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Thermal resistivity of dielectric crystals due to four-phonon processes and optical modes~
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The interaction rate of four-phonon processes at high temperatures is derived in terms of the Gruneisen
constant an/ its dilational derivative, The interaction arises in part from quartic anharmonicities and in part
from cubic anharmonicities to second order. The four-phonon relaxation rate varies as the square of the
frequency and the square of the temperature. It is compared to the three-phonon relaxation rate and found to
be weaker by at least a factor 30 at 1000 K. The anharmonic interaction between two acoustic phonons and
one optical phonon does not only limit the lifetime of optical phonons; but also contributes to the relaxation
rate of acoustic modes in thermal conduction. It is shown that this relaxation rate is similar in magnitude and
temperature dependence to the relaxation rate due to processes involving three acoustic phonons. The
frequency dependence is also similar except at low frequencies, since the interaction is forbidden at lowest

frequencies. Neither of the interactions considered here can quantitatively explain the observation that the
thermal resistance of many dielectric crystals at high temperatures varies more rapidly than linearly with

temperature.

I. INTRODUCTION

The theories of Debye' and Peierls' predict the
phonon mean free path limited by cubic anharmon-
icities to vpry inversely as the absolute .tempera-
ture T at sufficiently high temperatures, so that
the thermal conductivity K should also vary as
1/T. This is approximately true, but it is often
observers that K varies more rapidly than 1/T at
high temperature, so that the thermal resistivity
W=1/K may be expressed as

W=aT+bT2,

where the quadratic term is appreciable. ' The
linear term is ascribed to three-phonon processes,
and it seems natural to ascribe the quadratic term
to four- phonon processes. ' Four-phonon processes
were first discussed by Pomeranchuk, ' who in-
voked them not as a direct source of thermal re-
sistance, but to eliminate a divergence in the
thermal-conductivity integral due to low-frequency
longitudinal waves. He predicts K to vary more
rapidly than 1/T, though not of the same form as
Eq. (1). Equation (1) implies that four-phonon
processes are strong enough to appreciably affect
the mean free path of all phonor. s.

We shall estimate the strength of four-phonon
processes by comparing them to the strength of
the three-phonon processes. It will be seen that
four-phonon processes are much weaker than
three-phonon processes. Thus if one disregards
the, special role of longitudina, l low-frequency
phonons and assumes that the thermal conductivity
is governed by the mean free path o'~ the high-fre-
quency modes, one must conclude that the term
bT' in (1) should be much smaller than observed,

u(x) = (1/~G) ea(q)e "'", (2)

where & is a unit vector in the direction of pola, ri-
zation, G is the number of unit cells in the crystal,
and a(q) a time-dependent displacement amplitude,
conta', ining the factor e'"'. The unperturbed Ham-
iltonian for each normal mode is

H '(q) = —,'M(u'[a~(q)a(q) + a(q)a*(q) J . (3)

i.e., less than 3%%uq of the total around 1000 K, in-
stead of about 20%%uq as typically observed. '

Another interaction which might lead to a varia-
tion of Wwith T more rapid than linear is the inter-
action of two acoustic modes with an. optical mode.
This process, which has been considered qualita-
tively, will be estimated quantitatively, relating
the mean free path of the acoustic mode to the life-
time of the optical mode. ' It will be seen that this
process does not lead to a term in the thermal
resistivity which would explain the observed rapid
variation of W with T at high temperatures.

The observed rapid variation of the thermal re-
sistivity with temperature can thus not be ascr ibed
to either interaction. It has been shown that it is
due in part to thermal expans'ion, and in the case
of Pingle crystals to the special role of low-fre-
quency longitudinal phonons. ' The role of thermal
expansion was first considered by Ranninger. '

II. ANHARMONIC PERTURBATIONS

Progressive lattice waves form the normal
modes of a regular crystal only if the lattice forces
are completely ha, rmonic, i.e., if the potential
energy is quadratic in the displacements or
strains. ' The displacement of an atom at site x
due to a lattice wave of wave vector q may be
written
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The lattice waves are quantized: a and a* are
annihilation and creation operators of the equival-
ent harmonic oscillators. Their nonvanishing
matrix elements are

[a(q)]„„, =(n/M~)'~'N'~',

[a*(q)]„„„=(8/M&u)' '(N+1)~~',
(4)

where N is the number of phonons in the mode.
The anharmonic terms in the potential energy

give rise to higher-order terms in the Hamilton-
ian. Terms which are cubic and quartic in the dis-
placements are of the form

H„, = g c,(q, q', q")a(q)a(q')a*(q") (5)

&& a(q) a(q')a*(q")a*(q"') .
These give rise, in first-order perturba, tion, to
three-phonon and four-phonon processes, re-
spectively.

Because the anharmonic lattice forces reside in
linkages which are uniformly distributed throughout
the crystal except for the modulation of the basic
crystal structure, the coefficients c, ard c4 vanish
unless they satisfy the interferenee conditions

q+q' —q" —q"' =b, (7)

where b is zero or an inverse lattice vector. Real
processes must also satisfy frequency or energy
conservation, i.e.,

(8)

For three-phonon processes, q"' and (d" are omit-
ted in (7) and (8). The terms in (5) and (6) de-
scribe processes where phonons q and q' are on
the same side of the balance equation. By invert-
ing the role of a and a* and changing the sign of the
wave vector and frequency in (7) and (8), other
processes ean be described similarly. '

The rate of change of the phonon occupation num-
ber N of mode q due to three-phonon and four-
phonon processes can be obtained in terms of the
coefficients g, and c4 and becomes

dN 5 2 1 ]. —cos g(gg

Vg

& [(N+ I)(¹+1)N"-NN'(N" +1)], (9)

f =2(h/M)' P ~c, ~'(&red'~"ur") '
b

dÃ
df (4) V

x — [(N+ 1)(N' + 1)N"N"'

-NN'(N" + l)(N"'+1)] . (10)

ur&u'=~, (o,'[I —2ya+(y' —y')cP — . ], (13)

where it is assumed, for simplicity, that y and y'

The resonance factor ensures that the principal
contributions in the summation arise from process-
es for which &+= 0, apd that the change in N is
linear in t. In (9), q" is given by (7), though its
polarization is not determined; similarly q" is
determined in (10). In (9), the restriction b&u =0,
together with (7), restrict q' to lie on a surface in
wave-vector space for each value of b, and on an-
other surface if the role of q' in the balance equa-
tion is reversed. In (10), q" can take any value.
For each value of q», q' will again lie on a sur-
face in q space; there will be one such surface
for each b and for each sign of q' and q" in the bal-
ance equation.

To find the interaction rates, one must know the
coefficients c, and c4, and one has to perform the
summations over the interacting phonons, subject
to the restrictions (7) and (8).

The coefficients c, and c4 are related to the an-
harmonic terms of the potential energy of the link-
ages between atoms. The linkages have positions
in the lattice, and c, can be expressed in terms Of

the bth Fourier coefficient of the cubic terms of the
potential energy, as first outlined by Peierls. '
Similarly one can relate c4 to the bth Fourier co-
efficient of the quartic terms of the potential energy
of the linkages. However, we usually lack the de-
tailed information about the interatomic forces
which would be required for that procedure. Since
the anharmonicities also manifest themselves in
the equation of state, in particular the thermal ex-
pansion, it is advantageous to express c, and c4 in
terms of Gruneisen coefficients.

In the Qruneisen approximation, the frequency
of a lattice mode of wave vector q is changed from
&u, (q) to ur(q) if the crystal undergoes a dilatation
6, so that

~(q) =~.(q)[l-r(q)&-kr'(q)&'-" ],
where y(q) and y'(q) are the first and second
Grugeisen coefficients, "generally functions of
mode q, and y' is the derivative y with respect to

The coefficients y(q) enter into the expression
for thermal expansion.

One can write (3) in the form

H (q) = —P M&our'a*(q')a(q)(Z e') exp[i(q —q') x],
R, tl' (12)

where the summation over q' also includes the three
polarizations. A change in H' due to a dilatation
6 arises from the change in the factor e~'. Now

(u(o' = (uou),'(1 —[y(q) + y(q')]a

+ [r(q)r(q') —-' r'(q) —-' r'(q')]&'-
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are the same for all modes.
While the summation in (12) rejects all terms

except those for which q' =q and z' =c, this is no
longer the case when ~ is not uniform but a function
of position. Substituting for b, the strain of a third
lattice wave q', and for 42 the strains of a pair
of lattice waves q" and q"', we obtain. nondiagonal
terms in the perturbation Hamiltonian, which can
be identified with the perturbation terms of ex-
pressions (5) and (6).

One thus obtains, as shown in Ref. 9,

c, = 2M(3G) ' ~'(y/v) &u&d'&d", (14)

since

a(x) = (G) '~' Q (e" q")e &~" ~a(q"),

and since one may replace (Z" q") by &"/(vvY),
1/vY being the root-mean-square value of the
cosine of a random angle. Similarly, since

b,'(X) = (G) ' Q (P' q')(e"' q")a*(q"')a(q")
~ q III

(15)

one obtains

x exp[ix (q' —q"')], (16)

(3G)-&v 2(y 2 y/) ~&dl zll +III (17)

Both (14) and (17) are only rough approximations,
which indicate the order of magnitude of the inter-
action matrix elements and their dependence on
other parameters, rather than reliable numerical
values. More significantly, however they relate
the magnitudes of e3 and g4, since similar Bpproxi-
mations were made to obtain them.

III. FOUR-PHONON PROCESSES

The rate of change of the phonon occupation num-
ber of a given mode q can be obtained from (9)
and (10). The major problem is the sum over the
participating modes. This requires knowledge of
the locus of q' in (9), and the locus of q' for each
value of q" in (10). Rather'than finding each inter-
action rate separately', we shall aim to find the re-
lation between them.

For simplicity we shall confine ourselves to the
high-temperature limit, when N'=kT/h&d, etc. ,
where A is the Boltzmann constant. We assume
that modes q', iP', and q"' are in thermal equili-
brium; only the mode Q departs from its equilibri-
um occupation by an amount n. The relaxation
rate of mode q is defined as

1/r =-(1/n)dN/dt. (18)

ln (9), the factor in square brackets —the occupa-
tion number factor —becomes

[(N+ 1)(N'+ 1)N" N(N'+ 1)¹]—

since v =&"—~'. Similarly one obtains for the
occupation number factor in (10),

[(N+ 1)(N'+ 1)¹'¹"—NN'(N" +1)(¹"+ 1)]

n[N-'(¹'+¹")—N"N"'J = n(k-T/h)'&d/&'(o" &a)~.

(2o)

For three-phonon processes one substitutes (14)
and (19) into (9), and expresses the sum over q'
as an integration over d&u, and an integration over
the surface Az =0 in q' space. Approximating
that surface by a sphere, of radius —,

'
~
q+ b

~

=-,' b,
as done by Roufosse and Klemens, "one obtains
for a simple lattice

1/r&,
&

=4m —y'(kT/Mv')uP, (21)

where a' is the atomic volume.
One proceeds similarly to get the four-phonon

relaxation rate by substituting (17) and (20) into
(10), so that

(4)

a6 12&~2 d 3~II d2
(2v)' v 9v'

„25 AT
a

(22)

The integration over g" is over the entire zone,
while the integration over q' is over the surface
determined by 6& =0. This surface depends on
q". For every value of q" there is a set of solu-
tions or surface which can be brought into one-to-
one correspondence with the solutions for q' in the
three-phonon interaction for a given phonon q,
except that now the phonon (q, &u} is replaced by a
hypothetical phonon of wave vector g —g" and fre-
quency (d - e'. Analogously to the approximation
of Ref. (11)we replace the locus of ip by a sphere
of radius —,

' ~b+q —q"
~

= —,
' b. We thus obtain from

(22),

(4)

2 2 2
A

18 M v v
(23}

q+q'- q,.-q" +g" +b, (24)

where g, =/+|1'. Other such processes are ob-
tained by permuting q', iP', q"', and b in (24),
each yielding a different intermediate state phonon

q, . The intermediate state has an energy deficit
-@A~„where

Before accepting Eq. (23), one must also con-
sider four-phonon processes which arise by three-
phonon processes to second order. For every
group of four phonons which satisfy Eqs. (7) and
(8), there are several cases of pairs of successive
three-phonon processes of the type

= -n(N' N") = -n(kT/h) &d/u'—e", (19) 6(d) = (0]—(0 —(d I (24')
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For each q,. there are two intermediate states of
opposite values of 6(d, In one case the reaction
proceeds as in (24), in the other the second stage
preceeds the first and a phonon q,. is fir st "borrow-
ed" and then "restored. " The effective perturba-
tion matrix to second order is the product of the
two first-order elements divided by 56(d, , summed
over all intermediate states. " The effective mat-
rix element for four-phonon processes (24) is thus
given by

~II ~II'
(» «I «) 6 c2(%&PC ig j (25)~4 ~ ~3 qp q p qf

It is independent of the occupation number of mode

q, :N,. cancels when one sums over the two inter-
mediate states for each q, The summation over
(25) is for the various j,. obtained by permuting the
other modes and b in (24). Comparing with (17),

(d] 2y
4 4 g~ y2 yIi

In each four-phonon group there is usually only
one major contributor to c~, namely the one for
which A~,. is least. Also, for each such group the
values of 6(d,. can be either positive or negative.
Thus, for the total interaction rate, which is pro-
portional to

~
c4+ c4'

~

', interference terms between
c, and c', will tend to average out, and ~c, ~' of
equation (17) should be replaced by

(26)

1 4 Iz zI ~ kT a= [5r +(r') —2»']—
(&) 18M v

(28)

There are, of course, notable exceptions. When
one or two of the participating modes is much
smaller than the other modes, A(d,. is comparable
to the lowest frequency while co; is approximately
equal to the highest frequency. In particular, if
~ is much less than a'-&u"-u", the factor &o,/
ne,. in (26) becomes of order e'/&. Since for the
important interactions hw' -kT, (28) must then be
enhanced by a factor of order (kT/b&)2. This is
the case of longitudinal low-frequency phonons
discussed by Pomeranchuk, ' and these processes
remove the divergence in the thermal conductivity

~c +c'~2= ~c ~' ' +- r r (27)4 4 4 ~~ (y2 yI)2

where A~, is the lowest value of the various inter-
mediate states. When Ae, =0, the theory breaks
down, because the four-phonon process is really
a sequence of two real three-phonon processes.
These eases must be excluded from the summa-
tion." However, in the vast majority of cases,
4(d,. is comparable to the frequency of the lowest
participating mode, so that (u&,./av, .) = 1. One thus
replaces the factor (y' —y')' in (28) by 5y'+(y')'
—2y'y', so thai

11m~@'~, T= —5y'+—
() () TQ

(29)

where T,=M62/12 is a characteristic temperature
of the material. Note that T/T, is twice the mean-
square thermal strain of an atomic volume element
a'. Typical values of T, of hard solids range from
30000 to 100000 K.

One concludes that four-phonon processes must
be much weaker than three-phonon processes at
all temperatures, even in solids with high melting
temperatures. Typical values of v/(V2T, ) would
be 10 ' K. Thomsen" has discussed the pressure
dependence of the Gruneisen constant y; he finds
y' is positive, i.e., of the same sign as y, and
typically comparable to it. In a typical case when
y=y' =2, 5y'+(y'/y)' —2y' = 5y'=20. Thus, even

To is as low as 30 000 K, the ratio of the fou r-
phonon to the three-phonon relaxation rates is only
3 x 10 ' at 1000 K. In most eases, however, T, is
larger and one would expect the ratio to be even
smaller.

IV. INTERACTION WITH OPTICAL MODES

Four-phonon processes would yield a component
bT' in the thermal resistivity (1), but we have
seen that this component is too small, by roughly
a factor 10, to account for the observations. ' An-
other process which would lead to a variation of
W with T more rapid than linear, at least over
some range of temperatures, is the cubic anhar-
monic interaction involving two acoustic modes
and an optical mode. It is thus of interest to esti-
mate its strength and temperature dependence.

One can apply Eq. (9) to the case when one of the
participating modes is an optical mode, except
that c, is no longer given by (14), since it has been
assumed in its derivation that one of the partici-
pating modes is of low frequency, so that its effect
on the Hamiltonian can be compared to the effect
of a uniform strain. Instead, one considers the
effect of an internal deformation of each unit cell
on the acoustic mode frequencies, matching this

due to those phonons. In this case, but in this case
alone, are the three-phonon processes to second
order more important, by an order of magnitude,
than the first-order quartic anharmonic processes.
The contributions due to longitudinal phonons are
thus smaller than calculated in Pomeranchuk's
first paper, and make a contribution to ihe thermal
conductivity proportional to T '~'.

However, the relaxation rate of thermal frequen-
cy phonons due to four-phonon processes of both
types may be estimated by (28), and the term bT'
in Eq. (1) may be compared to the term aT by
comparing (28) to (21). The ratio of the two relaxa-
tion rates is
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internal deformation to the displacement field of
the optical mode, as was done in Ref. (6) to obtain

c, =2M(3G) 'i' —&uv'&u", (30)y 2 n P x/2

v ~3 n+p

where n and P are two effective force constants,
such that at the zone boundary

&ac/~opt =pin ~

If the mode (q, &u) is the optical mode and q', q"
are acoustic modes, then one obtains from (9)
and (30) the following expression for the relaxation
rate of the optical mode q =0, summing over all
q' such that q" = —q' and co' = ~" = —,

' co:

(d opt MV Q + (dD

x sr&—u'(N' N-) .
v

In the limit of high temperatures, when

N' N, -= (kr/@(o, ) (u/(u',

Eq. (36) becomes

pp$ Q + (dg) V M V

(37)

1 25 2 h&u 4 n-P
7 7f Mv' 3 n+p (32)

Q =Ga'(2w) ' (q')'d(o',
" 4m

V
ql

one obtains

1 32m25(uo a s(qi)2

r ((o),„, 3Mv' (2m)
'

2 2

3 n+

(34)

(35)

Since q' =(vo —ar)/v =qv(&u, —&u)/&ov, where arv =vqD
is the Debye frequency, and since a'qD =6m', one
can rewrite (35) as

This relaxation rate is related to the linewidth
of the optical mode q =0 in the first-order Raman
spectrum. Both the magnitude and temperature
dependence of observed linewidth are in accord
wj.th this .theory

The same theory can now be used to obtain the
interaction rate of an acoustic mode q interacting
with another acoustic mode q' and an optic mode
q". For simplicity let us assume that all optical
modes q" have the same frequency co„ i.e., that
the optical branch is completely flat. For a given
mode q, the locus of q' is given by the condition
that +' = &, —u, that is a sphere for a simple
Debye model. In the presence of a temperature
gradient, the deviation of N' from equilibrium
will vanish in the average. The optical mode will
also be at equilibrium because of its vanishing
group velocity and because it has the shortest re-
laxation time of all the modes. The occupation
number factor in (9) thus becomes

[(N + 1)(¹+ 1)N" NN'(N" +—I)] = —e(¹N, ), -
(33)

where N, is the equilibrium occupation of the op-
tical mode, and¹ that of the other acoustic mode,
of frequency &u' =&so —u&. Substituting (30) into (9)
and noting that

and the relaxation rate is thus comparable to that
due to the interaction between acoustic modes,
given by (21), but the frequency dependence is not
quite the same at higher frequencies. The most
important difference, however, is that the interac-
tion cannot occur at all unless & exceeds a mini-
mum value of (do- uL)., or more generally ~0
where m, is the highest frequency of the acoustic
branch.

The temperature dependence of the relaxation
rate is governed by the factor (N' No) in -(36').

At low temperatures this behaves essentially as
e-hMllhT md thus va les as the Umklapp rela-
ation rate involving acoustic modes only. The in-
teractions involving an optical mode have thus
essentially the same temperature dependence both
at low and at high temperatures as the interactions
involving only acoustic modes.

That the relaxation rate (38) has the same tem-
perature dependence and almost the same fre-
quency dependence as the relaxation rate (21) due
to acoustic modes only is in accord with the con-
clusions of Roufosse and Klemens u who treated
the same interactions on the extended zone picture
and found the relaxation rate, summed over all
interactions, to vary roughly as &2T.

However, this conclusion is at variance with
numerical calculations of phonon lifetimes for
KCl and NaC1 performed by Logachev and Yurev, "
and including interactions between acoustic and
optical modes. High-frequency acoustic modes
were found not to interact with optical modes, so
that their lifetimes were relatively longer. This
is in consequence of the vanishing of appr'opriate
U-process matrix elements and the authors cau-
tion that this may be a special feature of that
particular lattice. Qualitative arguments were
advanced"'" to show how the temperature depen-
dence of the thermal conductivity of germanium,
silicon and various alkali halides might be ex-
plained in terms of these calculations. " It seems
difficult to intqrcompare or reconcile their work
with ours.
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V. SUMMARY

An expression has been obtained for the relax-
ation rate due to four-phonon processes; its fre-
quency and temperature dependence is given by
(28); this is the same form as previously obtained
by Pomeranchuk. 4 The magnitude of the interac-
tion rate is much smaller than that due to three-
phonon processes, even at the highest tempera-
tures, so that these processes lead to a T' compo-
nent in the thermal resistivity which is much

smaller than observed. We have also obtained an
expression for the relaxation rate of acoustic
modes due to three-phonon interactions involving
an optical mode. This relaxation rate is compar-
able, both in magnitude and temperature depen-
dence, to the ordinary relaxation rate involving
acoustic phonons only. Neither of these two pro-
cesses will explain the temperature variation of
the thermal resistance at high temperatures, which
is found to be more rapid than linear.
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