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The Raman spectrum of diamond in the high-frequency part of the two-phonon region is investigated. An
interpretation of the sharp line at the two-phonon cutoff as a simple overtone is supported in terms of a
harmonic model for the potential and a bond polarizability approximation for the scattering Hamiltonian.
Polarization features as well as the anomalous position and width of the peak are discussed and interpreted,
giving general agreement between theory and experiment. A comparison is made with the Raman spectrum of
silicon, and differences in the spectra are accounted for by a different behavior of the dispersion relation
along A for the two lattices, which has its origin in the greater angle-stiffness forces in diamond, ultimately
due to greater covalency in diamond. A new set of critical points for the LO branch of diamond is also

proposed.

I. INTRODUCTION

The Raman spectrum of diamond has been care-
fully investigated experimentally in recent years.
Accurate spectra have been obtained by Solin and
Ramdas! in various scattering geometries, pro-
viding complete information on the three indepen-
dent components of the scattering tensor as a
function of the scattered frequency.

While vibrational spectra of other crystals hav-
ing the diamond structure have been fully under-
stood in terms of the available force-field models,
some peculiar features in the Raman spectrum of
diamond appear to remain controversial. Thus
silicon and germanium seem?®* to have almost
homologous vibrational properties—i.e., their
dispersion curves, density of states, optical ab-
sorption, and Raman-scattering cross section al-
most overlap when considered as function of re-
duced frequency w/ Wg,- However, diamond exhi-
bits its own spectral features.* In this paper, we
will focus our attention on the region of the two-
phonon cutoff, which, in the case of diamond, con-
tains a sharp and polarized peak slightly above
twice the frequency of the optical phonon, The ori-
gin of this feature is not in agreement with the
usual critical-point analysis. The accompanying
paper® reports new experimental results on the
temperature dependence of the width and intensity
of this feature, with which we shall compare our
results.

The diamond-lattice space-group symmetry O;
contains two atoms in the primitive unit cell, giv-
ing rise to six phonon branches in the dispersion
relation. At the I' point, the three optical
branches are triply degenerate and the corre-
sponding phonons belong to the I';; irreducible rep-
resentation. The one-phonon spectrum contains
only one peak corresponding to the excitation of
this optical phonon. The two-phonon Raman spec-

15

trum is more complex, since momentum conser-
vation allows excitation of pairs with opposite mo-
mentum *q as long as other selection rules are
also obeyed.

II. RAMAN SCATTERING IN DIAMOND AND SILICON

The experimental two-phonon Raman scattering
has recently been reported in diamond!*? and sili-
con.® We are particularly interested in the high-
er-frequency part of the two-phonon spectrum in
the I'; polarization. In comparing diamond and
silicon, it is noteworthy that a sharp polarized
peak occurs near the two-phonon cutoff in dia-
mond, while none is present in silicon. In the
latter, the scattered intensity drops smoothly to
zero as the scattered frequency shift approaches ’
twice the Raman frequency 2wg,.

Solin and Ramdas® stressed three points charact~
erizing this “anomalous” peak at 2667 cm™:

(i) The peak is anomalously sharp for a second-
order feature and strongly polarized (it is always
present for those scattering configurations in
which the totally symmetric representation is ex-
cited). As a consequence of its I'; symmetry, this
peak has not been observed in the infrared ab-
sorption,

(ii) The intensity of the peak is proportional to
the excitation volume of the crystal.

(iii) The peak is shifted slightly above 2wg,.
Taking account of their available experimental
resolution and the low intensity of second-order
scattering, they estimated a shift of about 2 cm™.

Washington and Cummins® report the peak to be
shifted by 3 cm™ above 2wy, at 300 °K, and to have
a corrected width at half maximum of approximate-
ly 4.2 cm™. They report, regarding this feature,
“very little change in the shape, frequency shift,
or relative intensity with respect to other second-
order Raman features was observed as a function
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FIG. 1. Contribution to
the density of states from a
Py critical point.

of temperature.”

It is natural to seek an explanation of the two-
phonon spectrum in terms of the density of phonon
states computed from phonon dispersion. Dis-
persion curves for silicon and diamond have been
calculated using a shell model” and a valence force
field.® These curves, obtained from strictly har-
monic potentials, have seemed to indicate that the
frequency of the optical phonon at I' is the absolute
maximum. Hence, I' corresponds to a P; critical
point,® and the density of one-phonon states would
go smoothly to zero at wg, (Fig. 1). The density
of overtone states would likewise go smoothly to
zero at 2wg,. At first sight, an harmonic model
seems to be inadequate to understand the Raman
spectrum of diamond, while it accounts properly
for the Raman spectrum of silicon and germanium.

Cohen and Ruvalds!® interpreted the peak in dia-
mond as evidence for the existence of a bound state
in the two-phonon system. The explanation they
proposed is as follows: the anharmonic phonon-
phonon interactions in the Hamiltonian (which must
be repulsive, in order to ensure stability of the
bound state) split a state off the top of the two-
phonon continuum, thus giving rise to a peak,
whose separation from the continuum will be pro-
portional to the strength of the anharmonic cou-
pling. To account for a reported* shift of 2 cm™,
Cohen and Ruvalds made an estimate of the an-
harmonic potential energy V, required. The mag-
nitude of the anharmonic potential needed seemed
in agreement with one semiempirical model for
the potential.’* More recent work indicates a
rather significant disagreement between the needed
magnitude and the magnitude of anharmonicity as
estimated from thermal expansion and other mea-
sured quantities.!?

Another drawback of this interpretation is that
one would then expect bound states, with even
greater shift from the continuum, to be observed
in materials with known larger anharmonicity. In
silicon and germanium, a number of experimental
observations are consistent with the assumption
that in these materials anharmonicity plays a more
important role than in diamond. First, the half-
width of the one-phonon line (which essentially
measures the extent of the decay of optical phonons

through anharmonic interactions with other pho-
nons) is 1.2+0.2 cm™ (corrected) for diamond® at
300 °K, and 3.4 cm™ for silicon® at 400 °K. More-
over, for silicon and germanium, the frequency
of the A,(A) branch along the I'4 L symmetry di-
rection calculated from an harmonic model (either
valence® or shell model” is somewhat lower than
the experimental neutron value. This does not
happen for diamond. It is usually interpreted as
evidence of larger anharmonicity in Si and Ge.

Despite these observations,'?® which seem to in-
dicate that anharmonic terms are of importance in
the vibrational Hamiltonian of silicon and german-
ium, a two-phonon bound state has not been sofar ob-
served in these materials, even though two very
accurate independent Raman studies on silicon
have been recently reported.®*?

These considerations have motivated us to care-
fully examine the two-phonon spectrum of diamond
within the harmonic framework. The intensity of
the second-order scattering process (summation
and overtone bands) as a function of the shifted
frequency can be written

0= [ 3 X HE QL nlgienlgi)]
e j J

X ow - w(g,7) -wlg,j))dg,
(1)

where I'L . is a component of the second-order
Raman tensor,'* n(qj) is the occupation number
(using Bose statistics), g is the phonon wave vec-
tor, and H{;'® is the Hamiltonian which couples
the phonons j and j’ of opposite wave vector +g
with the radiation..

If the frequency of incident radiation is far from
the frequency of any electronic excitation of the
crystal, then, within the framework of polariza-
bility theory,'® the Hamiltonian is a bilinear form
in the second derivatives of the crystal polariza-
bility with respect to the normal coordinates @ of
the two phonons involved:

HE(g) (

2P, ) ( 9°P,, )*
9Q(q,79Q(q,7" /,\0Q(q,7)2Q(g,7)/,
(2)

Since crystals having diamond structure are
strongly covalent and their electrons can be
thought of as localized in highly directional chemi-
cal bonds, a model was proposed by one of the '
authors in which the crystal polarizability is ex-
pressed as a sum of individual bond contributions.
Details of this model for the Hamiltonian and the
valence force field used for this calculation can
be found elsewhere,''® together with some earlier
results for the phonon dispersion in diamond.
From that calculation we observe that (i) a sim-
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FIG. 2. Detail of dispersion curves for diamond
around T': Direction TA L.

ple two-phonon density of states (summation and
overtone) reproduces the positions of the observed
peaks rather well but does not properly account
for relative intensities in general (see Fig. 2 of
Ref. 16); (ii) in polarizations for which the I}
component of the spectrum is excited, a fairly
good approximation to the Raman intensity versus
frequency is provided simply by the density of
overtones (In cases with several polarizations si-
multaneously present, I'; is quantitatively more
important than I'j, and I';, and masks these latter
components.); (iii) in any scattering geometry
with I'; excited, the sharp peak at the two-phonon
cutoff occurs in the calculation in agreement with
experiment. .

Neglecting thermal factors which are of no im-
portance for the present analysis, Eq. (1) can be
written

\ ’ 8 dq
Tagrelw) = Z, fn(q)H?jlyﬁ(q)é(@ - g) E?Z_dﬂ ’
73
(3)

where Q(q) = w(q,j) + w(g,j’). By using the proper-
ties of the Dirac function,

15 5(w) o« H¥"%() G(w) , 4)
where G(w) is the two phonon density of states at
w and H*¥"%y) is the “coupling Hamiltonian” ex-

pressed as a function of frequency [as defined by
Eq. (3), branch indices j and j’, and wave vector
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q define a frequency w].

From Eq. (4), it follows that in the vicinity of
2wg, the intensity of the scattered phonons sheuld
mimic the two-phonon density of states. If the
latter has a P,-type critical point at 2wg,, then
we cannot explain a peak near 2wy,, except in the
improbakle circumstance that H(w) becomes un-
expectedly singular at 2wy,, and overcompensates
the vanishing density of overtone states.

IIL. PHONON DISPERSION IN DIAMOND AND SILICON

A way out of this dilemma was suggested by the
conjecture of Uchinokura et al.'® that one of the
optical branches has its absolute maximum not at
I". To test this proposal we decided to carefully
reexamine the phonon dispersion in diamond and
silicon along the main symmetry directions, using
the valence force field potential of Ref. 8. Abrief
report of this work was given earlier'” and the
present report gives more details of the calcula-
tion.

Results for diamond and silicon are given in
Figs. 2-5. A gignificant difference in the harmonic
lattice dymanics of diamond and silicon is evident
along the I' 4 X symmetry direction. While in sili-
con, both the TO and LO branches sharply drop in
frequency as g becomes finite, in diamond, the LO
branch slowly increases in frequency, reaching its
absolute maximum along the A direction.

Coherent neutron data on diamond,'® {rom which
the parameters of our model have been obtained,
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FIG. 4. Detail of dispersion curves for diamond
around T: Direction I'A X.

are not available for the LO branch along this sym-
metry direction. More recent data by Peckham?!®
are consistent with the calculated shallow maxi-
mum, but in this high-frequency region of the spec-
trum, neutron data are not very accurate. Since
the model fits the available experimental data
throughout the Brillouin zone, we believe the pre-
dicted behavior of the LO branch is correct. In or-
der to classify the new critical point at I', Phil-
lips’s analysis® can be used. Following Phillips,
we count the number of separate frequency sectors
in the neighborhood of the critical point in which

w — wy> 0 (w, being the frequency at the critical
point) or w —w,<0. A positive (or negative) sector
is a solid angle, taken with the critical point as
apex for which the difference w - w, is everywhere
positive (or negative). In Fig. 6, a section for ¢,
=0 of the irreducible element of the Brillouin zone
for diamond is shown. The dashed area shows val-
ues of g for which the LO branch has a frequency
higher than the optical phonon. Phillips showed
that separate sectors are possible only in the di-
rections A=(100), »=(110), A=(111), and along a
general direction for which two components of the
wave vector are the same G. From the various
possible combinations of positive and negative sec-
tors, a critical point can be classified. In our
case, we have for the alternation of signs

(A+; Z -3 A=; G-),

and therefore the I' point in diamond can be clas-
sified as 8, point. (A critical point analysis of
crystals with the diamond structure was reported
earlier by Bilz ef al.? on the basis of infrared ab-
sorption studies of diamond. Since no combination
band has a frequency higher than the two-phonon
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FIG. 5. Detail of dispersion curves for silicon around
T': Direction T4 X.

cutoff, the infrared spectrum is unable to show the
true structure of the LO branch.) On the basis of
the Raman spectrum and of our results, critical
points for the LO branch are as follows:

r X L wZ A
PS PZ PZ PO Pl
for diamond 6, P, P, P, P, P,.

for silicon

We shall utilize these assignments in the interpre-
tation of the Raman spectrum for I'j polarization,
where the scattering is mainly due to the density of
overtones (i.e., the one-phonon density of states
“doubled” up to 2wg,). The different structure of
critical points for diamond and silicon gives rise
to a different behavior in the overtone density of
states and therefore in the spectrum.

We previously reported (Figs. 2 and 3 of Ref. 17)
the overtone density of states in diamond and sili-
con. Comparing these with the experimental spec-
tra of Refs. 2 and 5, we note that for silicon the
experimental spectrum has been obtained with a
much lower resolution (5 cm™) than the calculated

FIG. 6. xy section of the irreducible element of the
Brillouin zone in diamond showing ¢ values for which the
frequency of LO branch is higher than at T.
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FIG. 7. Overtone density of states (high-frequency
section) for diamond (resolution 10 cm™),

histogram (1 cm™); some lack of agreement in the
fine structure has to be expected. In particular,
the two calculated sharp peaks correspond to
smoothed out kinks in the experimental spectrum.
Apart from that, the agreement between calcula-
tion and experiment is very good. For silicon, the
expected P, singularity is found at the cutoff of
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FIG. 8. Overtone density of states (high-frequency
section) for diamond (resolution 2.6 cm™1).
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For diamond the sharp peak at 2667 cm™ is easi-
ly identified with a corresponding sharp kink in the
density of the states due to the J, point. Since we
are using an harmonic model, the calculated fea-
ture is an overtone which occurs at 2wy, and is not
displaced from twice the calculated Raman fre-
quency (1335.6 cm™). We note, however, that ac-
cording to our results, the density of overtone
states in diamond goes to zero, 5 cm™ above 2wg,
and therefore “bound pair” states in diamond can-
not occur within this frequency shift. Our provis-

"ional interpretation of the measured 3-cm™!'shift of

the overtone is that it is due to anharmonic effects
which would displace the apparent peak from sim-
ply double the one-phonon (Raman) frequency. In
Ref. 8, an earlier calculated density of states for
diamond and silicon using the same potential mod-
el was reported. In this earlier work, the histo-
gram resolution (10 ecm™ for diamond and 5 cm™
for silicon) is insufficient to show fine structure.

More accurate calculations were possible in the
present work, using an interpolation procedure for
obtaining the density of states. The effect of in-
creasing the resolution of the calculation is shown
(for diamond) in Figs. 7-9. It can be noted that at
the level of 10-cm™ resolution no “anomalous”
peak near 2wp, can be seen, while for a finer grid,
the peak is clearly seen.  From the calculations
of Fig. 9, the calculated halfwidth of the peak can
be obtained as 5-6 cm™.

Summarizing, we believe that the “anomalous”
Raman peak found in the two-phonon Raman spec-
trum of diamond is simply due to the scattering
from LO overtone states at ' and along the A sym-
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FIG. 9. Overtone density of states (high-frequency
section) for diamond (resolution 0.67 cm™l).
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FIG. 10. Schematic diagrams showing (a) one-step
and (b) two-step scattering processes.

metry direction. This is consistent with the ob-
served shape of the peak and with the polarization
features: mainly, I' symmetry, but also some
weak components belonging to other symmetries
(T}, ®T%), =I'T®I},®r;,. Anharmonic cor-
rections may account for its slight frequency
shift. Moreover, the present model predicts that
the intensity of the peak should be proportional to
the excitation volume as in other parts of the spec-
trum and not to the square of the volume, since the
peak is due to a regular one-step second-order
process [Fig. 10(a)], and not to “two successive
first-order Raman scatterings at the zone center.”
ter.”?° [Fig. 10(b)]. Other evidence supporting our
interpretations are as follows.

a. T-dependence of the peak intensity. An(n,p+1)
temperature dependence for the Raman intensity of
the regular overtone spectrum is expected (dia-
mond being an insulator). An intensity ratio of
1.003 (7,=300°K and T,= 23 °K) for the zone cen-
ter overtone is calculated, in agreement with no
observed® appreciable change in intensity for the
peak at the two -phonon cutoff.

‘b. Ome-phonon defect activated infrared spec-
trum. Indirect evidence of an overbending of the
LO phonons may be found in the two-phonon defect
induced infrared spectrum of diamond, recently
reported.? Among the B features of the spectrum
(and weakly also among the A features), a sharp
absorption at 1332 ecm™ is found due to the Raman
phonons excited by radiation damage products.
Since common features to the A and B forms usu-
ally have their origin in high densities of band
modes, it seems possible to relate this absorption
to the kink shown in the calculated density of states
at the cutoff.

IV. MICROSCOPIC INTERPRETATION

We should try now to understand the phonon dis-
persion in diamond, in terms of its lattice dynam-

ics and forces acting in the crystal. For crystals

having the diamond structure, the dispersion re-
lation for the LO branch along the A direction can
be written analytically,

Mw? o =3Mw?,+8u(l - cosmq) + 4 cos(zmg),
(5)

where M is the carbon mass, wp, is the Raman
frequency at the zone center, g is the wave vector
(taking values along A), and a and p are general
Born force constants for first- and second-neigh-
bor interaction (Table I). The condition for a max-
imum in this curve is

8u sin(3mq)/ cos(37q) — a sin(3mq) =0, (6)

which leads to a solution ¢=0 for the I' point, and
also for a point defined by the equation

g=(2/m) arccos(a/8u). (M

If 8u/a<1, the dispersion curve displays a mon-
otonic decreasing behavior, otherwise a maximum
is expected. We can express the Born force con-
stants in terms of valence force constants

a=32K, - 2F,-8/2 F,,/R+8H,/R?, (8)

p=%(2F,+2H,/R?+2V2 F,,/R - 6F}'/R?). (9)

Using values for the parameters obtained for our
model,® we find 84/ a=1.098 for diamond, 81/«
=0.249 for silicon, and 81/ a=0.568 for germanium.
The anomalous Raman scattering in diamond is
then related to some critical ratio of second- to
first-neighbor interaction forces. If the ratio 8u/a
increases to greater than one, the frequency maxi-
mum shifts towards the edge of the edge of the
Brillouin zone. Since the second-neighbor force
constant U is mainly connected with bending forces
and their interactions, a more marked angular
character appears to be peculiar to forces acting in
the diamond lattice. The situation is similar, re-
garding the ordering of branches at X point. For
silicon and germanium, the energy of X,(TO) phon-
on is higher than the energy for X,(LO, LA), but the
opposite occurs for diamond. Like the overbending
along A in diamond, the branch interchanges at X
are not required by symmetry, but are a conse-
quence of particular forces acting in the lattice.

TABLE I. Interatomic-force-constant matrices for
general forces (first and second neighbors).

a B B MU.(S
B apB UM o
BB a 56 A
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V. CONCLUSION

The present work provides a simple and, we be-
lieve, persuasive explanation of the origin of the
sharp peak near the two-phonon cutoff observed in
the Raman spectrum of diamond.

A harmonic valence force field for the potential,
and a bond polarizability model for the Raman

scattering account for the existence of a sharp peak .

near the two-phonon cutoff, and give good agree-
ment with experiment''® regarding the width of the
peak, its relative intensity, and polarization.'¢
The shift of the location of the maximum of the
peak by 3 cm™ from the position of 2wz, (approxi-

mately 2669 cm™, in the accompanying paper) is
not given by our theory. We surmise that proper
inclusion of anharmonicity in our model will pro-
duce this small shift, while retaining the major
feature of our interpretation—namely, that the
peak is due to an “unbound” overtone. We are per-
suaded that it is not necessary to invoke the hy-
pothesis of a two-phonon Raman scattering fea-
ture in diamond.
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