelength, it is
known at neighboring wavelengths by continuity.
Even if A¢ should equal 0 or 7 at some wave-
length, the quadrant at shorter wavelengths can
be identified from that at longer wavelengths, or
vice versa, if d(A¢)/dw+0 when A¢p=0 or 7.

B. Experimental test

We have investigated the quantitative reliability
of the present method on microcrystals of the dye
1, 1’-diethyl-2, 2’-cyanine iodide, for which polar-
ized reflection and transmission spectra are dis-
cussed elsewhere.!’®> The crystals were grown on
a glass slide by evaporation of a drop of methano-
lic solution of the dye (Eastman Organic Chemi-
cals). Crystal surface areas suitable for reflec-
tance measurements (no visible defects or dirt
spots) were of the order of 2X2 um?.

A Leitz Ortholux petrographic microscope, de-
scribed elsewhere,? was used with its built-in
analyzer. With an isotropic reflection standard,
the signals with polarizer and analyzer “crossed”
and “parallel” were in a ratio ~ 1:2000. At each
analyzer angle, the reflectance measurement was
calibrated by comparison with the standard (Al
mirror). The polarization of the incident light
relative to the extinction directions of the crystal

face was adjusted by rotating the microscope
stage. The magnification required here necessi-
tated a cone of incidence extending 15° from the
surface normal.

The measurements reported here were per-
formed on an unidentified!® face of a crystal
~1000 A thick. At 500-nm wavelength, the crys-
tal was nearly transparent to x-polarized light,
and its reflectance was highly anisotropic (7,
~37,,). A polarizer angle of 6,=15° was chosen
to make the x- and y-polarized components of the
reflected light roughly equal in magnitude.

Figure 2 shows a plot of the reflectance ratios
I(8p,6,)/1(6,,0) obtained from two separate series
of measurements. The relatively large differences
between run 1 and run 2 at large analyzer angles
and the discrepancy between results at 15° and
—~ 165° are probably due to difficulties in obtaining
identical focus settings for the crystal and the
standard. Results at smaller angles appear to be
more reliable. No data are reported at 6, =~ 75°
because it was not possible to calibrate the reflec-
tance there.

The normalized reflection intensity should be
given by (11). Data at — 90° gave D=0.80 and 0.81
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FIG. 2. Normalized reflection intensity as a function
of analyzer angle 6 4 with polarizer at 6p =15°. Experi-
mental points from two runs are O and l. Solid line is
the theoretical result for 7y, /%, =3.0 and |A¢| =44°,
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for the two runs. The data at analyzer angles be-
tween — 35° and — 55° all conformed to 0.71 < cos
A¢ <0.74 and 43° <|A¢|<45°. This should be the
best range of 6, for obtaining cosA¢, because its
coefficient in (11) is large and the discrepancies
noted at larger angles (e.g., near — 135°) are
avoided. A plot of (11) with D=0.80 and |A¢|=44°
is included in Fig. 2 to show the degree to which
the dependence on 6, has the theoretical form. The
agreement with the experimental points is satis-
factory.

The present material is transparent enough to
light polarized along one extinction direction that
the procedure described in subsection B can be
applied to obtain absolute phase values as well as
phase differences. Transmission and reflection
measurements on a different crystal (~400 A thick)
gave, for the weakly absorbed polarization, %,
=0.022, 7,=0.226, and thus ¢,,=2°[see Eqgs. (7)
and (8)]. Combining this value with the estimate
43°<|A¢|<45° and the assumption that ¢, >0
gives 45°< ¢, <47° This evaluation agrees rea-
sonably well with the 53° obtained from a subtrac-
tive Kramers-Kronig transformation®’ applied to
the 1000-A crystal that used one assumed phase
value, ¢,,(755 nm)=0. The Kramers-Kronig re-
sults themselves had an element of uncertainty be-
cause of interference oscillations in the low-fre-
quency transparent region's that were averaged
manually before submitting the data to Kramers-
Kronig analysis. The agreement between directly
measured and Kramers-Kronig phase values is
regarded as confirmation of the latter. Using ¢,
=46° at 500 nm in the subtractive Kramers-Kronig
procedure produced a phase spectrum and optical
constants in substantial agreement with the re-
sults of the previous transformation.

C. Conclusion

We believe that the method investigated here
does work satisfactorily. The experimental diffi-
culties encountered, particularly that concerning
the reproducibility of focus, seem to be more a
result of the very small crystal studied than an
inherent characteristic of the method. The method
should be easy to automate for application through-
out a spectrum, and it demands only the same
equipment as is required anyway for reflection
spectroscopy on anisotropic materials.

V. VALIDITY OF FRESNEL EQUATIONS

It is common practice to use the Fresnel equation
(4) to extract a polarized absorption spectrum
k(w), say, from a reflection spectrum for light
polarized along an extinction direction,'3-15:18,2930
Two premises are involved: that, for this polari-

zation, only one wave propagates inside the crys-
tal, and that its complex refractive index governs
the amplitude reflection coefficient in the same way
as for an isotropic medium. Both premises are
almost obvious. The difficulty with the first is
that, in an absorbing anisotropic material, the
propagated waves are in general elliptically po-
larized.®! One must be convinced that an extinc-
tion direction cannot represent simultaneous cou-
pling of the incident and reflected beams to two
elliptically polarized waves in the crystal such that
the boundary conditions are satisfied with E, || E,.
The second premise must be examined explicitly
on the basis of the boundary conditions.

In this section, it is shown that both premises
are indeed justified—that is, that the Fresnel
formula may indeed be used to derive an absorption
(and refractive index) spectrum—given the exis-
tence of an exact extinction direction and some
mild assumptions about the dielectric tensor of the
crystal. In addition, it is shown that the presence
of one extinction direction implies the presence
of another at 90° to the first, provided that the
dielectric tensor is symmetric. The discussion
could probably be based on existing treatments of
reflection from anisotropic crystals,® but it seems
easier and more instructive to give an elementary
and fairly self-contained derivation.

The present discussion fails to connect with ex-
periment in a significant way. Experiment can
establish the existence, not of a mathematically
exact extinction direction, but only of a direction
in which crossed polarizer and analyzer yield a
signal that is smaller than noise or experimental
error. What is called for is, ideally, a set of
error bounds on the extinction coefficient, refrac-
tive index, and degree of ellipticity of the major
wave propagated in the crystal at an “extinction”
setting, in terms of an experimental upper bound
to the signal that may exist, undetected, at this
setting. It is hoped that the following discussion
can provide a basis for such further development,
should the need arise.

Consider reflection from a crystal surface lying
in the x, y plane, with crystal below (z <0) and
vacuum above (z>0). (See Fig. 1.) Represent the
normally incident and reflected beams by complex
electric vectors g =E ;exp[-iw(t+2z/c)] and é’
=, exp[- iw(t ~ z/c)] Assume that only normal
transmitted waves _é’ E, sexp[—iw(t+ njz/c)] need
be considered inside the crystal (j=1,2,. )

Here E E and E are complex vectors (E and
E parallel to the surface), w is circular fre-
quency, ¢ is time, c is the speed of light in vacuo,
and 7;=#n;+ik; is the complex refractive index for
the jth transmitted wave with real and imaginary
parts n; and k;. It is assumed that »;>0 and ;> 0.
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The corresponding magnetic fields have the same
form as the electric fields, with complex ampli-
tudes ﬁi, ﬁ,, ﬁj (j=1,2,...). The necessary Max-
well equations are3 3

7,8, xH,=¢E,, 7,8,xE;=-H,, (12)
where ¢ is the complex dielectric tensor, €, is a
unit vector in the positive z direction, and the
magnetic permeability has been equated with 1.
Combining Eq. (12) gives

AfE;=¢E, E,=| E,| (13)

Assume that € has an inverse e "1, Then no more
than two transmitted waves é’ can be 11near1y in-
dependent. The key fact is that any set of E s is
linearly dependent if and only if the E, s are as
is reachly seen by wrltmg (13) in the form E
=7y 2¢- Ejl. Since the E]l s lie in the X, plane,
there are at most two E,,’s, or two E s, that are
lmearly 1ndependent Suppose there 1s only one,
E Then all Ej s are parallel and correspond to
the same value of #; because of (13) and the as-
sumption that each ﬁj lies in the first quadrant
(whereby 7,2 =1,° implies 2;=7,). Then every &,
is a multiple of &, and there is only one indepen-
dent transmitted wave. Suppose, instead, there
are two independent amplitudes, El and Ez. If
there is a transmitted wave &, that is linearly in-
dependent of & and §,, its amplitude can be writ-
ten as E3=aﬁl+ bEz with nonzero coefficients a
and . From (13) one obtains

iy’ By, = afly> By, + b," By, (14)

Since each 7;# 0 and the expansion of Ea is unique,
P = ﬁ§= fi° and 7, =7, =7, Thus the propagating
wave &; is a linear combination of §, and &,, con-
trary to assumption; only &, and &, are linearly
independent. Assume, henceforth, that there are
two possible independent transmitted waves, & and
8,.

Now suppose that an extinction direction exists—
say, parallel to the x axis—and that the incident
beam is polarized along it. It will be shown that
only a single transmitted wave is present in the
crgstal.*A priori, the transmitted field could be

+a,8, with a, and a, constants. The necessary
boundary conditions are continuity of the electric
and magnetic field components parallel to the re-
flecting surface, plus the specifications E; || E, || » axis
and H, || H, | yaxis. The H’s may be expressed interms
of E’s by (12) and its analog in vacuo. Two of the
resulting equations are
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a,E, +a,E, =0, #,a,E  +7,a,E,,=0. (15)
If 2, #4,, it follows that @\ E, =a,E,,=0. Thus,

either a, or a, vanishes, or else Ew E,,=0 and_

E,, | E,,. The latter condition would 1mp1y E, Il E,
and 7, =#,, a contradiction. Thus, if 7, #7,, e1ther

=0 or a,=0, and only one wave is present in the
crystal. On the other hand, if 7, =7,, any linear
combination of &, and &, is itself a plane wave with
the same complex refractive index, whlch one is
free to identify as 8 or é’ by rechoosing E and
E appropriately.

Name the one wave in the crystal é’ (Thus, a,
=0.) For it, #,, n;, and k, have the same signifi-
cance as for the transmitted wave in an isotropic
absorbing medium. According to (15), E,,=0, i.e.,
the x, y projection of E, is parallel to the extinc-
tion direction. A second pair of equations resulting
from the boundary conditions

E ,+E, =0,E +a,E,,,
(16)
Ei - E, ,=a,E  +a,l,E,,
immediately gives the Fresnel equation equivalent
to (3),

E l—ﬁl' (17)

The polarlzatlon of the _wave 1n the crystal is
that of D1,31 where D =€ E =7,° Eu, and is parallel
to the x axis. Thus polarlzatmn along an (exact)
extinction direction excites a linearly polarized
wave in the crystal.

Finally, suppose € is a symmetrlc tensor,34 3%
though complex. Then the presence of one extinc-
tion direction implies another at 90° to the first.
The p_x;ojected amplitude of the second complex
wave E,, is (or can be chosen to be) perpendicular
to E.n: If 7, =7,, one may construct EZLJ_ Eu; and
if 7, #1,, from (13) one has

S)
=4

E, *Ey E2°E PEy* (€

G

- - 2
2

1) (18)
2)

E
E (19)

I
3)
il

E, *E,
But E,*(¢E,)=E, - (€E,), so the equality of the
right-most members of (18) and (19) implies that
both are zero, i.e., that EZl u—O Thus, E2l
is parallel to the y axis, and E, =0. This time,
suppose the incident beam is y polarized. Equa-
tions (16) now give a,=0 and E, =0, so E, is also
v polarized, and the y axis is a second extinction
direction.

Most of the assumptions built into the preceding
derivation should be evident. One that bears men-
tion is the assumption that only normal waves,3®
and two of them, need be considered. Such need
not always be the case.?*3% It may also be worth
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indicating an example of a crystal surface that has
no extinction directions.?”

Note added in proof. The value of ellipsometry
performed at normal incidence on anisotropic ma-
terials has recently been pointed out.3®
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