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Temperature-dependent lattice dynamics and equations of state of solid hydrogen*T
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A numerical computation of the temperature dependence of the pressure volume relations of fcc parahydrogen
was carried out within a somewhat modified self-consistent phonon approximation. The effect of the hard core
in the intermolecular potential was treated with a short-range correlation function. The hydrogen Hugoniot,
specific heat, and average sound velocities were also calculated and comparison with experimental data was

made where possible.

1. INTRODUCTION

In a previous paper,' here referred to as I, the
ground-state properties of solid molecular para
hydrogen and ortho deuterium were calculated
using the self-consistent phonon approximation
(SCPA). The hard-core problem in these quan-
tum solids was treated with a short-range correla-
tion function (SRCF) of the type as proposed by
Horner? It was found that of the two pair poten-
tials used in I the ab initio pair potential proposed
by England, Etters, Raich, and Danilowicz®
(EERD) was particularly successful in reproducing
the pressure-volume results of Anderson and Swen-
son? in the range from 0-30 kbar. The purpose
of this paper is to further investigate the validity
of the EERD potential and to attempt to use it to
calculate properties of solid molecular hydrogen
at finite temperatures.

Unfortunately, the SCPA used in I cannot be ap-
plied at finite temperatures without modification.
With the inclusion of the SRCF, the approximate
method of I is a variational treatment in which
the ground-state energy is minimized. In order
to obtain temperature-dependent effects it is nec-
essary to calculate the Helmholtz free energy, F.
Therefore for T>0 we have used an approach sug-
gested by Meissner® in which many features of the
SCPA are retained. Since the EERD potential
has proven to be accurate at 7=0, a comparison
of the temperature-dependent properties of solid
molecular hydrogen and deuterium with available
experimental data will provide a realistic test of
the validity of this approach. The SRCF used in
conjunction with the Meissner method is the low-
temperature form proposed by Horner as modif-
ied in I,

F) =fo(r) [Ag+ A, (r = R) +Ay(r =R F1M2. (1)

The constants A, A,, and A, are determined as
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in I to ensure that the SRCF does not alter the
normalization of the two-particle wave function,
the average distance between molecules, and the
width of the distribution of any pair of molecules
about their equilibrium separation, R,.

For reasons given below, the form for f(») was
chosen to be the same as in I,

o) = exp[-O 5(0b/7)], (2)

where ¢ is chosen as the Lennard-Jones potential
parameter, ¢=2.958 A. In I, b was determined
as a function of volume at 7=0 K by minimization
of the ground-state energy. Here we have used at
higher temperatures the values of b determined in
I. As explained in Sec. III, the use of the zero-
temperature SRCF can be justified for hydrogen
and deuterium because most of the available ex-
perimental data are in the temperature range
T< ©,, where O, is the Debye temperature.
Using the Meissner method, with the SRCF of
Eq. (1), and the EERD potential as given in I,
we have calculated the specific heats at constant
volume, C,, as well as several isotherms. Angle-
averaged sound velocities were calculated with
this method for 7>0 as well as with the approach
of I for T=0. To further investigate the validity
of the EERD potential we have also calculated the
shock Hugoniot of H, and compared it with experi-
ment.

IL. CALCULATIONS AND RESULTS

Meissner® has given the exact form of the fre-
quency-independent dynamical matrix as

% 4B = <T\f1—> > 1 - exp(~ik- RY,)]

i#j
xfd%fvv V)NS(r = 7,,),
(3)
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where V(7) is the two-body intermolecular inter-
action, RY; is the equilibrium separation between
molecules localized around lattice sites 7 and j,
and 7;; is their instantaneous separation. The
exact pair correlation function (6(» - 7)) can be
written as a Fourier transform and expanded in
cumulants

O(r =7, =(211)'3fd3k exp[ike (¥ - M,)]

where the lowest cumulants M, and f&z are ﬁ‘}j and
{,;,4,,), respectively. The cumulant (@;,3;;) is the
displacement-displacement correlation function
D;;. Terms containing third- and higher-order
cumulants are then regrouped into a function
exp[¢;;(V)] where Kk has been replaced by —iV:

(8(r = 7;;)) =exp[¢;;(V)]g 1 (7),
where

g4 =[@n) det D, " /2exp(-1T;,+ D3} - ;)
and ;=% - R? ;- The function exp[¢;;(V)] is approx-
imated by f2 ,(r) where f;;(7) is given by Eq. (2).
Neglecting the dispersive terms arising from the
odd derivative anharmonicities, the equation for

the phonon frequencies wg, and the polarization
~
vectors €3, becomes

%€ = — —ike
wkl€k), g[l exp(-ik+R)]

x [ d%u £, g 1) V9 V) E.

(4)
The displacement-displacement correlation func-
tion D is then calculated in the usual manner®-®

- ﬁ o -
Dij = W..Z [1 - exp(zk' jo)}
kx

X ws coth(0 587wy )€ pEm (5)

where B=(kgT)™ and k, is the Boltzmann constant,
while the Helmholtz free energy retains the usual
SCPA form™®:10

F=Y, [3.1 In (2 sinh0.567wg,)
o8

Tiwg, coth(0.567wy,)] . 1
_ hwgco E} Bﬁwkx)]+§;(V(1’;j)>,

(6)

where

(Vry,) = f d*u f3,(n g @) V(r). (7)

Initial values of the phonon frequencies and pol-
arization vectors are given by the harmonic ap-
proximation® with a fictitious potential chosen to
give real frequencies. Then displacement-dis-
placement correlation functions are calculated
from Eq. (5). New frequencies and polarization
vectors are then determined from Eq. (4). This
procedure is then iterated until self-consistency
is obtained. As in I the face-centered cubic (fcc)
structure was assumed. The reader is referred to
I for the numerical details of the calculation.

This method is equivalent to including only the
instantaneous contributions to the phonon self-
energy, ¢, (in Horner’s representation). The
limitations of this approximation have been dis-
cussed in some detail by Horner.® At low tem-
peratures or high pressures (i.e., when the cry-
stal behaves like a classical crystal) the differ-
ence between the Meissner force constants and
those which include noninstantaneous contributions
to the phonon self-energy (¢,) are small. Here,
the Meissner approach is valid. As the tempera-
ture increases or the pressure decreases, this
difference increases and the results become more
questionable. Horner notes that the difference be-
tween ¢, and ¢, is of the order of magnitude of the
next-order anharmonic correction to the phonon
self-energy (a term proportional to odd derivatives
of the potential).'’

The velocity of sound

9 wy.
lim —=

was calculated from the eigenvalue [Eq. (4)]. For
small IEI the phonon frequencies wg, can be ap-
proximated as'®

wgy = C(B, N |K], (8)

where C(E,A) is the velocity of sound. Upon ex-
panding Eq. (4) for small |k| and substituting Eq.
(8) for the frequencies, one obtains the eigenvalue
equation

C2(k, M) &g, = (2MN)™ Z(k R,V V() + &g,
where the average denoted by the angular brackets
is defined by Eq. (7). The angle averaged sound
velocity is then given as

C, = (4m)(2MN)™/?

fdn( (k- R‘z,)ze (vvv@))-é‘;,t)”z

The integration over the solid angle 2 was per-

"formed numerically employing an integration
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FIG. 1. Angle-averaged sound velocities as a function
of molar volume at T'=132 K. Longitudinal and trans-
verse velocities are given by the upper and lower

curves, respectively. Experimental longitudinal velocity

is from Ref. 20.

scheme proposed by Wallace .’* Average sound
velocities calculated in this way are displayed in
Figs. 1-3. The zero-temperature average sound
velocities shown in Figs. 4 and 5 were calculated
with the zero-temperature theory of I.

The specific heat, C,, plotted as a function of
temperature in Figs. 6-8, were calculated numer-
ically from the free energies defined by Eq. (6)
according to
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FIG. 2. Angle-averaged sound velocities as a function
of pressure at T'=132 K. Longitudinal and transverse
velocities are given by the upper and lower curves, re-
spectively.
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FIG. 3. Angle-averaged longitudinal sound velocities
as a function of temperature at a constant volume of 10
cm®/mole.

%R
Co=-Tore
The functional form used to perform the indi-
cated differentiation was obtained by fitting the
calculated free energies to the form

v

L :
F(T)=) B, TV, )

The L values of B were chosen to give the best
smooth fit in a least-squares sense to the free
energies F. According to the calorimetry experi-
ments of Ahlers'® the specific heat of para hydro-
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FIG. 4. Angle-averaged sound velocities as a function
of molar volume at T'=0. Longitudinal and transverse
velocities are given by the upper and lower curves, re-
spectively.



Average Sound Velocity (105 cm/ sec)

0 1 1 | | | |
o] 5 0 5 20 25 30 35

Pressure (kbar)

FIG. 5. Angle-averaged sound velocities as a function
of pressure at T =0. Longitudinal and transverse vel-
ocities are given by the upper and lower curves, re-
spectively. Experimental points are from Ref. 17.

gen at low pressures has a pure-T3 behavior near-
ly up to the melting temperature. However, using
this approach, we were only able to fit our free
energies with relatively poor accuracy to a form
which would give a T3 behavior in C, over the
range of temperatures shown in Figs. 6-8. In an
attempt to improve upon the specific-heat calcula-
tions performed above, Eq. (2) was replaced by
the high-temperature form proposed by Horner 2

fo(r) =exp[-0.58V(»)]. (10)

It was found that for temperatures below 20 K no
convergence in the free energy could be reached
with this form of f,. The form of Eq. (10) is strict-
ly valid for the classical limit and should hold for
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FIG. 6. Specific heat, C,, at a molar volume of 18.73
em®/mole.
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FIG. 7. Specific heat, C,, at a molar volume of 18.63
cm®/mole. Experimental points correspond to a volume
of 18.73 cm®/mole.

temperatures on the order of the Debye tempera-
ture. However, at the volumes used in the calcula-
tion of our specific-heat curves, the crystal melts
well below its Debye temperature.'®

The isotherm shown in Fig. 9 was calculated
from the free energy in a manner similar to the
specific-heat calculation. The free energies were
fit to the same functional form as Eq. (9), with
the temperature replaced by the volume. The pres-
sure is then given as ’

8F
Vi,

As a further test of the validity of the EERD po-
tential the shock Hugoniot was also calculated.
The method employed in the calculation was the

Or—T T T T T T T T 1

35— Calculated
e o o Experiment (AHLERS)

25—

Specific Heat 1077 C, ferg/mole K)

Temperature (K)

FIG. 8. Specific heat, C,, at a molar volume of 18.26.
Experimental points correspond to a molar volume of
18.73 cm®/mole. :
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same as that used by Ross,** with the exception
that the contributions to the free energy caused by
the internal degrees of freedom were calculated
with the theory of Pennington and Kobe.!®* For
comparative purposes we have also used the po-
tential suggested by Ross. The Hugoniots calcula-
ted in this manner appear in Fig. 10 along with
the experimental point of van Thiel and Alder.'®

III. DISCUSSION AND CONCLUSIONS

As in I where sound velocities were calculated
in specific symmetry directions it is seen from
Fig. 5 that the EERD potential is successful at
T =0 and zero pressure in predicting the angle
averaged sound velocities of para hydrogen. The
experimental points shown in Fig. 5 were measured
by Bezuglyi et al.'” in polycrystalline samples of
para hydrogen and should be considered as angle-
averaged sound velocities. More recently Wanner
and Meyer'® have measured sound velocities in a
large quantity of normal hydrogen crystals. Their
smoothed data for normal hydrogen agreed well
with earlier data by Bezuglyi and Minyafaev'® al-
though the authors of Ref. 18 found somewhat low-
er values for the longitudinal velocities, The dif-
ferences between the experimentally measured
sound velocities are fairly small (with the excep-
tion of Wanner and Meyers’s longitudinal veloc-
ities) and it is sufficient to use the para hydrogen
results of Ref. 17 for comparative purposes. It
can be seen in Fig. 5 that the agreement is excell-
ent.

The shock Hugoniot shown in Fig. 10 indicates
that the EERD potential is probably too “stiff” in
the core region. By comparison it is seen that
the Ross potential,'* also investigated in I, pre-
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FIG. 9. Isotherm at 132 K.

dicts a shock Hugoniot within the error bars of
van Thiel and Alder.'® It is not known to what ex-
tent the Trubitsyn-like damping term in the EERD
potential might effect the Hugoniot. It is possible
that a modification of this term might lower the
Hugoniot and still not effect in a serious way the
results of I.

Figure 1 indicates that the sound velocities are
in fair agreement with the experimental point of
Mills et al *° which was measured in normal hydro-
gen at 132 °K. Additional sound velocity measure-
ments in solid hydrogen are presently underway
and it is hoped that more data will be available
in the near future. Curves similar to those of
Figs. 1, 2, and 9 were also generated for temper-
atures of 91 and 200 K. Although the change of
temperature yields numerically different values of
sound velocities and pressures, the curves appear
identical to Figs. 1, 2, and 9 and therefore are not
presented here. From Fig. 3 it is observed that
the sound velocities, although temperature depen-
dent, change by less than 0.5% over a rather large
temperature range at a molar volume of 10 cm?.
The transverse sound velocities are found to lie
on a curve very similar to Fig. 3 with the ordinate
rescaled to have a maximum value of 4.132 and
minimum value of 4.112.

A comparison of Figs. 3 and 4 shows what must
be interpreted as a major failure of the approach
used in this paper. The sound velocities of Fig.
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FIG. 10. Shock Hugoniot. Experimental point is from
Ref. 16. Initial conditions were T'=20.7 K and V=28.6
cm®/mole.



3 extrapolate into much higher values at zero tem-
perature than are shown in Fig. 4. Also, the pres-
ent method predicts only a slight temperature de-
pendence of the pressure-volume curves. Although
the pressures do increase at fixed volume as a
function of temperature, even the pressures at

T =200 K are lower than those calculated in I at
T=0. A probable source for these discrepancies
is that the free energy of Eq. (6) is too crude an
approximation especially when compared to I.

This form for the free energy was used with reas-
onable success by the authors of Ref. 11 to calcul-
ate specific heats at high temperature for krypton.
They found that this method gave better results
than the improved self-consistent phonon approxi-
mation?'-2® which has been considered as one of

the more successful temperature-dependent theo-
ries. Unfortunately their calculation was restricted
to a nearest-neighbor model which overemphasizes
the effects of the short-range correlations.

Another possible cause for the poor reliability of
the isotherms is the particular form chosen for
the SRCF. It is reasonable to assume that the
low-temperature form given by Eq. (2) is valid
at temperatures well below the Debye temperature.
This assumption is probably most valid in the cal-
culation of the specific heat where the maximum
temperature investigated was 20 K. The Debye
temperature as a function of molar volume has
been determined by Ahlers.!* For example, at
T=0 K and a volume of 22.56 cm®/mole, ©, is
128.1 K. At 18.73 cm®/mole, 0, is 189.4 K. At
T =20 K and volumes within the range investigated
in our specific-heat calculations, the Debye temp-
erature is larger than 100 K. The Debye tempera-
ture is known to decrease with increasing temper-
ature at constant volume. At temperatures on the
order of 100 K the form for f, shown in Eq. (10) is
. preferred over the one given by Eq. (2).

Figures 6-8 display three specific-heat curves
at volumes 18.73, 18.63, and 18.26 cm?3/mole,
respectively. Ahlers’s measurements for a vol-
ume of 18.73 cm3/mole are plotted on all three
curves. The calculated values of C, in Fig. 6 are
approximately 16% too high. Ahlers reports an
uncertainty in volume of +0.1 cm®/mole. The
curve in Fig. 7 corresponds to a decrease in vol-
ume of this amount and an increase in accuracy
to approximately 13%. With a decrease in volume
to 18.26 cm®/mole, the curve in Fig. 8 is 4% too
high at 20 K. It appears that by decreasing Ahler’s
reported volume by 2.5% we can calculate specific
heats roughly within the 4% total accuracy reported
by Ahlers.
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In summary, we have continued the investigation
of the hydrogen pair potential, proposed by EERD,
begun in I, with the calculation of 7=0 average
sound velocities and the shock Hugoniot. InT it
was shown that this potential adequately describes
the available low-temperature experimental pres-
sure-volume results, at least to pressures cur-
rently attainable by static methods.*?* The zero-
temperature angle-averaged sound velocities cal-
culated with the method of I are in excellent agree-
ment with the experiment. From the Hugoniot
calculation it appears that this potential is not
accurate enough at very small intermolecular
separations, and should not be used to estimate
the insulator-metal transition pressure.

An evaluation of the applicability of the Meissner
method for a prediction of temperature-dependent
effects in quantum solids is a more difficult prob-
lem. A judgment of the validity of the approach
is masked by the particular choice for the SRCF.
Reasonable success in the calculation of specific-
heat curves at low temperatures coupled with the
poor pressure-volume results at higher tempera-
tures would indicate that the form for the SRCF
may be largely at fault.

The accuracy of the Meissner approach is there-
fore still a question. At present it appears that a
proper choice of SRCF is essential for an adequate
description of quantum solids in terms of the
Meissner approach.

Another approach to calculate the solid-state
properties of hydrogen and deuterium has recently
been taken by Goldman.?® Instead of treating the
short-range correlations, as was done inI as well
as in this work, Goldman used the self-consistent
phonon approximation including cubic anharmonici-
ties to provide an improved treatment of the elas-
tic constants of hydrogen and deuterium. No
short-range correlations were included in his
calculations. Goldman used a pair potential of
the Barker—Pompe?® form with potential parame-
ters, chosen within the improved self-consistent
phonon approximation, to fit the deuterium results
of Anderson and Swenson. A comparison of a cal-
culation using the improved self-consistent method
with a calculation incorporating hard-core effects
in the manner of I employing the same potential
would shed additional light on the relative impor-
tance of the short-range correlations and cubic an-
harmonicities for the quantum crystals—hydrogen
and deuterium.

The authors are grateful to Dr. Gerald Kerley
for supplying the program that calculated the hy-
drogen Hugoniot.
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