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Model of photoconduction in an amorphous medium
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A model for trap-controlled charge transport in an amorphous material is considered. The model is defined in

terms of a set of coupled differential rate equations, in which each type of trap is characterized by a capture
probability e*;, and a release probability r,*, This model is significant because it has recently been shown that
the continuum limit of the Scher-Montroll master equation for anomalous dispersion is completely equivalent

to the multiple-trapping equations. In this paper we develop the multiple-trapping model, and use asymptotic
methods to treat traps whose release rates and capture rates are both different from one. We obtain an

estimate of the increased transit time due to trapping, and also discuss the determination of both the number
and types of different traps necessary to produce a disperse photocurrent transient.

I. INTRODUCTION

There has been considerable interest recently in
the physics of charge transport in amorphous pho-
toconductors. This problem is an interesting one
conceptually and has many significant technological
applications. Both the experimental and theoretic-
al work has now developed to the point where it is
possible to obtain new information about the elec-
tronic structure of these materials.

Traditionally, charge transport in amorphous
photoconductors (Fig. l) has been studied by the
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FIG. 1. Schematic diagram for energy levels of
charges in an amorphous material with a large number
of defects or traps. Transport of charge through the
conduction band, under the influence of an electric
field, is frequently interrupted by the capture of charge
by traps. A distribution of release times from these
traps leads to the highly dispersive type of current
pulse shown in Fig. 2. This diagram is drawn for the
case of no electric field. A term linear in g is super-
imposed on this diagram when the electric field is pre-
sent.

time-of-flight technique. A comprehensive pro-
gram using this technique has recently been car-
ried out by Pfister, ' who has studied a-As, Se„
a-Se, and other materials in detail. In these ex-
periments, a light flash of short duration is used
to illuminate a sample of photoconducting material
through a semitransparent electrode. Electron-
hole pairs are created close to the surface of the
material, charge carriers of thy appropriate polar-
ity are swept through the bulk of the sample by the
applied electric field, and are collected by another
electrode. Experimentally, either the voltage de-
cay rate or the current decay (for fixed voltage
across the sample) is monitored. For definite-
ness, we consider the decay of photocurrent tran-
sients for fixed voltage.

The observed current transients I(t) are found
to be monotonically decreasing and relatively fea-
tureless. Sharfe, ' however, has demonstrated that
if log„I(t) is plotted against log„t, the data lie
along two straight lines of negative slope which in-
tersect at a time 7 . A typical dispersive current
transient for As, Se„say, is shown in Fig. 2. In
particular, the measured current behaves like

~ for t&7 and t &"~' for t &7, with 0&(y&1.
This feature has been explained by Scher and Mon-
troll' using a stochastic model involving a contin-
uous-time random walk of charge carriers with a
non-Gaussian waiting-time distribution t &" ~. Al-
though the continuous-time random-walk formula-
tion is very general, it is still necessary to as-
sume a form for the waiting-time distribution func-
tion before quantities of physical interest can be
calculated. It is easy to obtain this distribution
function for extreme dispersion (power law) or no
dispersion (exponential), but for cases of inter-
mediate dispersion, the functional form is more
difficult to determine. Recent experiments on a-
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where T0 is the transit time of free carriers.
Let the (dimensional) variables t~ and x* denote

time and position through the amorphous film with
x*=0 corresponding to the film's surface, and x*
=I. to the substrate. General differential equations
for the volume concentrations of free carriers
P*(x*,t*) and carriers trapped in the ith type of
trap pf(x*, t*) have been given by Rudenko and
others. ' We will restrict ourselves here to a
small signal. flash with constant electric field E.
The photogeneration rate in this case is closely
approximated by a 6 function. Consequently, the
solution for the flash is a Green's function for the
case of continuous illumination which occurs in
xerographic applications. The trap-dominated
photoconduction equations are now

FIG. 2. Typical log&g-log~ot plot showing the current
I(t) associated with charges moving, in the presence of
an electric field, through an amorphous photoconductor
film. The dispersion in the current trace is due to the
presence of traps in the material, which capture charges
and retain them for varying lengths of time. The scale
factors for both axes have been chosen for convenience.

Se, ' however, show that the extreme dispersion ob-
served at low temperatures (T = 123 K) becomes
less with increasing temperature, and disappears
altogether at room temperature. In view of these
results it is clearly important to formulate a the-
ory of charge transport which has the flexibility to
deal with a broad range of dispersion.

Recently, 4 a model for trap-controlled transport
in which the charge capture and release events are
treated explicitly has been examined in detail, and
found to be capable of predicting the anomalous
dispersion which had previously been analyzed only
by the Scher-Montroll theory. Of greater interest,
it was found that the multiple-trapping model could
be used to analyze photocurrent transients which
were very disperse, or showed little dispersion.
Some of the results of the theoretical analysis of
the photocurrent transients in a-Se were reported
earlier. ' In the present paper we restrict our-
selves mainly to the mathematical analysis of the
multiple-trapping equations. One of the most in-
teresting results arising out of the a-Se analysis,
the basic equivalence of the Scher-Montroll and
multiple-trapping theories, will be dealt with in a
separate publication. '

We now consider a continuum model, corres-
ponding to a homogeneous spatial distribution of a
finite number (n, say) of distinct types of traps.
Each type of trap is characterized by a lifetime
7, and a release time 7„, (i = 1, . . . , n) Hence, .
release probabilities per unit time are rf =7„;,
capture probabilities per unit time are &+= v; ',
and &df T, is the expected number of times a car-
rier will be captured by the ith kind of trap,

QpQ Qp+, + uE, +g (p*&uf -pf g) = qN, 5 (x*)5(t *)

and

sp +p&rf=p*u)g (i =1, . . . , n), (1.2)

where N0 is exposure in photons per unit area and
is the efficiency of conversion into free carriers.

Associated initial conditions are

p*(x*,0) =pf(x*, 0) =0 . (1.3)

The transient photocurrent I~ per unit area is ob-
tained from P~ through the relation

L
fw(ts) = — pEpw(xs tsj dxe

0

where q is the magnitude of the moving charge.
Equations (1.1)-(1.3) may be solved directly us-

ing Laplace transf orms, and Schmidlin has shown'
that an exact solution for the current involves an
n-fold convolution of modified Bessel functions of
the first kind of order one. However, because of
its complicated form, information can be easily
extracted from this exact solution only in special
cases such as &df T, large. The present work ex-
amines this model using asymptotic techniques.
The equations are first nondimensiona1ized with
respect to appropriate reference scales. Simpli-
fications 'of the equation for the concentration of
free carriers are then obtained, which remove all
types of traps except those with &uf T, and r&T, both
order one. The asymptotic results also allow esti-
mati. on of the increased mean transit time due to
trapping. A final portion of this work considers
the inverse problem of determining the types of '

traps responsible for a given current trace.

II. SCALING AND EXACT SOLUTION

To nondimensionalize the model equations, de-.

fine new independent variables x and t by
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x = x~./L and t = t*/To, (2.1)
(2.13)

and
t

P, (x, t) = @PE(x+, t +)/o, .
With these scalings, Eqs. (1.1)-(1.3) become

(2.2)

where the free transit time T, is now simply
I.(pE) '. If o, is a charge density, appropriate
scaled-dependent variables are now

P(x, t) = qP*(x*, t*)/c,

This function can be shown to vanish for t & 1 (the
scaled free transit time) and hence, g(t) may be
interpreted as an exit function. However, because
of the exponential factor in (2.13), (S)(t) is a, sum of
terms involving n convolutions of Qessel and 6

functions. In particular, .Schmid1. in has shown'

(2.14)

BP BP+ —+ (P+,. P,-r, )= A. .5(x)5(t),
Bt Bx

Bp fP'+~, p,-=(d;p,

(2.3)

(2.4)

where

g(t)=p(t)*(6, +g,)+(5,+g,)+ +(5„+g„),

5;(t)=e 't)(t),

g;(t) =e ' ' ((dgrj/t) Ii[2(~)rat)

(2.15)

(2.16)

p(x, o) =p, (x, o) = o,
where

and

v~-&~Top co~ 4)~TO p

I (t) = P (x, t) dx .

&='IiNOQTO/ao .
Also, if I(t)=I*(t*)T,/a, L, then

(2.5)

(2 6)

(2.7)

and I, is the modified Bessel function of order 1.
In the following sections, it is shown that, by

applying asymptotic techniques to the differential
equations befoxe taking Laplace transforms, the
number of terms in both the summation (2.12) and

the convolutions (2.14) can be reduced. Results
for the exit function will also yield an approxima-
tion to the mean transit time for photoconduction
with trapping.

An exact but somewhat involved solution of
(2.3)-(2.5) may be obtained by using Laplace
transforms without further analysis of these equa-
tions. If p(x, s) = &[p(x „ t}], then

III. LIFETIME AND RELEASE TIME ASYMPTOTICS

Except in the case of variables P~, for which co&

and x„are of order one, asymptotic methods may
be used to simplify Eq. (2.3).

P(x, s) = ~e-''&"

for x & 0, where

(s)=s((+g ' ).

(2.8)

(2.9)
P;(x, t) =(u; p(x, ~)e i'-'~dT.

Case 1. rk )) 1 and ~& & o(rk)

Exact solutions of Eq. (2.4) have the form

(3.1)

Denoting l(s) =2[I(t)], this gives

e-a(s)

a(s} a(s)
(2.10)

a(s) ~0 s+s, (2.11)

then so 0 sy . , S„are real and distinct, and
n

P (t) = g -' = Z g A, e-" .
a(s)

(2.12)

The first term in (2.10) may be easily treated us-
ing a partial fraction expansion for 1/a(s). In par-
ticular, if

When r; is large, this integral may be analyzed by
the method of Laplace. Assume that x&~1 for k
= m+ 1, . . . , n. Then, for these P&, the major con-
tribution to the integral in (3.1) comes from the
small interval near the upper limit where t —7
= O(r, ). The usual Laplace first approximation is
now'

P)(x t) (&;/rg)P(x t) ~ (3.2)

The present application, however, requires second
approximations toP„. These may be obtained by
expanding P (x, v) in a power series about T = t,
giving, for t=O(1),

The principal difficulty with immediately applying
the Laplace transform approach involves the com-
plicated nature of

BP
P, (x, t)= ' P(x, t)-——(x, t)+Ou-

i, r, &

(3 3)
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Hence, for these n-m variables,

BP
'

(u»
(P(d( -PP~)= Q —'+O —

» (3 4)
»=m+1 Bt- »=m+1

and Eq. (2.3) becomes

'p + 1+ Q + (p(dg -p)9'))(d» BP

BX Bt

=A.5(x)5(t)+0 —», (3.5)
1

Case 3. rk ((.1 anduk = O(1)

I et rI, be small for k= v+ 1, . . . , n. For these
P», the exponential in the exact solution [Eq. (3.1)]
may be expanded in a uniformly convergent series
in powers of rI, . Use of this series then gives

t

p, (x, t) = ~, p(x, ~) d7
0

where r is a scale for the magnitude of the large
r»

Hence, as p(d» -p» r» = sp»/st,

(3.9b)

Case 2. uk ))1and rk &«O(uk)

Assume that » is large for k= l + 1, . . . , m.
From Eq. (2.4), an appropriate balance for t = O(1)
is then p(x, t) =O(1) but p»(x, t) = O((o) where o) is a
magnitude scale for the large». This suggests
expanding P and these P& in powers of &, i.e.,

p(x t) =p'"(x t) + ~ 'P"(x t) -+ ~ ~ ~

P»(x, t) =(dPI", (x, t)+p'"(x, t) + ~ ~ ~ (k= i+1, .. . , m) .
(3.6)

Substitution of these expansions into Eq. (3.5)
shows that for k=i+1, . . . , m, p»-p~r„must van-
ish to lowest order. Equation (2.4) now requires
that sp»/&t should be of order one rather than of
order cg, and thus,

P%,
"= (~»/~~»)p"',

PI &)» P
co - Bt -ry Bt

(3.7)

(3.8)

etc. The equation for P~o~(x, t) now becomes (drop-
ping the superscript zero)

—+ 1+ ——+ Z (po)) -p,.r, )
BP BP

BX Bt

1 1
=X6(x)5(t)+O —,, — (3.9a}

Hence, traps which capture carriers a large num-
ber of times act in a similar manner to traps with
short release times. '

The large» results obtained above, directly
from the governing equations, may also be ob-
tained from the exact solution (2.14)-(2.16). As
noted previously, ' for this special case the Bessel
functions in (2.16) may be replaced by their asymp-
totic expansions, giving Gaussians with ineans o)»/
r» and variances o»=2&v»/r»» for k=i+1, . . . , m.
These Gaussians may now be convoluted directly
to produce another Gaussian with mean Z&„&u,/r,
and variance o' = Z &„o'&.

(P&& -Ps &&) ='Y&p —'Y» p
» =Ij+ 1

p(x, ~) d~+o(p'),

(3.10)

where p is a reference scale for the small r&, and

and p2= ~ 4g»
&+ 1 &+;1

(3.11)

In effect, Eq. (3.10) consolidates all traps with r,
small and &» of, at most, order 1.

IV. APPROXIMATE SOLUTION AND TRANSIT TIME

If P(x, s) again denotes the Laplace transform of
P(x, t), Eqs. (2.4) and (3.12) now give

—+b (s)p = X6(x),BP

BX
(4.1)

with

Case 4. uk (( 1 and rk «& O(1)

Let &~ be small and r„of, at most, order 1
for k=n +I, . . . , ./By Eq. (3.1), theseP„are or-
der u&. Hence, if 8 is a reference scale for the
small », expandingP in powers of 8 shows that
the first approximation to P will satisfy Eq, (3.9)

2
with the terms Z„„(P&u;-P, r, ) removed. Traps
with very long lifetimes thus will not contribute to
the current at lowest order for t = 0(1).

Only variables p» (k = 1, .. . , v) with associated
values of u& and r& both of order one now remain
in the equation for P(x, t),

BP . BP+'Y —+&(o))p —QP ~g
BX Bt

=A.5(x)5(t)+O(r ', (o ', p, e), (3.12)

y=l+ P "', &(~)=g~, . (3.13)
»=l+1

Together with sp»/st+p»r»=p(»)» for 0= 1, . . . , v,
Eq. (3.12) may now be solved using Laplace trans-
forms.
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b {s)= ys + +(o') —Q s +rj

Hence, P (x, s) = Xe ' * and, by (2.7),

(4.2)

(4.3)

The first term above may again be treated using
the partial fraction expansion

V. INVERSE PROBLEM

This section examines the problem of numerical-
ly determining the types of traps which are re-
quired to produce a given current trace I(t). Now,
not only the values &j and r; associated with each
type o.' trap, but also the number of types n are
unknowns. The general model equations predict
that I (s) will have the form (2.10) so

b(S) ~=0 S+Q~
(4.4)

c+j
I(t) =

211'2
I(s)8"ds . (5.1)

giving Because I(s) is holomorphic for Re(s) &0 and reg-
ular at zero, c may be taken as zero leading to

y(f) =g-' =z ga, e™~'.
b {s) (4 5) ] oo

I(f) =
2' I(iv) e'"'dg . (5.2)

Inversion of the second term in (4.3) to determine
the exit function g(t) now involves v+ 1 functions of
the form

e-b(S)
g -y -g~(t -y)-v(n)

S +@~

t P

C ' exp -ys+ g
L =1 S+rj —Q

(f) = e"&'2 '. exp
j=i ~+rj-

then, as 2 '(e &') =5(]—y),

(4 6)

(4 7)

t~~=yTO=TO 1+ (4.8)

provides an approximation to the mean trans:t
time in the presence of traps. The major contri-
bution to ~ thus comes from traps with zj large
but rj at most order one. To lowest order, the
current I(t) is now

(4 9)

where

The function g(t) is thus identically zero for t &y.
As befits its interpretation as an exit function, g(t)
begins to contribute to I(f) at the start of the tail
in the current trace. Hence, t = y or, in dimen-
sional variables,

However, for large v, (I(iv)~ =O(~v~ '). Thus, the
convergence of the integral (5.2) is too slow to al-
low practical numerical evaluation in connection
with a standard fitting routine, which may require
several hundred evaluations of I(t) and its grad-
ients with respect to ~j,rj. To remove this dif-
ficulty with evaluation and facilitate rapid deter-
mination of n, &o&, and r;, I (t) will be approxi-
mated here by a partial sum of its Fourier series
with respect to an appropriate orthonormal se-
quence fg„(t)j on (0, ~).

Following Erdelyi, ' let p,„p.„p.„.. . be a se-
quence of distinct, positive real numbers. Then,
by a theorem of Muntz, ' if either p„- p, &0, or
p„0 slowly so Z p„=~, or p,„-~ slowly so
F~ g„'=~, the set of exponentials (e ~~') has the
closure property on (0,~) that gf(t) e &~' = 0 for
all n ~ f(t) =0 almost everywhere The N. th~ap-
proximate I„(f), defined by

I (f) —gb s Pn& (5.3)
n=0

t)=g c„„&""',

with

will thus, with appropriate values of b„, converge
to I(f) almost everywhere as N-~.

The functions (e ""'J are linearly independent
and square integrable on (0,~}. Hence, they may
be used to construct the required orthonormal ex-
pansion sequence {g„(t)}.In particular, the Gram-
Schmidt orthonormalization process gives

q (f) = (gt) + (5, +g ) + ~ ~ ~ + (5 +g ) (4.10} c „=(2p.„)'~' Q (p + p;) $J (p —g;) . (5.4)
j=0

and 5;, g;, and y, are as in (2.16) and (3.11).
For a given set of values w;, r„ the expressions

(4.9)-(4.10) may be evaluated numerically. Re-
sults show good qualitative agreement with experi-
mental current traces. I(f) = Q a„q„(t), (5 5)

The current I(t) thus has the convergent Fourier
series
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/

where

For the Laplace transform itself, let

I„(s)= 2 [I„(f)]= g (5 8)

Then, I„-Ias N ~ for s~ 0 and, for n
=0, 1, .. . , N, I„(p„)=I(p„). Thus, I„(s) interpolates
I(s) on s= p, „.

In the present application, difficulties in evalua- .

tion continue to arise if the sequence p„- p &0. In
particular, the constants c „rapidly become large.
Best numerical results were obtained with the se-
quence p„=const/2", which tends to zero
"quickly. " (The closure condition may be retrieved
by adding some small e &0 to each p„.) With this
sequence, the coefficients c „do not grow as n

If data are given on the set ft~}, the values
of g„(t„) and c „need be calculated only once. De-
rivatives of I„(t~) with respect to $ = &a„x, are given

u„=(4„,I(t))=g c „I(g ) (5.8)
m=0

and I(p„) is the Laplace transform of I(t) evaluated
at s = p, . Further, comparison of (5.3} with (5.4)
and (5.5) shows that

f„=g c.„a.. (5.7)
m=n

by

BI„(f„) g p, sI(p )
(f ) (5.9)

Having determined values of n, ~&, and r, from
a given set of data for I(t), results were checked
against the forward problem of determining I(t),
givenri, +;, andr, . In typical cases, such as
shown in Fig. 2, agreement to within 0.1% with the
convolution solutions was obtained using N= 16,
i.e., evaluating I(s) only 17 times at s = p,„, n
=0, . .., 16 on the real axis.

VI. DISCUSSION

Results from the inverse problem indicate that
only a small number of distinct types of traps is
required to accurately reproduce given data on the
transient photocurrent. Indeed, for the trace
shown in Fig. 2, n=3 is sufficient. Violation of the
closure property by the particular sequence (p,„},
chosen as a base for the Laplace transform in the
present case, has no practical effect on the cal-
culation. Hence, a small number of distinct types
of traps can approximate the power-law behavior of
disperse photocurrent transients very well. The
physical implications of this result will be dis-
cussed in a future publication. '
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