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Quantum-limit magnetoresistance for acoustic-phonon scattering
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The behavior of strong-field magnetoresistance is discussed under conditions where acoustic-phonon scattering
in the high-temperature limit is considered to be the dominant mechanism of scattering. The
magnetoresistance, both in the transverse and the longitudinal configuration, is found to increase linearly with
magnetic field in the quantum limit.

Transverse and longitudinal magnetoresistance
are the two most investigated properties of semi-
conductors in which the effect of the magnetic field
on electronic transport properties is exhibited.
While the Boltzmann transport equation has been
adequate for description of longitudinal magneto-
resistance, the theoretical analysis of transverse
magnetoresistance, especially at high magnetic
fields, has continued to puzzle solid-state physi-
cists for some time. ' The electronic motion is
well known to be quantized at high magnetic fields.
The effects of this quantization on the galvano-
magnetic properties should be most pronounced at
low temperatures and high fields, such that &,7
» l and her, » k~T, where a, =eB(m,*c is the cy- '

clotron frequency of an electron with effective
mass m* in a magnetic field B, 7 is the relaxation
time, and T is the temperature of the sample. The
condition under which k~, » k~T has been called'
the "quantum limit. "

A transport theory which was general enough to
include quantum effects in crossed electric and
magnetic fields was first developed by Adams and
Holstein' and extended by other workers in the
field. A review of these early works has been
given by Kubo et al. ' and by Both and Argyres. '
An exposition of these theories, especially those
applicable to the magnetophonon resonance, has
recently been given by Peterson. ' The theoretical
results predict the temperature and magnetic
field dependence of the transverse magnetoresist-
ance" and longitudinal magnetoresistance4 for
various scattering mechanisms. A divergence in
the transverse magnetoresistance was encountered,
which was removed by the assumed existence of
several cutoff mechanisms such as collision
broadening, ' phonon drag, ' inelasticity, "non-

Born scattering, and classical cutoff. ~'
For acoustic-phonon scattering, these theories

predicted a quadratic dependence of the transverse
magnetoresistance on the magnetic field." In con-
trast, various experimental investigations of the
transverse magnetoresistance in a variety of semi-
conducting materials' " indicated an approximate
linear dependence on magnetic field. Numerous
attempts were made to resolve the contradiction
between theory and experiment. Herring" postu-
lated that the existence of inhomogeneities would
give rise to a linear field dependence of the trans-
verse magnetoresistance. On the other hand, ex-
perimental results obtained by various workers
lead to the conclusion that there is very little cor-
relation between the existence of inhomogeneities
and the field dependence of the magnetoresist-
ance. " "

Recently, one of us (V. K. A. ) has developed a
theory" "which, by extending the scatteririg dy-
namics beyond the strict Born approximation,
predicts a linear magnetoresistance for the case
of both acoustic- and optic-phonon scattering. ""
This theory also has the feature-that it yields the
classical results for the transverse magnetore-
sistance in the low-field limit. The above-men-
tioned results for the linear magnetic field depen-
dence of the high-field magnetoresistance were
obtained by numerical methods. Simple analytic
expressions of these results, valid in the quantum
limit, may be of interest to experimentalists, and
thus are derived here.

For the case where acoustic-phonon scattering
is taken as elastic, we have the following compo-
nents of the conductivity tensor" in the quantum
limit (only the n =0 level being occupied under the
condition k~. » k~T):
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The transverse magnetoresistance is given by
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and the longitudinal magnetoresistance by

Here F-, is the deformation potential cog.stant, p is
the density of the semiconducting material, u is
the velocity of sound, and n, is the carrier density.
The expressions (1)-(3) can be further simplified,
with the result
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is the zero-field average relaxation time for elec-
tron-acoustic-phonon scattering, and Z, (x) and
erfc(x) are the exponential integral" and comple-
mentary error function, " respectively:
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X
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2 32
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(14)

Z, (x)= -lnx -y, (16)

Under most conditions 2k/3rr'/'krrT7p is much
less than unity. For example at 77 K with param-
eters for InSb, "2K/331'/2ksTrp=1. 466&&10 ' if the
deformation-potential constant E, is set equal to
V.2 eV, a value quoted by Rode." In this case
small-argument forms of the exponential integral
and the complementary error function can be used:

where po, the zero-field resistivity, is given by"

pp = m "/n, e'jp. - (22)

These expressions predict a linear dependence
of the magnetoresistance, transverse or longi-
tudinal, on the magnetic field and an inverse de-
pendence on temperature T. The experimental re-
sults" "support this behavior in the quantum
limit. For example, the ratio p„„kr)T/ppkp3, at
7'I'K according to Eq. (20) is 3.6 for parameters
appropriate to n-InSb" (including" F. , =7.2 eV).
For relatively pure materials, when impurity
scattering could be neglected, the experimental
results" tend to confirm this prediction in the =

quantum limit.
For the longitudinal case, experimental data of

Sladek give an almost constant value of p„/p, = —',

in the quantum limit. But the experimental results
of Haslett and Love" do show a linear dependence.
More experimental work is therefore needed. The
transverse magnetoresistance is always larger
than unity; the ratio p,„/p„ is given by

(23)

which for InSb at 7V'K is 10.9.
It is also worth noting that the logarithmic cutoff

comes in naturally in this theory without having to
be brought in artificially. Here, the cutoff energy
is independent of magnetic field and arises from
the so-called classical cutoff, ' but has a form
similar to that obtained by considering collision
broadening. Essentially because of the divergence
of the reciprocal of the electron relaxation time
for low-energy electrons, there is no contribution
to o, from electrons for which pr, v(e) &1, where e.

is the energy of an electron. Since in the quantum
limit the electron relaxation time varies inversely
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P, 3m ks T ku/2X (24)

with the magnetic field, the above condition is
satisfied for electrons of a particular energy which
is independent of magnetic field as long as 8+,
» k~T.

Different cutoff mechanisms would just alter the
argument of the logarithmic term, and since a
logarithmic dependence on the field would be dom-
inated by the linear dependence, we would still ob-
tain a linear magnetoresistance. For example,
inelasticity of the acoustic-phonon scattering
could be important at extremely low temperatures
and may provide a suitable cutoff. Actually, a
theory has been developed" in which the effect of
inelastic acoustic-phonon scattering has been ap-
proximately taken into account by replacing the
energy of the phonon occurring in the arguments
of the energy-conserving 5 functions by ku/A:.
With the use of the approximations s» 1, su/4u,
«1, and ku&u, /A.'.h, » 1 (this is approximately 10"
at 10 ko), we obtain the result for the magnetore-
sistance in that case to be

The expression for the transverse magnetoresis-
tance using this approximation for inelastic acous-
tic-phonon scattering is almost identical to that for
elastic acoustic-phonon scattering, Eq. (20), ex-
cept that the cutoff energy in the logarithmic term
is different. However, since the linear term will
dominate the logarithmic term, the magnetoresis-
tance will still be linear in its dependence on the
magnetic field. The effect of inelasticities, how-
ever, will reduce the coefficient of the linear term
when the inelastic cutoff dominates the so-called
classical cutoff. This also corresponds to the re-
sults of the exact numerical calculation. "
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