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A study is presented of the two-center approximation to the multicentered integrals which appear in the

Hartree-Fock theory of solids when a localized set of basis functions is employed; A model potential is

introduced to simulate the complicated self-consistent field of real crystals. This permits a simple separation of
multicentered contributions to energy integrals and at the same time provides a system for which accurate

solutions can be obtained easily. Crystal potentials are constructed for LiF, a typical ionic insulator, and

silicon, a typical covalent semiconductor. All integrals with the model potentials are accurately evaluated, and

the exact energy-band structures are compared to the results obtained in the two-center approximation. Two

types of errors are found, and the orbital ranges are identified for which the two-center approximation is

especially bad. For both crystals it is concluded that the two-center approximation is accurate for core orbitals

only, semiqualitative for the valence orbitals, and completely inappropriate for orbitals which describe

conduction bands. Generalization of these results is made to other systems, and it is concluded that neglect of
multicentered integrals must always be done with special care if even qualitatively meaningful results are to

be obtained.

I. INTRODUCTION

When solving the Hartree-Fock equations in the
quantum theory of molecules or solids usi. ng a var-
iational basis set composed of localized or atomic-
like functions, large numbers of multicentered in-
tegrals are encountered. The difficulty of evalua-
ting these multicentered integrals has frequently
necessitated approximation to, or complete neglect
of, certain types of integrals. While multicentered
integrals are usually much smaller than corre-
sponding single-centered integrals, there are vast-
ly more of them which contribute. Although ne-
glect of multicentered terms has often been neces-
sary because of their near intractability, such ap-
proximations must be regarded with suspicion. As
a matter of fact, the linear-combination-of-atom-
ic-orbitals method (LCAO) was made comparable
in accuracy with other methods of energy-band
theory only after accurate methods of evaluating
these multieentered integrals were introduced. "

The near intractability of these calculations, es-
pecially when dealing with heavier atoms, has
caused some reluctance to abandon the various ap-
proximations in molecular or solid-state problems.
A review of approximations used in molecular
studies has been given by Nicholson. ' In solid-
state studies three or more centered integrals are
often completely neglected, ' or the LCAQ formal-
ism is simply used as an interpolative or pseudo-
potential method. ' '

It is possible to evaluate analytically all the mul-
ticentered integrals which are encountered in the
Hartree-Fock equations if the I.CAD basis func-
tions are expanded first in a set of Gaussian orbi-
tals. This procedure has been used for a number

I

of years by quantum chemists to treat molecular
systems. Analytic expressions for integrals in-
volved are given by Clementi. ' While attempts
have been made to use Gaussian expansions in Har-
tree-Fock studies of solids, ' " the enormity of ef-
fort required in infinite periodic systems has
forced systematic approximations to, or neglect of
certain integrals. " Such studies have been limited
to solids composed of atoms with s and P valence
electrons only. Euwema et al."have made exten-
sive studies of the various approximations needed
to make these calculations tractable, but did not
compare approximate answers to answers obtained
by straightforward convergence of the exact ex-
pressions: They compared one approximation to
anothe r better approximation. While s ignificant
differences were found among their various ap-
proximations, it is difficult to sort out the sources
of error because their effort. was a very complica-
ted self-consistent Hartree-Fock calculation.

Among earlier studies, several should be men-
tioned here. ' ' Kunz' has estimated the errors
introduced by the two-center approximation in the
band structure of NaC1 by computing three-cen-'
tered integrals in a spherical approximation. His
conclusion was that bandwidths and band shapes
were rather sensitive to the approximation, with
75% changes occuring in both.

Bartling" made a similar study in a band-struc-
ture calculation for n-Mns, but carried out more
terms in the expansion of the crystal potential in
cubic harmonics. He used the g-function method
of evaluating multicentered integrals and had dif-
ficulty with convergence.

In a much simpler, but informative study, Wohl-
farth" has considered neglect of three-centered in-
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tegrals in a model calculation consisting of a linear
chain of hydrogen atoms with a rather large lattice
constant, introduced to minimize overlap. He
found errors of the order of 30/0 in band widths.
While the model was not physical, it did permit
some exact statements about errors in the approxi-
mation.

In another, even simpler calculation, Lapidus"
constructed a one-dimensional model for a mole-
cule of butadiene which consisted of 6-function po-
tentials. In this case, exact results could be com-
pared to two-centered approximate values, and he
found reasonable agreement only in the limit of
atomic separations which were large compared to
the size of the atoms (as measured by the range of
atomic wave functions). Energy eigenvalues did not
agree even qualitatively at closer spacings.

While the last two studies offered the advantage
of direct comparison of approximate solutions to
exact solutions, the models which were employed
to make this possible did not have much resem-
blance to any real physical system. It is the pur-
pose of this paper to examine a much more realis-
tic model of a solid-state system in which it is still
possible to obtain essentially exact eigenvalues,
which can be compared with eigenvalues from the
two-center approximation.

Two studies have been made here with similar
conclusions, one a model potential band calculation
for LiF and the other a model potential study of the
band structure of silicon. In both cases two- and
three-centered contributions were easily separa-
ted, and both were accurately computed. Parame-
ters in the model potentials were not highly re-
fined, but gave energy-band structures which are
comparable to much more intricate self-consis-
tent-field (SCF) band structures. The model poten-
tial is discussed in Sec. II. In Sec. III a compari-
son of various two- and three-centered integrals is
made, and the band structures are compared. Sec-
tion IV concludes this paper with an analysis of the
two-center errors and a discussion of a related
problem, the possible linear dependence of I.CAO
basis functions.

II. MODEL POTENTIAL

In order to obtain a simple separation of two-
and three-centered integrals, achieve a realistic
energy band structure, and avoid the very time
consuming requirements of a first-principles self-
consistent-field treatment, a crystal potential was
constructed as a superposition of model atomic po-
tentials. For LiF,

V(r) = Q [V,. (r —R,) + V (r —8, —r)],

where 8, is a lattice vector, visthevector fromthe
lithium atom at the origin to the fluorine atom at
(a/2)(1, 0, 0), and the sum is over a.ll lattice vec-
tors in the face-centered-cubic Bravais lattice.
The lattice constant a was taken to be 4.0173 A.
The model potentials for each atom were given the
Yukawa form

V„,.(r) =Z„,. exp(-o. L,. x)/x, (2)

and similarly for the fluorine atoms. The parame-
ter Z was assigned to be the charge on the nucleus,
3 for lithium and 9 for fluorine, while the parame-
ter a was fixed as 2.0 reciprocal atomic units for
both atoms (for calculational convenience).

A similar potential was also constructed for
crystalline silicon, but the parameters in the Yu-
kawa potentials were adjusted. First the energy
levels from an atomic Hartree-Fock calculation
were fit by varying the parameters Z and n. Pa-
rameters were chosen which gave a good fit to the
2s, 3s, and 3P levels. This occurred for Z=22 and
n = 1.04. After the band calculation was completed,
the parameter Z was adjusted to improve agree-
ment with the observed (indirect) band gap for sili-
con, and refinements were made on the nonlinear
parameter n. The lattice constant used for silicon
was 5.4307 angstroms. Additional details about the
silicon-model pot.ential calculation are given else-
where. " The best parameter values were Z =22,
Q = 1.23.

Since the goal of this paper was to examine care-
fully the approximations and not the band struc-
tures, no more elaborate parameter adjustments
were made here. In spite of the fact that no pa-
rameter adjustments were made for LiF, and only
partial adjustment of the silicon model was made,
both band structures show qualitative features
similar to the more complicated self-consistent-
field" (SCF) or elaborate pseudopotential calcula-
tions. " A discussion of these band structures is
given in Sec. III. Additional details are given by
Desai. "

where V(r) is the crystal potential given in this
case by Eq. (1), and Q; and &f&, are localized orbi-
tals centered about A and B, respectively. Insert-
ing Eq. (1) into Eq. (3) produces sums of the three-

III. TWO-CENTER APPROXIMATION

The modern LCAO-SCF method has been'de-
veloped over the last ten years by a number of au-
thors. A review of the formalism is presented in
the text by Callaway. " A typical integral needed to
compute matrix elements of the Hamiltonian is
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centered integrals, which, for arbitrary Q and V,
are extremely tedious to compute. With Gaussian
basis functions P and Yukawa model potentials,
analytic expressions for the integrals are avail-
able" which can be coded for computer calculation
and summed to the desired degree of accuracy.
For an appropriate choice of Yukawa parameters
the direct lattice sum converges readily. This is
in strong contrast to an unscreened Coulomb poten-
tial which must be handled with the Ewald pro-
cedure. "

The two-center approximation has been made in
previous LCAO studies because of the difficulty in
evaluating and summing all the integrals in Eq. (3).
For arbitrary wave functions and potential of inter-
action the three-center integrals are extremely
tedious to obtain with any accuracy. In the follow-
ing discussions the two-center approximation is
defined as complete neglect of all terms involving
more than two atomic sites. Thus, if both wave
functions are on the same site in Eq. (3), all po-
tential sites were summed, but if the wave func-
tions were on different sites, A and B, only the po-
tential contributions at sites A and B were
summed. It is the purpose of this paper to examine
this approximation in two crystal systems: LiF,
which is typical ionic insulator; and silicon, which
is a typical covalent semiconductor.

A. LiF integrals

In this study several complete band-. structure de-
terminations have been made for LiF. Two dif-
ferent sets of Gaussian orbital basis functions were
employed. The first used a set of atomic wave
functions from an earlier SCF study, while the
second used an expanded basis set. Table II gives
the expanded basis set. Reference 18 contains a'

table of the atomic wave functions. The expanded
set was constructed in a fashion similar to that of
Euwema et ai." Core orbitals were represented by
contra, ctions, but valence orbitals were allowed
complete variational freedom. The Gaussians with
very small exponents which appear in the atomic
set were discarded to avoid convergence problems
and possible linear dependence of basis functions.
These very-long-ranged orbitals are not needed in
periodic structures. In atomic or molecular struc-
tures they are required to satisfy boundary condi- '

tions at infinity. The nonlinear parameters in in-
dividual Gaussian orbitals were not optimized in
this study, but a check of convergence of the basis
set has been performed by repeating the calcula-
tions with varying numbers of Gaussians. This
point is discussed further in Sec. IV.

Table I shows some of the integrals obtained with
the atomic basis set for the model potential. The
three-center integrals (labeled 3C) were converged

TABLE I. Representative potential integrals with the
atomic Gaussian basis for LiF. Energies are in Ry.
SCF labels the self-consistent-field potential integrals,
and the integrals labeled 3C and 2C are the exact and
the two-center approximation to model-potential inte-
grals. Each integral in a row is to be multiplied by the
power of 10given in the last column labeled "Expt." Inte-
grals are labeled in column 1 by a notation which should
be clear. The vector in column 1 is R~~ of Eq. (3) in
units of qa.

Integral type SCF Expt.

Li-Li ls-ls

2s-2s

2s-2x

ls-2x

2s-2x

F-F ls-ls

2s-2s

2s-2x

ls-2x

Li-F ls-ls
ls-2s
2s-2s
ls-28
2s-2z
2z-2g

(1,1,0)
(2, 0, 0)
(1,1,0)
(2, 0, 0)
(7, 3,2)
(1,1,0)
(7,3,2)
(1,1,0)
(7, 3,2)
(1,1,0)
(7,3, 2)

(1,1,0)
(2, 0, 0)
(1,1,0)
(2, 0, 0)
(1,1,0)
(1,1,2)
(1,1,0)
(1,1,2)
(1,1,0)
(2, 0, 0)
(2, 1,1}

(0,0, 1)
(0,0, 1)
(0, 0, 1)
(0, 0, 1)
(0, 0, 1)
(0,0, 1)
(1,1,5)

—0.3910
-0.1235
-0.2835
-0.1784
-0.2278
-0.2113
-0.1454
-0.2382
-0.6041
-0.1445

0.8505

-0.1447
-0.1928
-0.1949
-0.5483
—0.7551
-0.5997
-0.1699
-0.9064

0.7899
-0.1044

0.6777

-0.6128
-0.2109
-0.2707
-0.8782
-0.7142
-0.0957
-0.3462

—0.3608
-0.1203
-0.3157
-0.1962
-0.2435
-0.2349
-0.1555
-0.2239
-0.6426
-0.1564

0.9089

—0.1592
—0.2105
-0.2428
—0.4724
-0.8547
-0.6138
-0.1891
-0.1011

0.9763
-0.1107

0.6887

-0.6728
—0.2045
-0.3560
—0.8250
-0.8972
-0.1136
-0.4396

—0.3368
-0.0855
+ 0:.0224
+ 0.0069

0.0000
-0.0137
-0.000.0
-0.2183
-0.0193
+ 0.0021

0.0000

-0.1592
-0.2032
-0.2176

0.0645
-0.8891
—0.1057
-0.1891
-0.0989

0.9139
-0.0253

0.9866

—0.6726
-0.2021
-0.3467
-0.8157
-0.8198
-0.0923
-0 ~ 1884

0
0

-5
0

0
-8

0
4

4
~2

-1
0

-1
0

-5

to eight significant figures by carrying out the
sums directly. The integrals labeled SCF were ob-
tained from the complete self-consistent-field cal-
culation, excluding exchange, "and the integrals
labeled 2C used the approximation defined in the
preceeding paragraph. The table includes wave
functions of s and P symmetry on each of the two
sublattices of LiF for first neighbors and repre-
sentative other neighbors. The general agreement
between 3C model and SCF crystalline potential in-
tegrals suggests that the model band structure
should resemble the SCF band structure, as it
does. At first glance the 2C model integrals ap-
pear to be roughly the same, also, leading one to
expect at least qualitative agreement between all
three band structures. This turns out not to be the
case. The 2C integrals display average errors of



5814 F R Y, BREN ER, CASE, A1VD DESAI

TABLE II. Expanded Gaussian basis for LiF. The contraction coefficients C multiply the
normalized Gaussian orbitals, exp(-&x ), where & is the orbital exponent (in reciprocal atom-
ic units) given in column 2.

Orbital type

Li s

Li p

Orbital exponent

3184.467 10
480.512 66
108.863 25
. 30.289479

9.641 514
3.391556
1.272 029
0.5
0.2
2.0
1.0
0.5
0.2

37 736.000
5 867.0791
1 332.4679

369.858 66
117.12969
40.302 86
14.898 01
5.877 74
1.626 76
0.61
0.23

1024.0802
23.794 387
7.495459
2.763 871
1.099 056
0.45
0.20

C1

0,001482
0.011447
0.059 942
0.245 798
0.758 958
0.0
0.0
0.0
0.0
1.0

0.000 221
0.001640
0.008 735
0.036 662
0.123 661
0.311407
0.443 441
0.222 868
0.0
0.0
0.0
0.011242
0.080 '741

0.311642
0.706 619
0.0
0.0
0.0

C2

1.0

1.0

—0.000 140
—0.001 065
—0.005 719
—0.023 829
—0.086 204
—0.233 185
-0.477 358
—0.303 661

0.0
0.0
0.0

1.0

1,0

1.0

1.0

1,0

C4

1.0

1,0

1.0

1.0

1.0

1,0

the order of 10/g, but larger errors in certain crit-
ical integrals are enormously magnified during the
band calculation (e.g. , the integral Li-Li 2P„-2P„
for the 110 neighbor). Resulting errors in the 2C
band structure are not yp Ry, but over 100 Ry in the
worst cage. The band structures are discussed in
more detail below, where this extreme sensitivity
is traced to the use of atomic basis functions with
long-ranged Gaussian orbital components.

In order to examine the two-center approximation
more carefully, the atomic basis set was replaced
with the larger set given in Table II. Some typical
integrals for this set are given in Table III, where a
a clear distinction between corelike and valencelike
orbitals appears when the two-center approximation
is made. Once again the individual integrals differ
by only a few per cent in most cases, and, with the
long-ranged terms which appear in the atomic ba-
sis set eliminated, discrepancies are not so large
for the extended states. Still, the band structure
in the two-center approximation contains very
large errors in some of the energy bands.

Li- Li integrals SCF 2C Expt.

4s-4s (1,1, 0)
5s-5s (1, 1,0)
1s-5s (1,1,0)
4s-4s (2, 0, 0)
5s-5s (2, 0, 0)
1s-5s (2, 0, 0)
4s-3x (1,1,0)
5s-4x (1,1,0)
1s-4x (1,1,0)
5s-1x (1,1,0)
3x-3x {1,1, 0)
4x-4x (1,1,0)
1x.-4x (1,1, 0)

—0.0872
-0.1923
—0.6408
—0.1941
—0.3577
-0.2115

0.2341
0.2364
0.2157
0.3005
0.4058
0.1532
0.7851

—0.1704
—0.2888
-0.6512
-0.2726
—0.5618
-0.2 149

0.4573
0.4902
0.2192
0.2459
0.8686
0.2827
0.6 574

—0.0416
-0.0688
—0.6504
-0.0002
—0.0051
-0.2146

0.1116
0.1169
0.2189
0.2382
0.2111
0.0664
0.6290

TABLE III. Representative potential integrals for the
expanded Gaussian basis for LiF. Notation is the same
as Table I. The symbol 1s now means C1 s contraction,
1x means C1 px contraction, etc. Similar results hold
for F-F and Li-F integrals with comparable orbital ex-
ponents.
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TABLE IV. Modified atomic Gaussian basis for silicon. Notation is the same as Table II.

Orbital type Orbital exponent C1 C2 C3

Silicon s'

Silicon P

69 989'.30
10 380.20

2330.010
657.4660
214.0040
. 77.60640
30.63950
12.81560
3.927 140
1.452 210
0.257 644

337.4950
78.6871
24.9351
9.21515
3.615260
1.451 990
0.503 992
0.186 040

0.000 18
0.00140
0.007 37
0.030 37
0.099 95
0.254 28
0.405 20
0.31509
0.038 93

—0.007 10
0.00105
0.00245
0.02140
0.105 84
0.326 18
0.495 75
0.221 66
0.007 27
0.000 38

—0.000 06
-0.000 46
—0.002 41
—0.010 23
-0.034 60
—0.100 88
—0.202 65
—0.230 77

0.536 51
0.648 44
0.009 74

—0.000 88
—0.006 93
—0.040 06
-0.11408
—0.231 97

0.148 59
0.352 80
0.655 73

0.00002
0.000 17
0.00087
0.003 95
0.012 26
0.040 92
0.07161
0.11661

-0.377 14
—0.366 89

1.11673

B. Silicon integrals

Energy bands for the model potential for silicon
have also been obtained to study the two-center er-
rors. In this case, two different sets of basis
functions were employed also, but neither was as
elaborate as the extended LiF basis. All Hamilto-
nian and overlap integrals were obtained first using
the atomic wave functions of Veillard. " Numerical
difficulties which were encountered with the over-
lap matrix for this set were resolved by recompu-
ting the atomic Gaussian expansion coefficients in
the presence of the silicon crystalline field after
first eliminating the long ranged s and p orbit'als. "
This second atomic set of basis functions is listed
in Table IV.

A comparison of 3C and 2C integrals obtained
with these two sets of atomic wave functions is giv-
en in Table V. 'The errors which occurred were
similar to the errors in the LiF integrals when the
basis functions were comparable. The atomic sili-
con wave functions were longer ranged and dis-
played larger errors in the 2C approximation for
the 3s-3s, 3s-3P, and 3P-3P integrals than did the
corresponding wave functions in Table IV. Because
these latter valence wave functions were consider-
ably shorter in range than the atomic silicon or the
LiF valence wave functions, the 2C approximation
was more accurate. Nonetheless, important quali-
tative features of the silicon band structure were
not obtained in the 2C approximation.

C. Energy bands for LiF

Although no adjustment of the model potential for
LiF was made, a clear resemblance to the SCF

0.0

Li-2p

Li-2s

E(Ry)

F-2p

-2.0 F-2p

F-2s

-4.0

SCF

Model

F-2s

Li-ls

LiF

FIG. 1. Energy bands for LiF. The solid curves are
the, SCF results of Ref. 18. The broken curves were ob-
tained from the model potential for LiF using the same
basis functions as Ref. 18. Exchange was included in
both results using a local exchange potential.

band structure of I.iF appeared as shown in Fig. 1.
The SCF band structure is from Ref. 18. Both band
structures include exchange interactions in the Xn
approximation with n = 1.0 (without exchange both
valence bands are unbound). By altering the model
parameters for fluorine, the model potential for
LiF could b adjusted to give better agreement be-
tween the fluorine bands of the two calculations.
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However the qualitative agreement between the
band structures suggests that the parameters used
here give potentials of appropriate range to test. the
two-center approximation, as it would be encoun-
tered in much more complex calculations with the
SC F potentials.

At this point the two-center approximation was
tested for the atomic basis functions and the model
crystal potential for LiF. The Hamiltonian matrix
(10 x 10) was reconstructed with the two-center in-
tegrals and the secular equation was solved again.
Results for the core levels were unaltered and the
valence bands changed by very small amounts
throughout most of the Brillouin zone. On the other
hand, the conduction bands were radically altered.
'The predominantly Li-2P conduction bands col-
lapsed through the valence and core levels to val-
ues below -100 By. General chaos appeared in the
conduction bands and also in the core levels below
-10 Ry; a graph would only be confusing, and
space is not wasted with one here.

While there had been no indication of difficulty
with the atomic basis functions in the SCF calcula-
tions (aside from expected inadequacies in the
higher conduction bands), this extreme sensitivity
to rather small changes, which occurred in the po-
tential integrals as the two-center approximation
was made, suggested that the basis functions might
be suffering from a near linear dependence. """
This behavior may be detected if some overlap ei-
genvalues get very small, or if off-diagonal ele-
ments get large. As the overlap eigenvalues ap-
proach zero, the overlap matrix becomes very
sensitive to numerical inaccuracies, and negative
overlap eigenvalues may. be produced by round-off
and precision errors. In the LCAO method this
usually happens when two orbital exponents are
close in magnitude and both small, so that the
Bloch functions which are constructed from them
are nearly constant over all the crystal. The prac-
tice has been simply to eliminate those functions
which are too long ranged, sometimes only at se-
lected points in the Brillouin zone.

To check out the basis functions for this problem
and to test convergence with respect to basis, the
entire calculation was repeated with the expanded
set given in Table II, being careful to converge all
integrals to eight, significant figures and all matrix
elements to at least six significant figures. Figure 2
compares the a, tomic basis (10 x 10 matrix) energy
bands with the expanded basis (34 && 34). There
were small improvements in the top valence bands,
moderate changes in the lowest conduction band,
and as expected, substantial revision of the higher
conduction bands. With the expanded set of basis
functions the smallest orbital exponents still were
sensitive to errors in the Hamiltonian matrix, as

2.0 '

1.5

1.0

LiF

0.5

0.0

FIG. 2. Model energy bands of LiF. The solid curves
were obtained from a basis of 34 orbitals and the broken
curves from a basis of 10 orbitals. The LiF model po-
tential with no exchange was used in both cases.

can be seen from the two-center approximations in
Table VI. In all cases, the small overlap eigen-
values associated with the long-ranged basis func-
tions were found to cause extreme sensitivity to
errors in the Hamiltonian matrix. The 2t." errors
are just as drastic with the more accurate basis
set as they were with the atomic set, and are not
produced by errors of convergence, but are prop-
erties of the approximation and the long-range na-
ture of some of the basis functions.

D. Energy bands for silicon

The band structure of silicon was first computed
with the atomic basis given in Ref. 23. In the cal-
culation a near linear dependence similar to that
discussed for LiF in the preceding paragraphs be-
came even more troublesome. Although all over-
lap integrals and the overlap matrix elements were
computed in IBM 370/155 double precision, and a
double precision. diagonalization routine was em-
ployed, some overlap eigenvalues were so small
that numerical instabilities were encountered which
resulted in negative overlap eigenvalues at some
points in the Brillouin zone. This problem, as it
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occurs in silicon, is discussed by Ciraci. " To
eliminate this. problem, it was necessary to modify
the basis set. This was done by deleting the small
orbital exponents from the atomic basis and per-
forming a crystal-field calculation for the atomic
set." This new basis is listed in Table IV.

Energy bands from the atomic set, in addition to
exhibiting negative overlap at some points in the
Brillouin zone, were sensitive to the two-center
approximation. Although no conduction bands fell
into the core, there was an overlap and mixing of
valence and conduction bands. After the new basis
set was obtained, the energy bands were well be-
haved. A comparison of the 3C and 2C energy
bands for the basis set of Table IV is given in Fig.
3. While the 2C approximation is better here than
in either LiF calculation, it does not give qualita-
tively correct predictions (tor this model potential)
for the shape of the conduction bands. The errors
in Table V appear small, but are large enough to
affect the band structure. It should be pointed out

' that the longest-ranged basis function in the silicon
set has a range in lattice constants which is only
half the range of the corresponding function in the
extended basis set for LiF.

Integral type 3C - Expt.

Atomic
basis

Crystal
basis

1s-Is (2, 2, 2)
(4,4, 0)

3s -3s (2 ~ 2 q 2)
(4,4, 0)

1s-2x (2, 2, 2)

(4,4, 0)
3s-3x (2, 2, 2)

(4 4 0)
2x-2x (2, 2, 2)

(4,4, 0)
3x-3x (2, 2, 2)

(4,4, 0)
1s-1s (2, 2, 2)

(4,4, 0)
3s-3s (2, 2, 2)

(4 4 0)
ls-2x (2, 2, 2)

(4, 4, 0)
3s-3x (2, 2, 2)

(4, 4, 0)
2x-2x (2, 2, 2)

(4,4, 0)
3z-3z (2, 2, 2)

(4, 4, 0)

0.1231
0.6878

—0.4327
—0.6513

0.3446
0.4223
0.3952
0.1332

-0.2915
0,1498

-0.6717
0.1256

-0.1482
—0.3299
—0.1457
-0.1711

0.2464
0.8721
0.1774
0.7770
0.1242
0.1122
0.9057

—0.7762

0.1229
0.6867

-0.3591
—0.2468

0.3441
0,4216 .

0.3220
0.0547

-0.2870
0.1455
0.3928
0.0428

—0.1481
—0.3295
—0.1393
-0.0460

0.2460
0.8671
0.1679
0.2928
0.1236
0.1091
0.9300

—0.8520

-3

TABLE. V. Representative potential integrals for
silicon. Notation is the same as Table I. The lattice
vector is given in units of -e.

8

X3

0.6

Og

-0,5

Si

—1,0—

X

FIG. 3. Model energy bands of silicon. The model
potential included no exchange. The basis set is given in
Table IV. The solid curves include all 3C integrals; the
broken curves use the 2C approximation.

IV. ANALYSIS OF ERRORS AND CONCLUSIONS

There are two related phenomena responsible for
errors in the 2C energy levels. The first obvious
source is error in evaluation of the integrals. If
overlap between the potential function on one site
with wave functions on two other sites is small
enough, 3C contributions should be negligible com-
pared to contributions in which all three functions
are on one or two sites. The amount of overlap is,
in turn, determined by the range of the three func-
tions and the lattice constant. For the LiF model
potential used here, the range was a few lattice
constants; but for silicon it was more. The pro-
duct na was about 11 for silicon and 16 for the LiF
model potential. On the other hand, the wave-func-
tion ranges could be quite large. Orbital exponents
in Tables II and IV vary from rather large to ra-
ther small. For' the long-ranged orbitals, the sum
over potential sites in the integral converged to
eight significant figures only after more than a
thousand atomic potential sites had been summed,
despite the fact that potential functions were short
ranged. Integrals of this type had the largest con-
tribution from 3C terms, not the 2C terms, so that
the 2C approximation sometimes produced not only
the wrong magnitude for the integral, but even the
wrong sign.

This behavior was not observed when one of the
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wave functions was localized (e.g. , Li 1s or F 1s
in Tables I and III): then the 2C integral approxi-
mation was much better. If both wave functions
were localized, even the 2C integral was negligi-
ble. Examination of many integrals for this cal-
culation (where it should be remembered that the

range of the model potential functions was of the
order of one lattice constant) yielded the following
error criterion:

Z(3C) -Z(2C) I/IE(3C)
I

0.1 for n;a&20. (4)

For n,.a» 20 the accuracy of this approximation
improved rapidly. For potentials of shorter range,
this criterion could be relaxed, but for longer-
ranged potentials it would be difficult to satisfy this
criterion for any of the n, In these cases neglect
of any multicentered integrals must be done with
great care to ensure physically meaningful results
for the approximation. "

The other source of error in the energy levels
concerns the type of orbitals employed. While
small errors in valence-type and core-type orbital
integrals produced small errors in the core and
valence eigenvalues, small errors in the conduc-
tionlike orbitals were greatly magnified by the band

calculation, as discussed in the previous section.
If orbital exponents in the Gaussian basis set were
too small, the overlap matrix had eigenvalues
which were extremely small, sometimes causing
numerical instabilities. In the limit that two Bloch
functions are linearly dependent, one of the corre-
sponding overlap eigenvalues is exactly zero, so
the magnitude of the smallest overlap eigenvalue is
a measure of a near linear dependence. For n,. a
&2 this behavior was clearly demonstrated here.

For n,. all distinct, and if all computations were
carried out to sufficient accuracy, there should
have been no problems. But with the finite pre-
cision of a digital computer, or with approxima-
tions to some of the integrals, this near linear de-
pendence caused catastrophic effects, as shown in
'Table VI.

For LiF, the smallest overlap eigenvalue for the
34 && 34 matrix at the points I" and X were 0.000 579
and 0.000013, showing a strong k dependence. The
spurious core levels in Table VI were strongly re-
lated to these eigenvalues and the associated basis
functions. To examine this relationship more
closely, the Bloch functions composed of Gaussians
with the smallest orbital exponents were dropped
from the basis set for each symmetry type, leaving
a basis set of 26 Bloch functions. The lowest en-
ergies for this set are given in Table VI, labeled
2C (26). The lowest overlap eigenvalues for this
matrix (26x 26) were larger, 0.00360 and 0.00365
at I" and X, and spurious core-energy eigenvalues
disappeared. Also, the strong k dependence of the

overlap eigenvalues was removed. It should be
noted that significant differences exist between the
2C (26) and 3C (34) energy levels: 0.5 eV in the top
valence band, and more than 1.4 Ry in the lowest
conduction band at I". With the smaller basis set,
semiquantitative valence-band structures may be
obtained, but the absence of longer-rariged basis
functions precludes even qualitative description of
the coriduction bands with the 2C approximation.
This is also true for the 3C (26) eigenvalues.
These agree with the 2C (26) eigenvalues to within
0.000 8 By in the valence bands and 0.009 By in the
conduction bands, so it is not the two-center ap-

TABLE VI. Energy levels of the LiF model potential at three symmetry points. Energies are in Ry. The row labeled
3C (34) gives energies computed exactly with the expanded basis set (34 && 34 matrix). The row labeled 2C (34) gives the

2C approximation with the same set, while the row labeled 2C (26) gives the two-center results for a 26 x 26 matrix ob-
tained by deleting the lowest orbital exponent from the set for each type wave function in Table II. Energy values in

parentheses are out of order energetically, or correspond to conduction bands which have collapsed through the core.

~15(Lip) 1 &(Li s) I'& (F 2p) I'&(F 2s) I'~(Li 1s) I ~&(Cond. )
I' (F 1s) I' ~5(C ond. )

3C (34)
2C(34)
2C(26)

2.020
2.102
2.067

0.813
0.924

(2.242)

0.183
0,187
0.183

—1.189
—1,186
—1.145

-1.584
-1.578
-1.550

(—13.449)
~ ~ ~

—50.310
—50.310
—50.310

(—125,681)
e ~ ~

(s p) (F 2p)' &g(F 2p) &~(F 2 s) A&(Li 1s) 4~(Cond. ) ~5(Cond. ) I'~(F 1s)

3C (34)
2C (34)
2C (26)

0.963
1,083
1.602

0.140
0.117
0.149

0.066
0.075
0.112

-1.203
—1.192
—1.164

-1.544
—1.535
-1.526

(—5.261)
~ ~ ~

(—26.766)
~ ~ ~

—50.310
—50.315
—50.310

X4 (p) X'5(F 2p) X4(F 2p) X~(F 2s) X&(Li 1s) X&(F 1s) X5(Cond. ) X4(Cond. )

3C(34)
2C (34)
2C(26)

1.185
(1.242)
1.572

0,098
0.091
0.111

—0.083
—0.065
—0.016

—1.197
—1.199
—1.153

—1.509
—1.511
—1.502

—50.310
—50.310
—50.310

(—137.06) (—6592.3)
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proximation causing the largest errors here, but
an inadequate basis set.

In the silicon calculations the basis sets were not
as large as the LiF expanded set. None of the
long-ranged silicon orbitals were given complete
variational freedom, and it is expected that d-sym-
metry orbitals, which were not included in either
case, would be more important in the silicon con-
duction bands. For these reasons, the silicon
model potential band structures probably are not
as accurate as the LiF ones. This may account for
the failure to obtain the exact band gap by variation
of the parameter Z in the model potential. " The
extreme sensitivity of the silicon overlap eigenval-
ues to errors in the overlap integrals or matrix
elements may be traced to the form of the overlap
matrix and the use of extended Gaussian orbitals.
In construction of the overlap matrix, bonding and
antibonding combinations of orbitals on each of the
two silicon atoms in the primitive cell are used.
The orbitals in each of the atoms are the same,
and for small n, overlap eigenvalues are especially
troublesome, as clearly indicated in the paper by
Ciraci. "

When the overlap problem was eliminated for
silicon, the 2C approximation appeared to be
slightly better than it was in LiF, as indicated by
the integrals of Table V and the energy bands of
Fig. 3. This last fact is primarily a consequence
of the modified basis set for silicon. 'The range of
the most diffuse orbital for silicon was only half
the range of the most diffuse orbital in LiF (mea-
sured in lattice constants). The improved 2C ap-
proximation for the modified atomic silicon basis
should be expected from the results of eliminating
basis functions in LiF. Th'. s was discussed in the
paragraphs above, where very close agreement be-
tween 3C and 2C energy bands was obtained for
shorter-ranged orbitals. (It should be remembered
that neither of these agreed with the larger more
complete, basis set for LiF.) Although the 2C ap-

proximation appears less radical in silicon, there
are still important qualitative differences in the
barid structures.

Considering the results for both LiF and silicon,
one is faced with a dilemma: to avoid exaggerated
errors which can occur with long-ranged functions
it is necessary to eliminate basis functions which
are important to the description of the lower con-
duction band. There is no way to obtain even a
qualitative description of conduction bands using
the two-center approximation to the model poten-
tials for'LiF and silicon.

These conclusions hold for the basis sets de-
scribed in this paper and for the model potentials
constructed here. If the self-consistent potential
of a real crystal were employed, the approximation
would be worse. If the basis is modified to exclude
long-ranged orbitals, the approximation is im-
proved. Depending upon the crystal, this may or
may not be possible. In these studies it is found
not to be possible if quantitative valence and con-
duction bands are required: the long-ranged orbit-
als are needed in the Gaussian basis. Use of other
types of bas is func tions, truncation of orbitals at
the Wigner-Seitz cell boundaries, or replacing
long-ranged orbitals with off-atomic-center short-
ranged orbitals are methods which might be em-
ployed to eliminate these otherwise important mul-
ticentered integrals. The local orbital procedure
of Kunz, "which uses a localizing operator in the
Hartree-Fock equations, is another possibility
which could be employed in appropriate crystal
systems.

For the usual LCAO procedures, and for crystal
systems which must be described by long-ranged
orbitals, the two-center approximation is not likely
to yield even qualitative results. If the orbital
range is too great, it is not advisable to use any
approximations to the multicentered integrals be-
cause of the extreme numerical sensitivity which
can greatly exaggerate small errors.
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