
PH Y SI GAL RE VIE% B VOLUME 15, NUMBER 12 15 JUNE 1977

Competitive diffusion sinks and precipitation on dislocationse

Marshall Fixman
Department of Chemistry, - Yale University, ¹wHaven, Connecticut 06520

(Received 10. May 1976; revised manuscript received 4 February 1977)

The kinetics of stress-assisted precipitation on dislocations is investigated on the basis of a two-dimensional

lattice analog of Ham s parallel-cylinder model. The rate of precipitation was calculated for site fractions of
sinks up to 0.25 by exact methods (for small systems containing up to 36 sinks) and by several approximate
methods. For a random array of sinks the rate of precipitation was found to be much slower than the first-

order kinetics appropriate to a periodic array, contrary to a common belief.

I, INTRODUCTION

It is widely believed' ' that simple models of the
precipitation of point defects at randomly distributed
dislocation lines must yield first-order kinetics in
the later stages. We have reinvestigated thisprob-
lem on the basis of a lattice model of competitive dif-
fusion to sinks and find a contrary result, namely,
that the kinetics is slower than first order for a
random distribution of sinks.

'The source of the conventional belief in first-
order kinetics seems to be the analysis of Ham, '
who showed that a regular array of parallel dis-
location lines gave first-order precipitation kine-
tics after a quite short induction period, and who

then went on to argue that a random array of dis-
location lines would not yield significantly different
kinetics. Qn this basis, he concluded that Harper' s
rather intuitive generalization' of Cottrell and
Bilby's short-time equations' for stress-assisted
precipitation was faulty.

Harper had suggested that the fraction W(t) of
impurities remaining in solution would follow the
equation 5'(t) = exp(-at~}, with a and b inferred
from the short-time equations of Cottrell and Bil-
by. Thus b = 3 if the attraction energy between an
impurity atom and a dislocation line varies with
distance x as x '. Because on the one hand, Har-
per's equation often fits experimental data quite
well, ' and on the other hand is properly regarded
as without theoretical foundation, it has been as-
sumed that the basic model of stress-assisted
precipitation is at fault, and more elaborate mod-
els of the short-ranged interaction between im-
purity and dislocation have been proposed. ' What-
ever the merit of these proposals, we wish to ar-
gue here that they have not been adequately moti-
vated, and that, in fact, a random array of dis-
location lines will give precipitation kinetics that
are much slower than first order.

Our model is a lattice equivalent of that examin-
ed by Ham' who replaced each dislocation line and
its associated stress field by a cylinder of radius

R, on the surface of which the concentration of
impurities is required to vanish for t&0. Ham
showed that the precipitation rate on an isolated
dislocation line, that attracts an impurity with
energy E = kTo/-r, is quite close to the precipita-
tion rate on the cylinder after a short induction
period, if R is chosen approximately equal to 0.
The induction time is of order R'/D, where D is
the diffusion constant. For short times the fluxes
are proportional to t ' ' for the dislocation, and
t ' ' for the cylinder. For our lattice model the
initial flux is finite.

The failure of lattice kinetics to agree with con-
tinuum kinetics at. short times is not a seriousprob-
lem for the low concentration of sinks, character-
istic of the physical problem. Numerical results
confirm one's expectation that the time period over
which the bulk of impurity is exhausted moves to
larger values as the concentration of si.nks de-
creases, and discrepancies in the initial precipita-
tion rate move off the time scale of interest.

We have used a finite lattice with periodic bound-
ary conditions because of several advantages that
this model offers in comparison with a finite or
infinite continuum model with cylindrical sinks. '
The advantage of a lattice model versus a con-
tinuum is first that the boundary condition of van-
ishing concentration on the surface of a cylinder
is (practically) impossible to satisfy exactly for
a finite sink concentration. It is true that the
boundary condition can be satisfied easily to a
very high accuracy when the sinks are far apart,
as they will be for lov sink densities, but we want-
ed to have exact results available to test approxi-
mation methods. Second, the use of periodic
boundary conditions ensures that the kinetics will
become first order at sufficiently long times, and
therefore the model is biased against, rather than
for, the point to be demonstrated. As the lattice
size increases, the first-order limiting behavior
moves to longer times, off the scale of physical
interest [here considered to be (5-95)~%%d precipita-
tion of impurities].
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In summary, a finite lattice model with periodic
boundary conditions affords the possibility of exact
calculation, and misbehavior at short times is re-
moved from the time scale of interest for low
sink concentrations, and at long times for a suf-
ficiently large sample. The calculations would have
been easier for a continuum model, if plausible
approximations were allowed, mainly because
good polynomial approximations for the continuum
Green's functions (cylindrical Bessel functions)
are available. For the finite lattice, the Green's
functions require fairly tedious summation over
the first Brillouin zone.

In Sec. II, the diffusion equations are set up and
Laplace transformed. The determination of fluxes
into I sinks on a finite periodic lattice is reduced
to a set of I linear equations, and these equations
are solved and the inverse transform computed by
numerical means. An average over a random dis-
tribution of sinks then provides exact results with
which approximations may be compared. These
approximations are (i) use of a regular array of
sink locations, (ii) evaluation of the flux into a
sink as the flux into an isolated sink, reduced by
the mean concentration of impurities, or (iii) the
average t-matrix approximation, in which all fluxe s
are replaced by the ensemble average flux. The
approximate methods are surveyed in Sec. III,
and numerical results and discussion are present-
ed in Sec. IV.

II. DIFFUSION EQUATIONS,

AND THEIR FORMAL SOLUTION

'The system of interest is a square lattice of M'
sites labeled by their vector positions r. 'The sites
at r = R;, i = 1, 2, . . . , 1 are sinks at which diffusing
impurity atoms are absorbed. At the sinks, the
concentration P(r, ~) of impurity atoms (the num-
ber of atoms per site) is zero for all times i~ 0.
Elsewhere, the concentration P(r, r) is initially
unity, and subsequently decreases due to the dif-
fusion of impurity atoms toward the sinks.

Periodic boundary conditions are imposed along
the orthogonal x and y directions; sites x and x
+Ma, where a is the site spacing, are physically
identical.

In this section we first set up the basic diffusion
equations in reduced variables, then consider their
Laplace transformation and the scheme for numer-
ical inversion, arid finally express the formal
solution for the sink strengths in terms of the
Green's function that connects any pair of sinks.

dimensional diffusion equation

BP(r, r)
87

=DV P(r, 'r), 7'&0. (2.1)

The operator &' has to be interpreted as a finite
difference operator,

g2 (4/g2)g(2) g(2) —g(2) g(2)
9 X + (2.2)

and with an obviously abbreviated notation for the
arguments of I',

()„")P(x)= ,'[P(x-+—a)+P(x —a) —2P(x)]. (2.3)

The factor 4 is introduced to simplify the appearance
of the eigenvalues of ()(2). The quantity (4D/a') that
appears in the diffusion equation, after (2.2) is
introduced into (2.1), has the units of reciprocal
time, and it proves convenient to use a reduced
time variable t,

f = (4D/a2)~ (2.4)

8P&r t" ) =O(2)P(r t)9 (2.5)

N(f) =g [P(r, 0) P(r, t)), N(~—) =M' I (2.7)—
and

I
dN(t) g ( )dt (2.8)

Our objective is the calculation of an ensemble
average of any E,(t) over appropriate distributions
of the sink locations. Primary attention is given
to a random distribution. The evolution of N(f) can
then be obtained from Eq. (2.8).

B. Laplace transformation and inversion

Let the Laplace-transformed concentrations and
Quxes be

still in the absence of a sink at r.
With the explicit introduction of sinks, we have

the following equation applicable at all sites:
I

=()(')P(r, f) —g E,.(t)5(r -R,.), (2.6)
i=l

where E;(i) is the sink strength or flux into i, that
is, F;(t) is the number of impurity atoms per unit
of t absorbed by the ith sink.

The total number of impurity atoms absorbed by
the sinks is

A. Basic equations and reduced variables

At any lattice site not occupied by a sink, the
impurity concentration is taken to obey the two-

P(r, s) =— e "P(r, f) dt,
0

(2.9)

(2.10)
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The transform of N(t) is obtained from Eq. (2.8):

n(s) —= e "N(t) dt
0 e", dt dt

=s 'Qf, (s).
t=l

(2.11)

The transforms f, (s) were evaluated at a discrete
set of positive values of s, by exact and approxi-
mate methods still to be described, and then the
required inverse transforms were obtained with the
inversion algorithm of Bellman et a/. " Application
of this algorithm to a transform such as Eq. (2.10)
rests on the assumption that F;(t) can be approxi-
mated by a finite sum of exponentials with equally
spaced decay rates. Then a change of variables
to x =- e ' implies that E,(t) can be approximated
by a polynomial in x, and Gauss-Legendre inte-
gration is used to determine the integral over x.
'The result of this approach is a linear relation
between E,(t) and f, (s) for a finite set of discrete
arguments:

J
()E;( )))ss,)=ZS.-„f(

—),l=l
(2.12)

where P is an arbitrary positive number, and the
x~ and A» are determined from the roots and
weights of Gauss-Legendre integration by methods
(and FORTRAN programs), presented by Bellman
et at." The constant p can be varied to permit
calculation of E;(t) on a proper time scale, and
the results of the calculation can be checked by
varying size J of the basis set. If J is too small,
oscillations appear in E,(t) at long times. The
value J= 12 was used for all calculations; some
residual oscillations may be marginally visible
on the graphs of exact results at low sink den-
sities and long times.

Laplace transformation of Eq. (2.6) gives
I

sp(r, e) p(r, 0) = 5"'p(r,—s) —pfq(&)&(r —8;) .
t=l

(2.13)
The solution for P(r, s) may be obtained explicitly
in terms of the Green's function g(r, r') that satis-
fies

h; (s) = 1+f;(s) . (2.17)

Equation (2.16) follows from the fact that p(r, 0)
is unity except at the sinks, where it vanishes,
and from the consequence of Eq. (2.14), that
g(r, r') summed over r' is s '. Evaluation of Fq.
(2.16) for r equalto one of the sink positions Bf
gives

gR, , R;h, s =s',
%=1'

(2.18)

a set of linear equations for the k;(s) readily solv-
able by numerical means. Evaluation of the Green's
function is summarized below.

C. Green's function

The periodic boundary conditions imposed on the
lattice imply that g(r, r') is given by

g(r, r') =Q g;exp[ik ~ (r —r')],

where A, „and k, run over the same set of values
(in units such that a=—1),

(2.19)

k„=2vl„/M, /„=0, 1, . . . , M -1,
with

(2.20)

6(r —r') =M 'g exp[ik (r —r')]

5„")exp(ik~) = -(sin'-,'k„) exp(ik~) .
Equation (2.14) and (2.19) give

g-„=M '(s + sin'-,'k„+ sin' —,k, )
' . (2.21)

The Green's function was calculated from Eqs.
(2.19) and (2.21); the first Brillouin zone, of
course, has considerable symmetry that reduces
the number of terms to be summed.

We will return to the exact calculations, which
wex'e carried through for both regular and random
distributions of sinks, in Sec. 97. In Sec. III two
approximate methods will be discussed.

p(r, s)= s ' —g g(r, r') g k, (s)5(r'-R, ),
&=1

(2.16)
where

(s —6"')g(r, r') = 6(r r'), — (2.14) III. APPROXIMATE METHODS

namely,

I
P(r, s)=p g(r;r') P(r', 0) p f (s)il(r' 8)}

r'

(2.15)
or

The two approximations both belong in the gener-
al class of mean-field theories. The first and
best approximation was used by Harper' and
amounts, in its baldest form, to the assertion
that the mean flux into a sink is reduced by com-
petition in the same ratio that the mean impurity
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dC(t)
( )pI' t, (3.2)

where E(t) is the flux into a single sink, averaged
over the sink distribution with mean density p =I/
M'. With k(t) defined as the flux into an isolated
sink in an infinite system [for which C(t) is there-
fore fixed at C(0) -=1], the assumption is that

E(t) = k(t)C(t) . (3.3)

Here, C(t) is less than unity for all times; C(0)
= 1 —p. Equation (3.2) gives

dine(t)
dt

— =-pk t . (3.4)

Equation (3.4) was criticized by Ham' on two
grounds, one of which [namely, the form used for
k(t)], is irrelevant to the present discussion. ' The
relevant objection was simply that Eq. (3.4) is in-
adequate for a random distribution of sinks, but
evidence against the approximation actually con-
sisted of a comparison with results for an approxi-
mate model of a regular sink distribution. We
will see that Eq. (3.4) is a much better approxima-
tion for a random system than is the regular array.

The second approximation consists in the neglect
of fluctuations in the sink strengths. Equation
(2.18) then gives

-a
h;(s)=1+f(s)=s' gg(R&, R;)) (3.6)

where the average is taken over all sink distribu-
tions such that R, 0 R~, unless i =j. Equation (3.5)
then gives [since the sum of g(r, r') over all r' is
s ']

1+f(s)= p'+ s(1 p'}t,"(0)—
where

p' -=(I —I)/~', A"(0) =a(r, r).

(3.6)

Equations (3.2) and (3.6), with E(t) the inverse
transform of f(s), provide C(t). This approxima-
tion will be shown equivalent to the "average (-
matrix approximation" of imperfect crystal theo-
ry, " for which considerable discussion already
exists. It will be seen that the approximation is
not very good for long times.

concentration is reduced. This concentration C(t)
is defined in terms of N(t), the number of absorbed
impurities, by

(3.1)

and, therefore,

order to see how the approximation could be gen-
eralized and improved on the basis of a hierarchy
of conditional averages of Eq. (2.6). The develop-
ment of such hierarchies has been a standard ap-
proach in statistical mechanics since the work of
Kirkwood and Yvon on fluids, forty years ago. "
The utility of the approach depends, of course,
on how well the hierarchy can be truncated,

A complete average of the basic diffusion equa-
tion [Eq. (2.6)], over all sink positions gives Eq.
(3.2). The isolated flux approximation, Eq. (3.3),
may be regarded as a closure of the hierarchy at
the zeroth level.

A partial or conditional average of Eq. (2.6) over
all sink positions except the first, which is fixed
at R, gives

E(r, t; R)/E(t) =—P(r, t; R)/C(t), (3.8)

then the hierarchy has been closed at its first
level (one sink position has been reserved from
averaging}. The hierarchy is closed because Eq.
(3.V) contains, when (3.8) is used, just a, single
unknown function, P(r, t; R), and sufficient bound-
ary conditions to determine it. The method of
solution will now be investigated in more detail,
and Eq. (3.8) will be shown to imply the isolated
flux approximation if p(r; R) is a random distribu-
tion of sinks in the neighborhood of R.

Let q(r, t) be defined by

P(r, t; R) = C(t)q(r, t) . . (3.9)

The boundary. conditions are

—p(r; R)E(r, t; R). (3.7)

Here, the argument R following the semicolon in-
dicates a conditional average given a sink fixed at
R. Thus, p(r; R) is the conditional mean density
of sinks at r, and E(r, t; R) is the conditional mean
flux into a sink at r.

We now wish to consider large systems for which
it is meaningful to speak of the limit of E(r, t; R)
as ~r —R

~

-~. This limit must be the uncondition-
al mean flux E(t). For small ~r —R~, competition
from the flux at the origin must reduce E(r, t; R}
below its asymptotic value. Likewise P(r, t; R)
has an asymptotic limit, namely the unconditional
average C(t), and will be reduced below this limit
for small r —R~. If it is assumed that P(r, t;R)
and E(r, t; R) are decreased in proportion, i.e.,
that

A. Isolated sink approximations

Here, some additional discussion of the isolated
sink approximation, Eq. (3.3), will be given in

'0 if r=R,

q(r, t)= 1 if roR,

t~0,
t=0, (3.10)
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Further, let K(t) and k(t) be defined by

t
c(t)=(:(o)exp(- f z(t)dt),

0 (3.11)

d lnC(t) pE(t-)
dt C(t)

E(t) = k(t)C(t) .
(3.12)

That is, Eq. (3.3) holds as a matter of formal
definition. Substitution from Eqs. (3.8}, (3.9),
and (3.11), (3.12) into Eq. (3.7) gives

It is not yet implied that k(t) is given by the isolated
sink approximation, although this will be shown
under certain conditions. However, we do know
from Eqs. (3.2) and (3.11}that

distributed uniformly ovei all sites, including
sink locations. But in the limit X-~, the impurity
atoms at sink locations disappear with rate Xe ",
and we expect to find agreement with the original
version of the model if XP(R,, s) is compared with
1+f;(s), or XP(R;, t) with 5(t)+F;(t).

For the revised model. Eq. (2.13) becomes

(s —5"'+ V)P(r, s) =P(r, 0) = 1,
I

V-=A.p(r), p(r)=Q 5(r -R;).

(3.14)

(3.iS)

((s 5(2) V) )} (s 5(2) g ) )

with a self-energy Z, given by

(3.16)

In the t-matrix approximation, the average Green's
function ((s —5"'+ V) ') is evaluated in the limit
X- as

= 5(2)(I(r, t) —k(t)5(r —R) Z = -p[(1 —p)g(0)] ', g(0) ==g(r, r). (3.17)

+ k(t)[p —p(r; R)](I(r, t). (3.13)

It is now obvious that if p(r; R) = p for all r x R,
then Eq. (3.13), together with the boundary con-
ditions (3.10), i.mply that k(t) is the flux into an
isolated sink with concentration at infinity fixed at
unity. If there is a positive clustering of sinks,
Eq. (3.13) implies a lower value of k(t).

If the hierarchy is not closed at the first level
with the approximation, Eq (3.8),. then another
source will appear on the right-hand side of Eq.
(3.13); this new source will have a value that varies
with r as the differencebetweenthe left- and right-
hand sides of Eq. (3.8). If then, an approximation like
Eq. (3.8} is applied at the second level of the hier-
archy where two sink positions are reserved from
averaging, one finds that the two sink strengths
are the same as for an isolated pair, but reduced
by a factor C(t). Presumably, this will be a bet-
ter approximation than Eq. (3.8) for small ~r —R ~,
but the additional numerical work required to veri-
fy an improvement has not been done.

B. Equal flux approximation

Here, the equal flux approximation will be shown
equivalent to the average t-matrix approximation. "
Because this approximation is relatively poor at
long times, and because this approximation and
closely related ones have been extensively re-
viewed in the literature, "we will not discuss its
merits, apart from a comparison with exact re-
sults in Sec. IV.

To apply the average t-matrix approximation,
we start with Eq. (2.13) for the concentration
p(r, s). I.et the fluxes f, (s) be replaced by XP(R;, s),
where A. will be made to approach infinity. In this
revisecf model, the impurity atoms are initially

sP(s)+ p[1+f(s)]= 1.
Therefore,

(3.19)

= [p+ s(1 —p)g(0)] ' (3.20)

after substitution from Eq. (3.17). This agrees
with the result already given in Eq. (3.6) for large
systems, where p'- p.

IV. RESULTS

A. Numerical results

Results for K(t) = -4 lnC(t)/dt are presented in
Figs. 1-3 for the sink densities p= 2 ', 4", 6 '.

The exact results shown were computed from
Eqs. (2.12) and (2.18) for systems with 36 sinks.
Calculations for the same sink density on systems
of 16 and 25 sinks showed a slight decrease
in K(t) values at large t (i.e., at 95% precipitation)
between these two systems, but no further de-
crease on increase of the number of sinks to 36.
However, at the lower sink density p=8 ' varia-
tion of K(t) between I = 16 and I = 25 was more sub-
stantial (log, g»/K„= -0.05 at 95% precipitation),
and because the larger value of M required for
given I at lower densities made the calculations
rather lengthy, we have contented ourselves with
the three densities shown.

Values of C(t) and dC (t)/dt used to calculate the
exact K(t) are averages over four random arrays

It follows from Eq. (3.14) that

P(s) -=&P(r, s)) = (s Z,)-', (3.18)

while a direct average of Eq. (2.13) gives [with

(f,'} replaced by 1+(f,}=1+f(s) for the reason al-
ready given]
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-0.6 =

log K

-0.7
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log K

-0.8

tog t
FIG. l. Apparent first-order precipitation rate con-

stant &(I') vs ~ on logarithmic plot. The left and right
margins are at the times for which 5% and 95%, respec-
tively, of, the impurity has precipitated, according to
exact calculations for random sink distributions. Cor-
responding times for 10/o, 50/0, and 90/0 precipitation
are also indicated. The dots and dashed line indicate
exact results. Other curves show results for: (1)
regular array of sinks, (2) isolated flux approximation,
and (3) average t-matrix approximation. The density of
sinks is p=4.

of sink locations. Fluctuations in K(t) from one
such array to another were largest at small den-
sities and long times, where the maximum devia-
tion in log,P'(f) from the average shown on the
graph was +0.05.

Results for the regular array of sink locations
were obtained for a single sink on a lattice of suf-
ficient size to give the correct p. Because of the
periodic boundary conditions, the results must be
th same for any square regular lattice of sinks
with the same p. (This independence of size for
regular arrays provided a check on programs
designed for arbitrary arrays. )

For the isolated sink approximation K(t) = pk(t),
where k(t) is the isolated sink flux, calculated

—l.4

log K

Iog t

FIG. 2. See caption for Fig. 1. Here, p =&~6.

log t

FIG. 3. See caption for Fig. 1. Here, p =&~ .

from its Laplace transform f(s) with k(s) obtained
from Eq. (2.18) with I=1. The average f-matrix
results were obtained from Eq. (3,6).

B. Discussion

It, is apparent that the exact results for K(f) show
no sign of leveling off with increasing t, unlike
the results for a regular lattice. Over the range
of (5-95)% exhaustion of the impurity concentra-
tion, which is the range shown on the graphs, K(t)
drops rather steadily by an overall factor of rough-'

ly 2 for all densities considered.
Both approximations show the falloff of K(t), but

the equal flux approximation (alias the average
f-matrix approximation), becomes quite poor at
long times. I'he isolated flux approximation is
still rather good at the longest times considered,
and improves at short times as the concentration
decreases. It would be interesting to improve the
isolated sink approximation along the lines dis-
cussed in Sec. III. However, it seems possible
(because of certain formal similarities to other
percolation problems and polymer excluded volume
problems), that the asymptotic kinetics as f -~
may require more sophisticated approaches.

Experimental measurements on stress-assisted
precipitation apparently show somewhat larger
decreases of tY(t) than found here [the experiments
were fit by Harper to a law K(t) CC f '~']. If the
sinks were clustered, or alternatively, if the fluc-
tuations of sink concentration were somewhat
greater than random, a more rapid decrease of
K(t) would be found. This effect can be seen qual-
itatively from the approximation

t
c(i) a~( pf a(~)e=).

An average over fluctuations in p favors the smal-
ler p's more at longer times, and leads to a de-
crease in dlnC(t)/dt. -
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