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Structure, bonding, and stability of topologically close-packed intermetallic compounds
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An orthogonalized-plane-wave-based first-principles pseudopotential method is presented for calculating the
crystal structure, lattice constants, enthalpy, and volume of formation of binary intermetallic compounds and
alloys. The pseudopotential is optimized specifically for the case of binary systems. The Xa method is used to
construct the electron-ion potential. The theory is applied to investigate the random binary alloys and ordered
intermetallic compounds between alkali metals. The crystal structure of the intermetallic phases (Na2K,
Na2Cs, K2Cs, and K7Cs6) which belong to the type of topologically close-packed (Frank-Kasper) phases is
successfully explained in terms of a delicate balance between electrostatic and band-structure forces, The
enthalpies and volumes of formation and the range of stability of these phases are calculated with good
accuracy —with the exception of Na2Cs, however. It is argued that s-d hybridization is vital for the formation
of Na2Cs. The physical principle governing the bonding is shown to be close-packing, described in terms of
soft interionic potentials.

I. INTRODUCTION

It has been pointed out by Frank and Kasper, '

that a large number of the relatively complex
structures of intermetallic compounds may be
considered as determined by the geometrical re-
quirements of sphere packing. Though the topo-
logical and geometrical properties of these cry-
stal lattices are thoroughly understood, a micro-
scopic understanding of their structure and their
bonding properties in terms of the electronic
band structure is still lacking.

Most of these compounds are formed by transi-
tion metals. Very recent investigations of Simon
and co-workers' ' renewed the interest in close-
packed intermetallic compounds formed by non-
transition metals. In their search for inter-
metallic phases in the binary alkali-metal systems
they showed that, besides the well-established
hexagonal Laves phase (C14 in the Strukturbericht'
notation) Na, K, ' there exist two isostructural
phases with composition Na, Cs (previously in-
vestigated by Rinck' and Goria') and K,Cs, where-
as an occasionally postulated compound Na, Rb
definitely does not exist. Moreover, they dis-
covered the existence of a compound K,Cs, whose
crystal structure is a stacking variant of the well-
known p, phase in binary transition-metal systems
(D8„examples Fe,W, and Co,Mo, ). Because of
the free-electron-like character of the electronic
structure of their constituents, these phases
represent the simplest possible application for
any electronic theory of their bonding properties.

We present here an ab-initio treatment of the
binary alkali-metal intermetallic phases in terms
of the optimized first-principles theory originally
developed by Harrison' and recently generalized

to binary systems by the present author' (here-
after, this paper will be referred to as 1). The
pseudopotential is optimized in the sense that the
pseudo-wave-function is smooth and that the per-
turbation expansion has optimal convergence
properties. This is particularly important for
highly complex structures and for disordered
alloys, because in these cases small wave num-
bers (and correspondingly large pseudopotential
matrix elements) contribute to the total energy.
The theory takes full account of the change on
alloying of the pseudopotential of the components
due to the change in the chemical potential, the
change in the crystal potential, the change in the
core shifts and due to the presence of a second
kind of core states. It has been successfully
applied to calculate the structural, thermo-
chemical and thermomechanical properties of
solid Li-Mg alloys' and of some liquid alloys. "

In the present work, it is applied to calculate
the enthalpy of formation of binary alkali-metal
compounds with stoichiometry AB„A.,B„and
l4 4B3 with the pos sib le crystal structures class i-
fied by Frank and Kasper. ' In addition, we cal-
culate the enthalpy of formation of the concurring
solid solutions. To gain more insight into the
bonding mechanism, the positional parameters
describing the distribution of the atoms within the
elementary cell are varied. It turns out that the
observed structures do not correspond to a mini-
mum in the electrostatic (Ewald) energy of the
ions, but may be described in terms of a balance
of electrostatic and electronic band-structure
contributions. In this context it is very instruc-
tive to examine the effective interatomic poten-
tials describing the forces between A-A. , A-B,
and B-B pairs of atoms. Possible contributions of
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(s-d) hybridization to tbe stabilization of tbe
Na, Cs phase will be shortly discussed.

II, OPTIMIZED PSEUDOPOTENTIAL IN BINARY SYSTEMS

The optimized first-principles ps eudopotential
theory has been developed in full detail in I, so it
will be sufficient to stress the main lines here.
As for pure metals our starting point is the one-
particle Schrddinger equation

&klieg'l»=(1-c)(&l» I&&+c&kl»sl&&,

( k I»~ I k) = u„(0) + (1—(]t I
P I%) )

'

xQ (k'+ U-E", ) l(O, Atlk) I',

with

U = (1-c)u„(0)+ cus(0);

and the projection operator matrix-elements

(8)

q (a) t

r;, Bs r, , Bs
jB

I lk) stands for a plane wave and &rlr&, At)
=g", (r —r~) for core states of type A, centered at
r& and labeled by the set of quantum numbers t ],
we obtain a Phillips-Kleinman" equation for a
binary system. The pseudopotential is then
optimized by applying the criterion of the smooth-
est possible wave function as formulated by Cohen
and Heine. " After a lengthy calculation (for any
details, cf. I) we arrive at the following factor-
ized form of the pseudopotential matrix element

& k+qlii'lk& = s„(q)&k+ql»~ Ik&

+s, ', q)&k+q Iu, Ik).

S„and SB are the partial structure factors des-
cribing the spatial arrangement of A and B ions,
respectively,

S„(q)= tV
' g exp(- i q r& ),

~(~)

S~(0) = N~/tV= (1 —c), —

Ss(q)=ti ' exp( iq r-, ),
B

s, (o) =x,/ti-=c .

(4)

N„, NB, N=N„+NB stand for the numbers of ions,
c is the concentration of the B component. The
form factors for the component A are given by

&k+ql»~lk&=u (q)+Z Q'+(kill'I&&-E")
t

x(k+qlo, At)(O, Atlk)

(5)

with the diagonal element

tile& =(T+ U) ly &=El'&,

with the self-consistent crystal potential U which
is a linear superposition of individual ionic con-
tributions U~, UB from both kinds of ions. Ex-
panding the eigenstates of the Hamiltonian (1) in
terms of generalized orthogonalized plane waves"

&klPI» =(1-c)Z l&o, At Ik) I'

+cZI(O,as Ik&l'. (9)

The corresponding equations hold for the B com-
ponent with u„, E,", and (O, Atl replaced by us,
and Es, (0, Bs I, respectively.

In practice, the self-consistent crystal potential
U is not known. We have to start with the bare
electron-ionpotentials U„', U'B, construct a bare
pseudopotential R" by using them in Eqs. (5)-(9).
This bare pseudopotential is then made self-
consistent by linearily screening it by a homo-
geneous electron gas of the density p = Z/A. Z is
the average valence. 0 is the volume per atom
(we do not assume a linear variation of 0 with con-
centration, but rather determine the atomic vol-
ume for each concentration and each phase from
the thermodynamic stability criterion, see below).
Exchange and correlation among the valence-elec-
trons are treated in the Vashishta-Singwi" ap-
proximation.

The construction of the electron-ion potentials,
based on the Xo. method, and the calculation of
the core shift appropriate for alloys have been
described in previous papers, ' ""only the fol-
lowing points should be made: (a) the only dis-
posable parameter in the potentia1 describes the
many-body interactions between core and valence
electrons. It has been demonstrated that its in-
troduction at this stage is natural as well as nec-
essary and that it allows one to account for the
nonlinearity of the pseudopotential in the valence
charge density in a simple way and to give an ac-
curate description of a wide range of different
properties of the pure metals. No new parameter
is introduced for the binary phases. (b) From tbe
discussion it is immediately evident that the form
factor of both components in the alloys is differ-
ent from that of the pure metals due to (i) the
change in the Fermi level, (ii) the change in the
average crystal potential U, (iii) the change in
the core shift, and finally (iv) due to the presence
of a second kind of core states in the projection
operator P I Eq. (9)]. This last point is also im-
portant in determining appropriate effective val-
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encies (defined as the nominal valence plus the
charge of the orthogonalozation hole) Z„*, Zw* for
the ions in the alloy [cf. Eq. (25) of I].

III. TOTAL ENERGY AND INTERATOMIC POTENTIALS

Eb, = 'S&*q S,*qI"'~ q .
s, p q

(12)

The calculation of the total energy of a binary
system is somewhat lengthy, but in principle
straightforward. As a result, we obtain three dif-
ferent contributions (i) the structure-independent
free-electron energy E„[Eq. (82) of 1], (ii) the
electrostatic energy of point ions with effective
valencies Z~ and Z~ in a negative compensating
background. For the case of an ordered compound
it is given by

@es—(ZAtwAA +ZAZB+AB + ZB +BB)/w

Here x is the radius of an average atomic sphere
w = (SQ/4w)' ', and the c.'s are the geometrical
Ewald coefficients of the lattice which may be cal-
culated using the well™known Ewald-Fuchs meth-
od." For a disordered alloy, the electrostatic
energy is given by"

E„=Z*'c./w, Z*=(1-c)Z„*+cZg,

n being the Ewald parameter of the underlying
perfect lattice. The last contribution is (iii) the
band-structure energy Eb, given by

interaction in wave-number space between'-A,
A. -B, and B-B ions. Fourier transforming and

adding the direct Coulomb repulsion between the
point ions, we obtain effective pair potentials for
the interionic forces in the alloy. " Again, it is to
be emphasized that the interaction between two

ions will be different in the pure metal and in the
alloy.

IV. ENTHALPY AND VOLUME OF FORMATION

%e have now collected all necessary ingredients
for the calculation of the total energy, the zero-
pressure lattice constant, and the isother mal bulk
modulus for body-centered solid solutions and for
intermetallic compounds with different crystal
structures. Similar calculations for the pure
alkali metals have been reported. " At a given
temperature and pressure, the stable phase is
the one withthe lowest free enthalpy 6 = E+PQ —Ts.
Restricting ourselves to 7 =0 K, the entropy S
vanishes and it is sufficient to calculate the enthal-

py II=K+PA. At zero pressure, the enthalpy of
formation is then given by

(15)

where Q», 0„, Q~ are the zero-pressure atomic
volumes of the A. -B alloy and of the pure metals,
respectively. The excess volume for the forma-
tion of the alloy is given by

Here there are two alternative formulations:
(i) S„S&are the partial structure factors defined
above, the energy wave number characteristics
I'" are given by

bQ =Q~e —(1-c)Q~ —cQw .

V. SOLID SOLUTIONS

(16)

2Q &%+q(w, ( k& (k (~, ( R+ q) d,~
(2w)' fi aw K'-(k+q['

sl (q)s& (q)
16w 1-G(q)

with i,j =A, B, them;, se, ' standing for the form
factors u„, ma and the corresponding screening
potentials.
(ii) S;, S& stand for the structure factors S and D

S =8„+S~,
D =cS„—(1 —c)Sw,

(14)

defined by Hayes et al. ," and at, and m f" in Eq. (18)
are to be replaced by the corresponding average
and difference terms, cf. I. Since D*S=DS*=0,
D(0) =0, and D*D =constant for random alloys with
lattices in which all sites are equivalent, "this
formulation is most convenient for solid solutions.

The energy wave-number characteristics I"",
I", F describe an indirect ion-electron-ion

At sufficiently low temperature, I i is immiscible
with all other alkali metals. Na is immiscible
with the heavier alkalis in the solid state, but
forms a continuous sequence of liquid solutions.
K-Rb, K-Cs, and Rb-Cs form solutions both in
the liquid and in the solid state, but in the K-Cs
system the intermetallic phases K,Cs and K,Cs,
are stable below -90 'C.' ' The calculated en-
thalpies display the behavior expected from Hume-
Rothery's 15% rule (Fig. 1). For the K-Rb, K-Cs,
and Rb-Cs systems, the positive sign and magni-
tude is in reasonably good agreement with the bII
estimated by Yokokawa and Kleppa" from liquid-
metal data, K-Rb: ~H =156(46) cal/g atom, .K-Cs:
b.H=800 (166) cal/gatom, Rb-Cs: b,H=120(13)
cal/g atom. b, H is somewhat overestimated be-
cause the differences in the theoretical densities
are somewhat greater than the corresponding ex-
perimental differences (cf. Ref. 16 for a complete
theoretical description of a wide range of proper-
ties of the pure alkali metals). Figure 2(a) re-
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FIG. 1. Enthalpy of mixing for body-centered cubic
alkali-metal solid solutions against the ratio of the .

atomic radii of the pure components. Full dots for the
equiatomic composition, the open circles stand for a
concentration of 67 at.% of the lighter component.

presents the variation of the lattice constants with
concentration. Large positive enthalpies of mixing
are correlated with positive deviations of the lat-
tice constant from the linear relation, whereas
for systems with small hH, the lattice constant
varies strictly linear, in agreement with experi-
ment. ' ' In terms of the excess volume of alloy-
ing, our calculations yield: n, A/0 =1.77%
(Li-Na)„-1.47% (LiK}, -0.34% (NaK), +0.32/o

(NaRb), +0.59% (NaCs), -0.12% (KRb), +0.51%
(KCs), and -0.17/o (RbCs), respectively. Hence
there is no appreciable change of volume on alloy-
ing. Figure 2(b) represents the variation of the
isothermal bulk modulus B~ with concentration.
Large negative deviations from linearity are ob-
served for the hypothetical (immiscible) binary
phases. For the existing solid solutions, B~
varies nearly linearly. No experimental high-
pressure investigations of alkali-metal solid
solutions are known. In summary, our calculation
predicts an ideal solution behavior for the solid
alloys of K-Rb, Rb-Cs and, to slightly lesser
extent, K-Cs.
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VI. LAVES PHASES

The crystal structures based on the close pack-
ing of equal spheres may be regarded as assem-
bled by triangular layers which are the closest
packing in two dimensions. There is a double
choice in stacking each layer on the next. They
may be designated as V' and 6 and any repeating
sequence defines a member of an infinite series
of close-packed structures, of which the face-
centered cubic and the hexagonal close-packed

I

2/3 tu2
1

0

FIG. 2. Lattice constant (a) and isothermal bulk mod-
ulus (b) of body-centered cubic solid solutions of the
alkali metals. The open circles indicate the calculated
results, the bold lines are drawn to guide the eyes. The
thin lines connect the pure metal values.
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lattices are the simplest examples.
In analogy to this the close-packed intermetallic

compounds may be considered as different stackin[
sequences of one or more different sandwiches of
layers. ' For the Laves phases AB, such a sand-
wich is made up of a Kagome net of B atoms, a
triangular net of A atoms centering its hexagons,
then atriangular net of 8-atoms centering half of the
Kagomd triangles (e.g. , those in orientation 6),
and by a third triangular net of A atoms centering
the remaining triangles. A second Kagome-layer
of B atoms, with its V triangles over the 6 tri-
angles of the first one begins the next sandwich,
which may be similar to the first one, or al-
ternatively have its triangular B net over the V

triangles of the Kagomd net. The first stacking is
called ~, the second V, and an infinite series of
structures is described by the different sequences
of 6 and V.

Repeated 6 stackings make the cubic Laves
phase C15 (MgCu, -type). The repeated sequence
AV makes the hexagonal Laves phase C14, typi-

fied by MgZn, . The sequence hhVV defines the
Laves phase C36 (MgNi, type). The crystallo-
graphic description of the three Laves phases is
summarized in Table I, the positional parameters
are given for the ideal structure. For the ideal
structure, the larger A atoms form a diamond
sublattice for C15 and a wurtzite-like sublattice

for C14, the sublattice in C36 being a mixture of
the two structures. In all three phases, the smal-
ler 8 atoms form different tetrahedral networks. '4

The lattices are compared in Fig. 3 in form of a
projection on the (110) plane. In this representa-
tion, the structure may be regarded as a sequence
of planar networks, so-called primary nets in
which the atoms form pentagons and triangles
(emphasized in Fig. 3 by continuous lines connect-
ing the atoms) alternate with secondary nets with
triangular arrangement (the black circles in Fig.
3).
The larger A atoms are surrounded by four other

A atoms and 12 B, while the B atoms have 6 A and

6 B as nearest-neighbors. Compared at constant
atomic volume, the nearest-neighbor distances
d„„, d„~, and d~~ are identical for all three
structures.

A. Structural energy differences

First, we considered the ideal structures. It
turns out that the hexagonal C14 lattice is always
energetically more favorable (Table II)—in agree-
ment with the observed crystal structures. If we

examine the electrostatic and electronic contri-
butions separately, we find that the electrostatic
energy prefers a cubic arrangement of the ions
(Table I). For both the 4 and 8 sublattices, the

TABLE I. Crystallographic description and Ewald coefficients for the Laves phases. The
structural parameters are given for the ideal structures. The notation is that of the Inter-
national Tables for X-Ray Crystallography, Ref. 23. The Ewald coefficients are given also
for the parameters minimizing the electrostatic energy for &z = &3. Q= Q~+Q~z +Q~~.

C15—MgCu2 type
Atomic positions:
8 A atoms in (a); 16B atoms in (d).
Ewald coefficients:

-0.386 168
Qwa

-0.478 229
Qg~

-0.907 916

Space group Ed 3m-0„'

-1.772 313

C14—MgZn2 type
Atomic positions:
4 A. atoms in (f), z=

&&,
1

2 B atoms in (a); 6 B in
Axial ratio: c/a=( —) ~

3
Ewald coefficients:
Ideal structure
z=0.070
z =-0.180
c/a = 1.52

(h) x = ——.
= 1,633

-0.385 602

-0,383 662

Qxa
-0.480 707

Qgg
-0.905 207

-0.473 688 -0.917 111

Space group P63/mmc —D46„

—1.771 515

—1.774 461

Space group P 63/mmc -D46„

QBB
—0.906 597

Qxa
-0.479 431

C36—MgNi2 type
Atomic positions:
4 A atoms in (e), z=-; 4 A in (f), z=2-~;

6 B atoms in (g); 6 B in (h), x= ~; 4 B in (f), z= —'.
Axial ratio: c/a = 2(—) =3.266
Ewald coefficients:
Ideal structure —0.385 892
c/a =3.24

—1.771920
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Mg Zn2

AB2 Loves phases

Mg Ni2

0 A

o e B

Mg Cu2

FlG. 3. Comparison of
the three Laves-phase
structures in form of a pro-
jection on the (110) plane.
The primary networks are
emphasized by the lines
connecting the atoms. For
sake of clarity the second
primary network (anti-
symmetric to the first one)
has been omitted. The
secondary network is built
by the majority atoms
represented by full dots.
These atoms lie in the
Kagome planes. The double
lines connect equivalent
positions in the Kagome
planes to emphasize the
stacking sequence.

Ewald energy is lower for the C15 than for the
C36 and C14 structure.

The A sublattice of C15 is of diamond type (44),
hence the coefficient a»(C15) should be directly
related to the Ewald constant of the diamond lat-
tice. Taking the change in the number of atoms
per unit cell and the change in the mean atomic
radius into account, we have 3&&3' 'o»(C15)
=1.670 852 =o. (A4), in excellent agreement with
previously published values. ' 2 Similar cross
checks are possible for the other structures.
This is important, since the two Ewald constants
for the Mgzn lattice reported by other authors
are definitely in error. On the other side, good
agreement is observed between our calculations
and unpublished results of Hoppe. " The A-B co-

ordination is eleetrostatically more favorable in
the hexagonal stacking variants, but as a whole,
the Ewald energy is lowest for the cubic C15 lat-
tice.

The band-structure contribution to the total en-
ergy is given by Eq. (12). In Fig. 4 we have plot-
ted the energy wave number characteristics, con-
veniently normalized to unity for q =0, together
with the corresponding structural weight function
N (defined as the square of the structure factor
times the multiplicity of the reciprocal lattice
vector) for the compounds Na, K and K,Cs. The
lowering of the symmetry in the hexagonal Laves
phases is reflected by the distribution of the
structural weight over a larger number of reci-
procal lattice vectors. For the A-A. and B-B in-

TABLE D. Equilibrium lattice constant, enthalpy, and volume of formation of the C14
Laves phases (assuming the ideal structural parameters) and structural energy differences
of the C15 and C36 phases relative to the C14 phase.

a (A) 4H (cal/g atom) 4E (cal/g atom)
Theory Experiment Theory Experiment 4 ~/~(/o) C15 C36

Li2Na
Li2K
Na, K (id)

(min)
Na2Rb
Na2Cs
K,Rb
K2Cs (id)

(min)
Rb2Cs

3.95
4.73
7.74
7.62
8.01
8.38
9.38
9.69
9.56

10.24

7 50

7.86

9.07

680
3600
—63

—125
1100
2070

30
—125
-180
-130

—145

0.1
—7.5
—1.5
-1.5

54
—11.6

3.0
-1.3
—1.3

0.6

119 62
187 156

94 63

125 93
156 125

63 63
125 84

94 63

Reference 5, room temperature.
Reference 21, T=280'K.
Reference 2, T=178'K.

d Reference 2, T=223'K.
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teractions, this results in energetically more
favorable contributions from short reciprocal lat-
tice vectors for the C14 than for the C15 structure.
For the A-B interactions, the structural weight
is positive only in that region where the charac-
teristic E~ is very small or even negative. This
means that the indirect ion electron-ion inter-
actions between unlike ions are energetically
quite unfavorable for all three Laves phases.
Here again, the structure of the C14 phase is bet-
ter adapted to the particular form of the charac-
te ristic.

In Fig. 4(a) we have included the characteristics
of K-K ion interactions both in the Na, K and in the
K,Cs phases. They are seen to be drastically dif-
ferent. This illustrates the strong dependence of
the pseudopotential and hence of the indirect ion-
electron-ion interactions of one of the components
on the second component and its concentration, as
has been emphasized in Sec. II.

B. Crystal structure of the C14 phases

To obtain a better insight into the physical mech-
anism governing the particular arrangement of
ions in such topologically close-packed phases, we

have calculated the binding energy of the hexagonal
Laves phases Na, K and K,Cs as a function of the
structural parameters c/a (axial ratio), z and x
(cf. Table I). Varying z shifts the position of the
larger A atoms in the direction of the z axis: in-
creasing z beyond its ideal value ~ moves the A
atoms within a V or 6 layer away from the central
plane built up by B atoms (the small open circles
in Fig. 3), thereby the distance between' atoms
belonging to adjacent layers is reduced. Corre-
spondingly, reducing z approaches the A atom
from both sides to the central B-atom plane.
7arying x moves the B atoms parallel to the
Kagomd-layer planes, distorting the tetrahedral
arrangement of the B atoms.

0.8

0.6

O.I,

-1
U

I., g
-1

s 0

C15

C36

C14
0.8

I JLa ~

3-2
0

--1
--2
55

-1
~ 0
--1
te

-1
0

--2

C15

C36

C14

0.2

00 2

q/kF

00'~ ~

0.2

(x2O

2 3

q/kF

C15

C36

0.8

0.6

z 0.4
LL

0.2

C14

0
2

q/kF

FIG. 4. Normalized energy-wave-number characteristics Ez~(q) (a), F~ (q) (b), and EN (c) and the corresponding
structural weight functions N~(q), N~(q), and N~~(q) for the three possible Laves-phase structures of the compounds

Na2K (full lines) and K2Cs (broken lines). In (a) we included also the characteristic for K-K majority atom interactions
in K2Cs to allow for comparison with the K-K minority interactions in Na&K (dotted line).
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-0,476—
—-0.4815

As we have already seen (cf. Table I), the elec-
trostatic energy of a binary array of point ions of
equal valence (Z„=Zs) has its minimum (as a func-
tion of the structural parameters at constant
atomic volume) for a heavily distorted structure:
c/a =1.52, x= —0.18, z =0.070. The effective
valencies of the pure metals at their theoretical
equilibrium volume are not very different: Na:
Z*=1.073, K: Z*=1.116, and Cs: Z*=1.162. How-
ever, the effective valencies(change on alloying, as
has beenpointedout inSec. II. Inthe compound NaK,
the effective valences of the components are now Z„*,
=1.055, Z~z=1. 183, and in K,Cs Z)=1.093,
ZP, =1.225. In both cases the ratio of the effective
valencies, which is about 1.04 for the pure metals,
is enhanced to 1.12, the average Z* remaining ap-
proximately(constant. If the electrostatic energy is
calculated using the actual effective valencies of
Na, K, we find a minimum at c/a =1.62, x=-0.175,
and z =0.0635 (cf. top row of Fig. 5). The "charge
transfer" related with the redistribution of the one
orthogonalized-plane-wave charge density removes
most of the anisotropy present in the Ewald energy
of a lattice of ions with equal valencies. c/a and
z are now very near their ideal values, hence the
proper calculation of the effective valencies is
sufficient to stabilize the wurtzite-like sublattice
of the larger minority atoms.

The tetrahedral network of the majority atoms
is still appreciably distorted. The band-structure
contribution to the lattice energy displays a, strong
tendency towards anisotropy, quite analogously to
the case of uniaxial pure metals (cf. the middle
row of Fig. 5). However, if we combine E„, with

E„, we see that the variation of the electrostatic
energy with the structural parameters is dominant
and that the effect of the band-structure energy is
to remove the remaining distortions of the lattice,
the calculated structural parameters being in very
good agreement with experiment (cf. Table Ill).
However, our theory predicts not only the crystal
structure, but also the equilibrium lattice con-
stants and the enthalpy of formation with a sur-
pr isingly high accuracy.

C. Phase stability

In Table II we have summarized the calculated
equilibrium lattice constants, enthalpies, and
volumes of formation. A negative enthalpy of
formation is predicted for Na, K, K,Cs, and Rb, Cs.
The stability of the Laves phase has to be dis-
cussed in relation to the solid solution, taking into
account the differences in the entropies of forma-
tion. Very little information is available on the
last point. The entropy of formation of solid Na, K
at room temperature is quoted by Hultgren eP al."
to be AS=-0.16 cal/g atomK. No data are avail-
able for solid solutions. .or liquid alkali-metal

I!I
I

-0.012—

I! I

I

rf
I

/

—-04820

—-0.0120 theory experiment

TABLE IO. Lattice constants, structural parameters,
and enthalpies of formation for the Laves phases Na2K
and K,Cs.

Na, K

~ -O,G16-
UJ

-0.447-

I lii I

I

I

I r
w~qr

--0.0l28

- -0,4480

a (A)
c (A)
c/a
x

4H (cal/g atom)

7.62
12.79
1.68
0.0 635

—0.1675
-125

7.50
12.31 a

1.62
0.0625

—0.1667
—145

-0./48-

I & I I I I I

0.16 0.18 0.05 0.06 0.07X~ 2~
z= 0.065 x =0.170—c/a =1.68——c/a =1.52

I I I I

1.5 1.6 1.7
c/a ~

x =0.167

z= 0,064

FIG. 5. Dependence of the electrostatic energy E„
(top row) of the band-structure energy +, (second row),
and of the total energy (third row) of Na2K on the axial
ratio (third column) and on the structural parameters
z and x (second and first columns) at the equilibrium
volume. The first column refers to the left-hand energy
scale, the other two to the right-hand scale.

a (A)
c {A)
c/a

AH (cal/g atom)

theory

9.56
16.26
1.70
0.064

-0.167
-180

~ Reference 5, room temperature.
"Reference 21, T= 280 K.' Reference 2, T=178'K.

Reference 2, T = 223 'K.

experiment

9.07'
14.76'
1,63
0.0625

—0,1667
&0
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alloys, the entropy of formation is given to 90%
by the ideal mixing term. If we assume that this
does not appreciably change in the solid, we can
estimate the entropy of formation for the solid
alloy to be nS =1.8 cal. /g. atom K. r H is large
and positive for a Na, K solid solution, hence the
ordered compound is stable up to the melting
point. In order to be able to give a rough estimate
of the temperature range of stability for the or-
dered compound, we assume AII and AS to be in-
dependent of temperature and calculate the transi-
tion temperature using Tc =(b,P, , —off„,„„)/
(AS, , —ASL,„„), where we take n. S„j ~ to be tha, t
of an ideal solution and b, SL,„es=hS» „. Using our
calculated enthalpy of mixing, we obtain
Tc =612 K(K,Cs), Tc =114 'K (Rb, Cs), using the
empirical estimates of 60,"we have T~ =240 K
(K2Cs), Tc = 98 'K (Rb, Cs), experimentally
Tc =180 'K (K,Cs).' The important thing is not a
numerical agreement with experiment (which we
can hardly expect to be quantitative), but the
correct trend: Rb, Cs is predicted to be stable
only at temperatures which are much lower than
the formation temperature of K,Cs. Experi-
mentally, Rb-Cs alloys have been investigated
down to + 90 K, no indications for compound for-
mation have been found in that range. Compared
to the random solid solutions, the calculated ex-
cess volumes of formation are more negative for
systems with large differences in the atomic size
of the component. This reflects the fact that dif-
ferent atoms may be stored more easily in a Laves
than in a bcc lattice. For K-Rb and Rb-Cs the
situation is reversed: the atoms have nearly
equal size and the bcc solid solution has the higher
density. The calculated isothermal bulk moduli
of the compounds are nearly identical with those
of the solid solutions (cf. Fig. 2a). For Na, K and

K,Cs, the bulk modulus is smaller than given by
the rule of mixture. This emphasizes the pure-
metallic character of the compound.

Our theory fails to explain the existence of the
Laves phase Na, Cs. We calculate large positive
enthalpies of formation for both Na, Rb and Na, Cs,
which are not appreciably reduced by varying the
structural parameters. It is well known that un-
der moderately high pressure Cs behaves as a
transition metal. " Covalent bonding charge is
built up along the lines joining nearest neighbors.
Of course it is impossible to describe such a
situation within our model of overlapping spherical
"pseudoatom" charge distributions. The situation
is not very different if we increase the electronic
charge density around a Cs ion by compressing
the pure metal or by introducing it in a matrix of
Na host ions with a much higher electron density.
In this connection we refer to the large negative

3-
1 2 3

I

solution

0

-1—

—Na, K --NaK
1 Na-Na
2 Na-K
3 K-K

I

10
I

16 r (a.u)

FIG. 6. Effective interionic pair potentials for Na2K
and NaK (solid and broken lines, respectively) at the
equilibrium volume. The arrows indicate the nearest-
neighbor distances in the C14 and in the bcc structures.

D. Interatomic forces

It is interesting to discuss the stability of the
Laves phases in terms of the effective interionic
pair potentials introduced in Sec. III. Figures 6
and 7 demonstrate that for the compound-forming
systems Na, K and K,Cs the minima in the inter-
ionic potentials correspond very well to the near-
est neighbor distances in the Laves phase
structure. The effective pair potential is built up

by two largely compensating contributions, the
repulsive Coulomb and the attractive interaction
via the valence electrons. Thus the pair poten-

3-

2-

2 3

bcc solid solution

2 3
Laves phase

Ct

2-E

) 3
5
Cs

5-
1 i I ~ (
6 8 10 12 14 16 r(a.u. )

FIG. 7. Effective interionic pair potentials for K&Cs

(cf. Fig. 6).

excess volume of Na, Cs (Table V). A further hint
to the important role of s -d hybridization is the
nonexistence of the compound Na, Rb, whereas in
the alkaline-earth systems all the corresponding
hexagonal Laves phases Mg, Ca, Mg, Sr, and

Mg2Ba exist. Hence Cs should be treated as a
transition metal in the compound Na, Cs.
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tials illustrete the fact that the structure of the
Laves phase is determined by the principle of
close packing, which is realized by a delicate
balance between electrostatic and electronic
forces. The shape of the pair potentials explains
why a bcc solid solution is energetically less
favorable in these cases.

VII. INTERMETALLIC COMPOUNDS WITH 268~
STOICHIOMETRY

An alternative sandwich of layers is built up of
a central hexagonal layer of A atoms, two tri-
angular layers of A atoms (centering the hexagons),
and two Kagomd nets of B atoms (the triangles
over the central A atoms) in centrosymmetric
positions. ' The usual shorthand notation for di-
rectly superposed Kagomd nets with this type of
in-filling is 0. The repeated sequence of 0 layers
defines the Al, Zr, structure" to be discussed in

Sec. VIII. Using again V and 6 to describe the
Levee-type Kagomd stacking (with the correspond-
ing in-filling between them), any sequence of 0,

and 6 defines a conceivable structure. ' Re-
peated VO layers make the p. pha. se (D8„ typified
by Fe,W, and Co,Mo, )." Repeated VOb, O layers
built the structure of K,Cs, .' A further combina-
tion yielding a compound with A,B, stoichiometry
is V600, one the hypothetical structures explic-
itely mentioned by Frank and Kasper. ' Table IV
summarizes the crystallographic information and
the Ewald coefficients, the positional parameters
being given for the observed and the ideal struc-
tures of the p. phase and of K,Cs, . The ideal
parameters are obtained by assuming ideal in-
filling of the 0 and h, V layers and using d=a and
d = —,

' (-,')'~' a for the distances between the Kagomd-
nets in the 0 and in the V,b layers. The param-
eters for the hypothetical A,B, structure are cal-
culated in the same way. In Fig. 8, the three

TABLE IV. Crystallographic description and Ewald coefficients for the Frank-Kasper
phases with AGBY stoichiometry. The structural parameters are given for the ideal struc-
tures, with the observed parameters in parentheses. The Ewald coefficients are given also
for the parameters minimizing the electrostatic energy for &g =&g. ~= ~~+ ~go + ~aa ~

Space group R3 —DsgD85—Co&Mo6 type
Atomic positions (in a hexagonal unit cell):
6 Mo(1) atoms in (c), z= ~ (0.1655); 6 Mo(2) in {c),z=0.3526 (0.3483);
6 Mo(3) in (c), z=0.4552 (0.4518); 3 Co(1) in (a); 16 Co(2) in (h),
x = —( 6), z = —0,2562 (-0.2584) .
Axial ratio: c/a=5. 45 (5.38)
Ewald coefficients:
Ideal structure —0.544 175
Observed s true ture —0.557 958
z [Mo(2}]=0.350
z [Mo(3)j =0.458 —0.616476
c/a =5.3

~~a
—0.647 638
-0.611739

BB
—0.578 190
—0,602 004

-0.614 297-0.544 649

Space group I'63/mmc-D6&K&Cs6 type
Atomic positions:
2 Cs(1) atoms in (b); 2 Cs(2) in (c); 4 Cs{3) in (f), z=0.97125 (0.9769);
4 Cs(4) in (f), z=0.8175 (0.8208); 2 K(1) in (a); 12 K(2) in (k),
x =—( ~), z=0.1124 (0.1150).
Axial ratio: c/a=3. 633 {3.629).
Ewald coefficients: +A.B
Meal s tructure —0.547 710 -0.637 783
Observed structure -0.553 746 -0.623 254
z (Cs3) =0.974
z (C s4) =0.8 10 -0.651 135 -0.594 748
c/a =3.63

BB
-0.584 698
-0.594 748

—0.529 568

Space group I'6m2. —D3I,

~ca
—0.827 637

BI3
-0.471 634—0.465 158

Hypothetical A 6BV type
Atomic positions:
2 A(1) atoms in (g), z =0.1376; 2 A.(2) in (h), z=0.1376; 2 A{3) in (h),
z=0.4156; 2 A(4) in (i), z=0.0688; 2 A(5) in {i), z=0.2064; 2 A(6) in (i),
z=0.3595. 2 B(1) in {g) z=0.3875. 6 &{2) in {n) x= — z=0.2572.
3 B(3) in (j), x=-; 3 &(4) in (k), x-- —.
Axial ratio: c/a=3. 633
Ewald coefficients:
Ideal sh'ucture

—1.770 002
—1.771 701

-1.775 422

-1.770 190
—1.771 749

-1.775 451

-1.764 429
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FIG. 8. Comparison of
the three A6B, lattices in
form of a projection into the
(110) plane (cf. Fig. 5).

0

Fe7W6 K7 Css
A6 B7 p -phase and stacking variants atomsA

o ~ B]

structures are compared in form of a projection
into the (110) plane. As for the Laves phases, the
atoms of the secondary layers (full dots) center
the pentagons of the primary layers (open circles).
As a consequence, the secondary networks are
now constructed of rectangles (in the 0-regions)
and triangles (in the V, n, regions). This repre-
sentation underlines the relationship between the

K7Cs 6 and the p.-phas e structure s, which is
analogous to that between the hexagonal and ~ubic
Laves phases.

A. Crystal structure of K7Cs„and of similar compounds

One of the prominent features of the p, phase and

of its stacking variants are the close distances be-
tween the large minority atoms in the 0-like re-
gions of the lattice, which are of the same magni-
tude than those between the small majority atoms.
In the observed structures, these distances are
enhanced by 2.9/o (K,Cs, ) and 5.1% (Co,Mo, ), re-
spectively, against the ideal lattice. These close
interatomic distances are quite easily understood
in a transition-metal compound, but in the K,Cs,
lattice, the shortest Cs-Cs distances are con-
siderably smaller than in pure Cs. Hence it is
interesting to calculate the binding energy at least
as a function of those structural parameters which
influence these distances. These parameters are
the z values for the Mo(2} and Mo(3) atoms and

for the Cs(3) and Cs(4) atoms, respectively. For
the remaining structural parameters, the observed
values are used. Varying the z's means to shift
the four large atoms lying on a straight line in Fig.
8(a) and 8(b) against each other. fn Table IV we

have summarized the calculated Ewald coefficients
for the ideal and the observed parameters and for
those parameters minimizing the Ewald energy for
Z„=Z~. Again the electrostatic energy for Z„=Z~
prefers a quite strongly distorted lattice: the
short interatomic distances are shrinked with re-
spect to the ideal structure, the Cs(4)-Cs(4) dis-
tances in the K,Cs, -structure by 12.8%, the dis-
tance between Cs atoms in Mo(3)-sites by 8.4/p,

assuming the Co,Mo, structure. With respect to
the observed structures, the corresponding fig-
ures are 15.3, respectively 12.9%. The above-
mentioned "charge-transfer" effect (the effective
valencies in K,Cs, at the equilibrium volume are
Z~~, =1.213, Z~z =1.088) removes most of the dis-
tortion, the parameters of the energetically most
favorable structure are now z[Cs(3}]= 0.976,
z[Cs(4)] = 0.815, c/a = 3.63 in the K,Cs, structure,
and z[ Mo(2)] =0.348, z[Mo(3)] =0.457, c/a =5.40
for K,Cs„assuming the Co,Mo, structure. If the
band-structure contributions are added, we obtain
the equilibrium values for the lattice constants,
structural parameters, and enthalpies of formation
listed in Table V for K,Rb„K,Cs„and Rb, Cs,
with K,Cs, -type structure and for K,Cs, and Rb, Cs„
assuming the p, -phase structure. For the remain-
ing possible A,B, phases, the enthalpy of formation
is calculated only for the observed structural
parameters (cf. Table IV) and compiled in Table
VI. The K,Cs, structure is the energetically most
favorable in each case. Using the observed
structural parameters, we obtain a negative en-
thalpy of formation only for Rb, Cs, . However, the
enthalpy is quite sensitive against small variations
of the structural parameters. The calculated
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TABLE V. Equilibrium lattice constants, structural
parameters, and enthalpies of formation for K,Cs6- and
Co&Mo6- type intermetallic compounds.

a (A)
c (A)
c/a
z [Cs(3)]
~ [Cs(4)]
AH (cal/g atom)

Compound
structure

a (A)
c (A)
c/a
z [Cs(3),Mo(2)]
s [Cs(4), Mo(3)]
AH (cal/g atom)

theory

9.68
37.29
3.85
0.975
0.825

-65

K)Rb6
KVCs6

9.25
35.14
3.80
0.973
0.822

-15

K(Cs6

K~Cs6
Co7Mo6

9.64
56.86
5.9
0.351
0.450

220

experiment '

9.08
32.95
3.629
0.9769
0.8208

(0
RbvCs6

KYCS 6 C07MO8

10.08
38.51
3.82
0.973
0.825

-120

10,01
59.07
5.9
0.350
0.450

20

' Reference 3.

structural parameters for the K,Cs, -type phases
agree quite well (within 5%) with the measured
parameters of K,Cs, .' The remaining differences
in the z parameters act in such a way that the
shortest Cs-Cs distances [Cs(4)-Cs(4)] are en-
hanced by 5.9% with respect to the observed ar-
rangement, at the cost of the Cs(3)-Cs(4) distances
which are reduced by 2.6/p. The distances
Cs(4)-Cs(4) and Cs(3)-Cs(4) (these iona lie on a
straight line in z direction, cf. Fig. 8) are now

almost identical. Furthermore, the axial ratio
is enhanced by 6/p. The same applies —mutatis
mutandis —to the calculated p;phase structure.
Remembering that the purely electrostatic inter-
actions prefer Cs-Cs distances which are 15/p

smaller than the observed ones, we see that the
actual structure of K,Cs, is the result of a delicate
balance between electrostatic and electronic
terms. In view of the complex nature of the com-
pound, the achieved accuracy is certainly very

encouraging.
The calculated excess volumina of formation

(Table VII) are connected with the enthalpies
of formation in the same way as for the Laves
phases and for the solid solutions: a nearly vanish-
ing volume of formation is related to the lowest
enthalpy of formation. The bulk moduli of the in-
termetallic compounds again practically coincide
with those of the corresponding solid solutions.

B. Phase stability and interatomic forces

Our theory predicts a negative enthalpy of forma-
tion for K,Rb„K,Cs„and Rb, Cs, . Experimentally
only K,Cs, is known to exist at temperatures below
178 K. Again the stability of the compounds has to
be discussed in relation to the competing solid
solutions and Laves phases. If we estimate the
temperature for the compound —solid solution
transition temperature in the same manner as for
the Laves phases (assuming the same estimate for
the entropy of formation) we find that the transi-
tion temperature for K,Rb, should be lower by a
factor of 4, that of Rb, Cs, by a factor of 1.5 to 2
than that of K,Cs, . Hence our theory predicts
stable phases of K,Rb, and Rb, Cs, only at very low
temperatures. No experimental investigations
have been made in that temperature range.

Again it is instructive to throw a rapid look on
the effective interionic pair potentials (Fig. 9).
According to the large number of crystallographi-
cally inequivalent sites and to the deviation from
the ideal structure, the nearest neighbor distances
are now split of, but they fit quite well into the
minima of the pair potentials.

VIII. A13 Zr4-TYPE COMPOUNDS

The K,Cs, -type compounds are composed of
regions which are isostructural to the Laves
phases —and indeed the phase K,Cs exists —and

regions which are isostructural to the Al, Zr4
structure. Hence it is interesting to investigate

TABLE VI. Enthalpy (in cal/g atom) and excess volume (in percent) of formation for binary
alkali compounds with A 6B& stoichiometry (calculated using the observed structural para-
meters).

Strue ture Na(K6 NavRb6 NavCs& KVCs 6 RbYCs 6

K7Cs6
Co7Mo6

A 6B~

K,cs,
CovMo6

A. 6BV

845
1090
1660

—2.1
—1.9
—1.7

1870
2150
2411

—3.6
—3.0
—3.1

3430
3940
3600

—9.0
—8.1
-9.9

41
230
260

2.5
2.7
2.9

150
466
350

—0.8
—0.1
—1.5

-120
130

75

—0.2
0.5

-0.2
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TABLE VII. Crystallographic description and Ewald coefficients for the A13Zr4 structure
(see Table I for notation).

Space group I' 6- C3~I,A13Zr4 type
Atomic positions:
3 Al atoms in (j), x = 3, y = 6,.
2 Zr{1) atoms in (h), z= &,

. 1 Zr(2) in (f); 1 Zr(3) in (b).
Axial ratio: c/a=1
Ewald coefficients:
Ideal structure —0.449 350 -0.544 329
&= 0.275 -0.457 412
c/c =0.975

-0.554 828

-0.777 983

—0,765 164

-1.771 662

-1.777 404

whether the latter structure (made up by repeated
0-stacking) can exist in binary alkali metal sys-
tems. In Table VG we summarize the crystallo-
graphic information and the Ewald-coefficients
for the Al3Zr4 lattice. There is an appreciable
difference between the ideal and the electro-
statically most favorable structure: quite analo-
gously to the K,Cs, structure, the electrostatic
energy prefers Zr(1) atoms (they correspond to
the Cs(4) atoms) which are closer together than
in the ideal structure. Taking the orthogonaliza-
tion holes into account (via the effective valences),
the structural parameters are modified to
z =0.272 and c/a =0.975, a full calculation yields
z =0.240 and c/a =0.98 for K,Cs, at the zero-
pressure volume. Again the high symmetry of
the ideal structure is stabilized only by the inter-
play of ionic and electronic forces. The enthalpy
of formation is always positive: K,Rb~: hH =200
cal./g. atom, K,Cs, : BH= 600 cal/g. atom, and

Rb, Cs~: b, H = 90 cal/g. atom. No intermetallic
compound with this stoichiometry is predicted to
exist in the alkali-metal systems.

constants and the enthalpy of formation for ran-
dom alloys and for different ordered intermetallic
compounds between alkali metals. For the dis-
ordered alloys, our calculation predicts an ideal-
solution behavior, the enthalpies of mixing obey-
ing a Hume-Rothery 15% rule if plotted against
the ratio of the atomic radii of the components.

The crystal structures of the intermetallic com-
pounds are described with very good accuracy in
terms of a delicate balance between electrostatic
and electronic terms. The redistribution of the
valence-electron density due to orthogonalization
effects (taken into account via the appropriately
calculated concentration- and volume-dependent
effective valences) plays an important role in

determining the crystal structure. The interplay
between Coulomb and band-structure forces is
also demonstrated by the shape of the interionic
pair potentials in relation to the interionic dis-
tances in the compounds.

The calculated enthalpies of formation are —as
far as comparison with experimental data is pos-
sible —of surprisingly good accuracy. The theory

IX. CONCLUSIONS

We have presented a first-principles calculation
of the crystal structure, the equilibrium lattice

1-
lK
E o

7Cs6
K-K
K-Cs
Cs-Cs

x'
O

200—

oEK
o lQQ
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0
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Q ej0~ —- 100-
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-200-
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1.1 1.2

RADIUS RATIO
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FIG. 9. Effective interionic pair potentials in K~Cs6.
The arrows indicate interatomic distances occuring in
the observed K&Cs6 structure.

FIG. 10. Enthalpies of formation of intermetallic
compounds against the ratio of the atomic radii of the
components. 4 Laves phase C14 (ideal structural param-
eters), 4 Laves phase &14 (calculated structural param-
eters), 0 K&Cse structure (observed structural param-
eters), ~ K7Cs6 structure (calculated structural param-
eters).
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verifies successfully the existence of the com-
pounds Na, K (up to the melting point) and K,Cs
and K,Cs, (at lower temperatures only). The pos-
sible existence of similar intermetallic phases in
the Rb-Cs system is predicted at very low tem-
perature (below 90 'K). In this region, compound
formation is possibly hindered by the low mobility.
Our theory fails to describe the Laves phase
Na, Cs. Evidence is given that Cs should be trea-
ted as a transition metal in this phase.

The physical principle governing compound
formation is shown to be close packing. This is
illustrated in Fig. 10, where we have plotted the
enthalpies of formation against the radius ratio.
Here we have to remember that our calculation
is entirely from first-principles and that, for the
reason outlined above, our calculated radius ratio
is slightly different from the observed one. In
fact, the enthalpy of formation K,Cs, is slightly
too low compared to that of K,Cs. At the ob-
served radius ratio of K-Cs however, the condi-
tions for the coexistence of both phases are op-

timally fulf illed.
The principle of close-packing should not be

interpreted in terms of hard spheres, but more
physically in terms of the soft interionic pair po-
tentials presented here. An intermetallic phase is
formed when the interatomic distances given by
its structure are compatible with the minima of
the pair potentials.

The interionic potentials in the alloy are quite
different from those in the pure metals. The suc-
cess of our calculation underlines the usefulness
of the concept of pseudopotential optimization for
describing even highly complex intermetallic
phases of simple metals.
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