
PHYSICAL REVIE% B VOLUME 15, NUMBER 12 15 J UNE 1977
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The spectral density A(Q, E) is calculated exactly for a one-dimensional model of an amorphous solid.

The model contains an adjustable short-range order parameter u, and A(Q, E) is calculated for several

values of cl.. The harmonic-oscillator Hamiltonian appropriate to lattice vibrations and a tight-binding

Hamiltonian describing in a simplified way either electrons or spin waves are studied for nearest-neighbor

interactions. The calculated spectral densities are compared with the recent neutron-scattering measurements

of Mook, Wakabayashi, and Pan.

I. INTRODUCTION

The study of elementary excitations in disordered
systems has .eceived considerable attention in
the last several years. Applications' ' of the co-
herent-potential approximation (CPA) of Soven'
have shown that the CPA provides an acceptable
level of understanding of the properties of excita-
tions in substitutionally disordered binary alloys.
In structurally disordered systems such as liquid
metals and amorphous solids, the necessity to
include the effects of short-range correlations in
the atomic positions introduces added complexity.
While there have been several attempts to obtain
a CPA-level theory which adequately treats short-
range order, none has achieved complete success.
Peterson, Schwartz, and Butler (PSB)' have re-
cently compared exact calculations of the elec-
tronic integrated density of states for a one-di-
mensional liquid metal to the results of three ap-
proximate theories. They found that neither the
rion-self -consistent quasic rystalline approximation
of I,ax' nor the self-consistent approximations of
Schwartz and Ehrenreich, ' and Gyorffy' (as ex-
tended by Korringa and Mills') agreed with the
exact results in the strong-scattering regime. A
recent analysis by Olson" has shown that the An-
derson-McMillan" prescription is also unsatis-
factory. Other attempts such as the effective
medium approximation of Both''-have not been
thoroughly tested and appear quite complicated to
apply to even a simple model.

In essentially all of this work attention has been
focused on calculating either the density of states
or the integrated density of states. " In this paper,
we present a numerical investigation of the effects
of short-range order on the spectral density func-
tion A(Q, E) for excitations in a structurally dis-

ordered solid. The spectral density is calculated
exactly for one-dimensional models described by
harmonic-oscillator and tight-binding Hamilton-
ians. The method of calculation, the model, and
the Hamiltonians considered will be discussed in
detail in Sec. II. In Sec. III, the results of the cal-
culation will be presented. Section IV provides a
brief discussion of the experimental implications
of these calculations which will serve to explain
some of the motivation for this study. A summary
and discussion of other possible applications of
our methods and results appear in Sec. V.

II. NUMERICAL ASPECTS

The spectral density A(Q, E) is defined by

A(Q, E) =-(Ijm) Imc(Q, E),

where G(Q, E) is the Fourier transform in space
and time of the single-particle Green's function.
For constant E, the ordered-system spectral
density consists of 6 functions situated at the
values Q(E) obtained from the appropriate disper-
sion relation. In calculating the spectral density
for a disordered system, one seeks the configura-
tion averaged quantity (A(Q, E)) where (~ ~ ~ ) denotes
an average over all possible configurations in the
statistical ensemble. In what follows, the aver-
aging brackets will be omitted and A(Q, E) will
refer to the configuration-averaged quantity unless
otherwise noted.

The statistical model chosen for this study is
based upon the so-called "hard-rod" distribution
function for the classical one-dimensional fluid. '~

This model has been used recently in the work of
PSB' mentioned above. Ã line segments of length
a are distributed on a line of length Nl, the only
condition on the distribution being that they cannot
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M„„=M,exp(l —d„„/l) . (4)

By choosing M, = -3, the ordered system (e( =1)
dispersion relation becomes

E(Q) = 2sin'(-,'Q) . (5)

The spectral density for this Hamiltonian takes
the form

E(Q, E)=(im —(I leep(-(Qx„)P, (x)l'e(E-E;))

(6)

where f, and E& a.re the jth eigenfunction and
eigenvalue of the Hamiltonian, and x„ is the equi-
librium position of site n. To calculate A(Q, E) we.
follow the formalism developed by Halperin. " Let
us introduce the functions y(n; E) and Q(n; E) such
that

y(n; E) =M„y(n -1;E)/y(n; E) .
The function Q(n; E) is defined for each configura-
tion in the ensemble and each. energy E to be the
unique solution of the equation

(K„-E)y(n;E)+M„y(n 1;E)+M„-„y(n+1;E)=O,

(6)

overlap. The atomic positions in the hard-rod
model are the centers of these line segments. If
o. =a/l is equal to one, the system is periodic with
lattice constant l, while the totally random or
Poisson distribution of atoms corresponds to n = 0.
Any intermediate degree of disorder can be ob-
tained by a suitable choice of n. The probability
of finding a nearest-neighbor atom at a distance x
from a given atom is

p(x) =[6(x-a)/(I-a)]e" '"' ' (2)

where 6(x-a) is one for x&a and zero for x&a.
In what follows, the parameter l is set equal to
unity.

The calculation of the spectral densityA(Q, E) is
very much the same for both the tight-binding
system and the vibrational system. We describe
the details for the former below, and point out the
differ|;nces occurring for the latter thereafter.
The tight-binding Hamiltonian is given by

Hg(n) =Z„g(n) +M„g(n —1)+M„„g(n+1), (3)

and is appropriate for a simplified description of
electrons or spin waves. In Eq. (3), g(n) gives the
probability amplitude for finding an excitation at
site n, K„and M„are the diagonal and off-diagonal
matrix elements, respectively. In modeling the
system, we set E„=1for all n and choose for
JM y an exponential depend enc e upon the equi lib-
rium spacing d„„=(x„„-x„) between sites n+ 1
and n,

subject to the conditions

y(1;E) = y. ,

x 6(y„—y(N+ 1;E))) . (12)

The 5 function in Eq. (12) requires that the value
of E for which ~U, (N+ 1;E)~' is evaluated be an
eigenvalue. As the eigenvalues will be very close-
ly spaced in energy and since A(Q, E) cannot de-
pend upon the particular value of y„chosen, we
evaluate A(Q, E) by averaging over a set of values
of y„and Eq. (12) becomes

A(Q, E) =lim (1/N)(~U, (N+I;E) ~') . (l3)

The convergence properties of A. (Q, E) as cal-
culated from Eq. (13) are rather different from
those encountered in calculating a quantity such as
the integrated density of states n(E). In a Monte
Carlo calculation of n(E) for electronic excitations
in a one-dimensional disordered system, for ex-
ample, n(E) can be related to the number of nodes
per unit length of the wave function. " The number
of nodes per unit length is an ergodic quantity and

convergence can be obtained by using a sufficiently
long chain of atoms. In calculating A. (Q, E) from
Eq. (13), however, increasing the number of atoms
in a given chain does not, in general, increase the-

preeision in determining A(Q, E). It ean be shown"
that the mean M( ~ ) and variance V( ~ ~ ) of the
random var'iable A'(Q, E) = (1/N) ~U, (N + 1;E) ~' are
given by

lim M(A'(Q, E)j ~A(Q, E), (14)

lim V(A'(Q, E))Q(: 0, (15)

in general. That is, even for an infinite system
(N-~) the quantity A'(Q, E) is, for each Q and E,
a random variable with unknown distribution func-
tion and mean value A(Q, E). As an example, if
the stochastic process ((()(n; E) were normally dis-
tributed, then A'(Q, E) would be exponentially dis-
tributed with mean value A(Q, E) and variance

y(N + 1;E) = y„,
where y, and y„are arbitrary constants. Upon de-
fining the function

V, (e;E) = g exP(-(Qx„)
n =1

I

x y(n';E}/exp~(-lQx, ) y(n; E),
Eq. (6) can be written in the simplified form

A(Q, E) =Lim (I/N)(~U, (N+I;E) ~'
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A'(Q, E)." The variance can be made to approach
zero for large N by calculating, instead of A(Q. , E),
the average of A(Q, E) over a finite range of Q.
However, the limit N-~ remains difficult to
achieve since the amplitude of the wave function
increases exponentially with ¹"To further re-
duce the variance, we have calcu'. ated our aver-
aged A(Q, E) for 100 statistic~&ly independent
chains (with X = 500) and performed a second aver-
age. Increasing either W or the number of chains
does not appreciably affect the results.

The procedure for calculating the vibrational
system spectral density A(Q, «)) parallels the one
just described. The Hamiltonian is given by

3
0

4

Q
6 8 10

FIG. 1. Spectral density A (Q, co) as a function of Q
for u = 0.50 and e= 0.75 for the vibrational system.
Arrows indicate positions of ordered-system 6 functions.

P„„=P,exp(1 -d„,/I) . (17)

Choosing P, = 1 leads to the ord red-system dis-
persion relation

«)(Q) = 2~sin(Q/2) ~.

The spectral density A(Q, I ) is given by

(18)

where p„and U„are the momentum and displace-
ment operators for the atom of mass rn (set to
unity) at site n. The spring constant P„„couples
the atoms at sites n and n+1, and is assumed to
depend upon d„„according to

denced by the sharpness of the peak in A. (Q, «))

near Q=O. In the "second zone" A. (Q, «)) is no
longer distinguishable as two separate peaks and
appears as a single broad structure shifted toward
higher Q from the ordered-system positions.
Plotted in Fig. 2 are the spectral densities as a
function of Q for o. = 0.85 and four values of fixed

The first peak in A(Q, «)) has been omitted for
each ~ for ease of presentation. The arrows, once
again, represent the positioDs of the oxdered-
system (o. = 1) 5 functions as will be the case in
the remainder of this work. The effect of short-
range order for e = 0.85 is to produce a broadened
version of the ordered-system dispersion of the

where the displacements U,.(n) are solutions of

P„,U;(n+ 1)+P„,U, (n —1) —(2P„—«)', , U,. (n) = 0.
(20)

Performing the same steps which lead to Eq. (13)
reduces the spectral density to the form

A(Q, «)) =- lim —(~U, (N 1;+E) ~'), (21)
~=1.0

O
which differs from Eq. (13) by a factor of 2«I. The
convergence properties of both Eq. (13) and Eq.
(21) are identical and no further discussion is
needed here.

IIl. RESULTS

The spectral density A(Q, «)) for the vibrational
(phonon) system described by Eq. (16) is shown in
Fig. 1 for +=O.V5 and m=0. 50. The positions of
the ordered-system 6 functions are obtained from
Eq. (18) and are indicated by arrows in the figure.
Long-wavelength excitations are rather insensi-
tive to the absence of Long-range ordered as evi-

=0. 1

I

0
I I I I j I I I I l I I I I

I
I I I I

( / I I I

2 4 6 8 10

FIG. 2. Spectral densityA(Q, u) as a function of Q for
&=0&85 and four values of cu for the vibrational system.
Arrows indicate positions of ordered-system 6 functions.
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ordinary phonon excitations. The strong weighting
of the states at small ~ can be understood by com-
parison with the ordered-system spectral density
which is given by"

A(Q, tu) = (1/2(u) 6 (tu —gQ)} —6(tu+ (u(Q)} . (22)

1.0

3
0.5

10

3
5

a = 0.85

0 2 4 6 8 10

Q

The spectral density for a periodic system is
characterized by a weighting factor of cu '. Un-
less the states move considerably in tu- Q space
when a is decreased from unity to 0.85, the v '
dependence will require that A(Q, tu) have strong
weighting for small e. The broadening of the
peaks in A(Q, v) for small &u produces a single
peak in the "second zone" for ~&0.50. In Fig. 3
are the results of the calculation for the same
four values of ~ with 0. reduced to 0, =0.75. Note
that the scale in Fig. 3 has been reduced by a
factor of ten relative to Fig. 2. For n = 0.75, the
features of the spectral density are broader than
those for @=0.85 and are shifted even more
toward higher Q. A(Q, tu) for tu=0. 10 is no longer
the most heavily weighted as was the case for
o. = 0.85. Figures 4 and 5 point out more clearly
the broadening and shifting of the structure in

A(Q, ~) with decreasing a for &u= 0.10 and &u = 0.50,
respectively. In both cases, all vestiges of the
ordered system peaks in the spectral density have
vanished for n = 0.50.

a=1.5

a=1.O

a= 0.75

3
O'0.5-

a=0.50

0 2 4 6 8 10
Q.

0 2 4 6 8 10

Q

FEG. 4. Spectral density A (Q, ~) as a function of Q
for m= 0.10 and three values of cy for the vibrational
system. Arrows indicate positions of ordered-system
6 functions.

The features observed in the spectral density
for the phonon system are very similar to those
of the tight-binding system. Shown in Fig. 6 are
the tight-binding system spectral densities for
n = 0.85 and four values of fixed enex gy. The most
striking difference between Fig. 6 and the equiva-
lent plot for the phonon system (Fig. 2) is the dif-
ference in weighting of A(Q, E) The tu .' depen-
dence of the spectral density is peculiar to the
phonon system and is not a feature of the tight-
binding system. The plots in Fig. 6 indicate that
the states at small E receive diminished weighting
relative to those at larger E in the "second zone. "
As with the phonon system, the dominant effect
of short-range order for a = 0.85 is to produce a
broadened and slightly shifted- version of the or-
dered system dispersion. Upon decreasing n to
0.75 we obtain the spectral densities of Fig. 7.
The scale of Fig. 7 has- been reduced by a factor
of two relative to Fig. 6. The broadening of A(Q, E)
and the shifting of the peaks toward higher Q con-
tinues for n = 0.75. The weighting of the states is

a=O.5 a=0.85

3
0

a=O. 75

0 . 2 4 6 8 10

Q

a=O. l

I ~ I 1 I 1 I ~
1

I I I I
/

I I I I ) I I I I

0 6 8 'IO

—04-3
Q+ 0.2-

0 2 . 4 6 8 10

Q

FIG. 3. Spectral density A(Q, cu) as a function of Q
for e = 0.75 and four values of ~ for the vibrational sys-
tem. Arrows indicate positions of ordered'-systems p

functions. The scale has been reduced by a factor of
ten relative to Fig. 2.

0 2 4 6 8 10

Q

FIG. 5. Spectral density A (Q, ~) as a fun'ction of Q for
co = 0.50 and three values of ~ for the vibrational system.
Arrows indicate positions of ordered-system 0 functi. ons.
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FIG. 6. Spectral density A(Q, E) as a function of Q
for n = 0.85 and four values of E for the tight-binding
system. Arrows indicate ordered-system 6 functions.

such that the mid-band energy E = 1.0 becomes the
strongest feature in the "second zone. " In Fig. 8,
we show plots of the spectral density as a function
of Q for E = 0.50 and several values of o.. As with
the phonon system the sharp features of A(Q, E)
gradually diminish with decreasing n until at o. = 0.50
nothing remains of the ordered-system behavior.

Recent numerical calculations of the dynamic
form factor and the alloy spectral density have
been given by Alben and Thorpe ' and Alben et al. ,

'2

respectively. In their method of calculating the
spectral density, one calculates G(Q, E) by per-
forming a space and time Fourier transform of
the Green's function obtained by numerically
solving the time-dependent equation of motion.
The spectral density is obtained from G(Q, E) ac-
cording to EII. (1). In addition to the method des-
cribed above in the discussion leading to EII. (13),
we have calculated the spectral density for our
tight-binding model using this "equation-of-motion"
method with periodic boundary conditions. In cal-
culating A(Q, E) we employed 20-, 40-, and 80-
atom chains and 250 iterations of the equation of
motion. The results obtained from this technique
were quite similar to those presented above, al-
though we had not yet reached convergence for the
80-atom chain.

Axe" has recently calculated the dynamic form
factor S(Q, &u) using a one-dimensional model of
an amorphous solid for which an analytic solution

FIG. 7. Spectral density A (Q, E) as a function of Q for
e=0.75 and four energies. Arrows indicate positions of
ordered-system 6 functions. Scale has been reduced by
a factor of 2 relative to Fig. 6.

IV. RELATION TO EXPERIMENT

The results of Sec. III can be used to gain in-
sight into the very general features of excitations

0.6-

04UJ

6
0.2— a =0.85

0.6—

04-
UJ

0
0.2- e =0.75

I I I I I I I 1 I I I I I I I I & s I

0 2 4 6 8 to

Q

0.6-

4J
0.4—

0.2— =0.50

I
I I I I I

I I I I I
I I I ] I I I I I ~

4 6 8 10

Q

I & I I I I I I I I 1 I I

0 2 4 6 8 10

FIG. 8. Spectral densityAQ, E) as a function of Q for
E= 0.50 and three values of ~. Arrows indicate positions
of ordered-system ~ functions.

is possible. The feature of that model which
makes a closed form solution possible is the ne-
glect of force constant variations. That is, Axe's
model assumes the force constants are independent
of atomic separations, an assumption not made in
this study.
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in three-dimensional systems. Unlike the density
of states, the spectral density contains no system-
atic distortions whi. ch stem from the one-dimen-
sionality of the system. The spectral density as
utilized here provides a description of the effects
of structural disorder upon the one-particle states
of the model system. In the theory of neutron
scattering, the differential-scattering cross sec-
tion can be written

d'c Q,
dQd&@ 2mQ

(23

where Q, and Q, are the initial and final momenta
of the incident neutron, dQ is an infinitesimal
volume element, and S(Q, &u) is the dynamic form
factor. Expanding S(Q, &u) and neglecting those
terms describing multiple excitations gives'4

S(Q, (o) =He '~'o~ [I (Q) 5((u) + Q'A (Q, (u)]. (24)

In Eq. (24), I(Q) gives the strength of the elastic
scattering contribution while the spectral density
A(Q, &u) gives the strength of the inelastic scatter-
ing from single-particle excitations. The Debye-
Waller factor 2W(Q) diverges in one dimension
and so we cannot actually calculate S(Q, &u) or the
scattering cross section. However, this is of no

importance for this study as scattering from a
hypothetical one-dimensiorial chain is unphysical.
The spectral density is the quantity of importance
as it describes the single-particle excitation
states in the presence of structural disorder. To
the extent to which our one-dimensional system
can be taken as a model for the effects of short-
range order in a solid, the spectral densities in
Figs. 1-8 can be used to interpret the qualitative
features of neutron scattering measurements.

The existence of a "second zone" in the one-
particle excitation spectrum obtained from liquid-
like structures is well known. Randolph and

Singwi, "for example, have shown that the "phonon"
dispersion curve for liquid lead is quite similar
in the "second zone" to that of the solid. An ap-
proximate calculation by Hubbard and Beeby" has
also produced a "phonon" dispersion curve for
liquid structures resembling that for a solid. Our
calculations suggest tf~'::Rt a solidlike dispersion
curve is likely to be a general feature of the one-
particle excitation spectrum associated with struc-
turally disordered systems.

Mook, Wakabayashi, and Pan" have recently
reported neutron inelastic scattering studies of
the amorphous ferromagnetic system Co4P. Some
results of their measurements are shown in Fig.
9, where the neutron scattering intensity is plotted
as a function of Q for several energies. " At some
energy E„one observes a small peak centered
between two larger ones. With'decreasing energy,

~ ~
t

~+a

~ y~~" ~~a-&i

2.0 2.5 3.0 3.5 4.0 4;5
o(k ')

FIG. 9. Neutron-scattering intensity as a function of

Q for several energies (energy increases vertically)
from Mook et al. (Hefs. 27 and 28).

the pattern becomes double-peaked and at an

energy which we shall call E„ finally becomes
sirigle-peaked. Below E„ there exists a small
broad structure independent of energy and located
near the first peak in the liquid-structure factor
S(Q) (near Q = 3.13 A '). In analyzing this data,
Mook eI; aL. suggested that if one were to neglect
the small central peak at E, and the small struc-
tures below E„ the peak positions of the remain-
ing features could be plotted" as shown in Fig.
10, a dispersion relation reminiscent of that ob-
served for rotons" in liquid helium. While the
curve in Fig. 10 is quite similar to the roton dis-
persion curve, there is also a rather striking
similarity between the measurements and our
calculated A(Q, &u) for the tight-binding system. "
This similarity leads one to speculate that the
observations might be explained as a manifesta-
tion of the effects of structural disorder upon the
ordinary spin waves of the system. This view is
consistent with the recent work of Alben" who

found rotonlike behavior in three-dimensional
models with structural disorder. If such an inter-
pretation is valid, the structure below E, in Fig.
9 would correspond to structures such as that
shown in Fig. 6 for E= 0.01. This interpretation,
however, is not without problems. If one draws
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FIG. 10. Suggested analysis of data in Fig. 9; from
Mook et al. (Ref. 27).

an analogy between the amorphous and polycrys-
talline states, one does not expect to observe split
peaks in the second "zone. '"' In fact, this inter-
pretation seems to indicate that the scattering
from Co4P is more similar to scattering from a
crystal than a polycrystal. It is hoped that this
calculation will stimulate further work on three-
dimensional systems from which more direct in-
ferences can be drawn.

We have presented a Monte Carlo calculation of
the spectral density P(Q, E) for a one-dimensional
model of an amorphous solid. The calculated,
spectral density was used to examine the effects
of short-range order upon the single-particle
excitations described by the harmonic oscillator
and tight-binding Hamiltonians. The insight gained
from the model calculations has been used to ex-
amine the recent neutron scattering measurements
of Mook et aL The measured excitation spectrum
was observed to be qualitatively similar to our
tight-binding results suggesting that these excita-
tions might be explained. as the remnants of the
ordinary spin-wave excitations in a system pos-
sessing short-range order.

The procedure described in Sec. II for perform-
ing a Monte Carlo calculation of the spectral den-
sity can be applied to other one-dimensional
problems. One ot us (D.G.H. ) has compared the
spectral density obtained in the quasicrystalline
approximation (@CA)' to the exact result obtained
by the method of Sec. II for electronic excitations
in a one-dimensional liquid metal. " A compari-
son of the CPA and exact spectral densities for
electronic excitations in a one-dimensional alloy
is in progress.
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