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Frequency-dependent conductivity in multilayer assemblies
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The frequency behavior of conductivity in the multilayer assemblies as a hopping system have been studied by

applying the extended Montroll-Weiss formalism. For "heterogeneous assemblies" consisting of different

layers, a frequency dispersion is predicted as characteristic of each superstructure in layer sequence, while the
"homogeneous assemblies" with identical layers are found to show a frequency-independent conductivity. The
dispersion frequency, in contrast to that for the Maxwell-Wagner-type interface polarization, is immediately

related to the transition rate of carriers traversing the individual layers. It is suggested that the precise
information of electron transitions between localized states is obtainable by employing various heterogeneous

structures realized as the actual assemblies of monomolecular layers.

I. INTRODUCTION

Multilayer assemblies can be constructed using
the well-known Langmuir-Blodgett technique' by
depositing an arbitrary number of monolayers
(monomolecular sheets) one on top of the other.
The elaboration of the technique recently attained
by Kuhn and his co-workers, now known as the
"molecular assembly technique, "' has realized
various "heterogeneous assemblies" with deliber-
ately designed sequences of different constituent
layers as persistent structures' as well as usual
Langmuir films or "homogeneous assemblies"
consisting of identical layers.

Recent investigations on the electrical conduc-
tion in the molecular assemblies have indicated
the existence of conductivity components governed
by the superstructure of each assembly. ' ' The
model presented for such components is based on
the hopping mechanism, allowing for the super-
structure as a planar distribution of localized
states at each interface between insulating lay-
ers. ' ' Each constituent layer is then charac-
terized with a single hopping rate for carriers at
an energy level to traverse the layer. The rate
is governed by the layer thickness I, the damping
constant of wave function c((E), and the interface
state density N'(E), and expressed as

Z=a(E, l)

= X [2o (E)l] ~ exp( 2c((E)l —[4c((E)/m-N'(E)lkT]

(l)

which has appropriately explained the dc conduc-
tivity of Cd salts of fatty acids' ' as well as the
characteristic hump frequencies of photoconduc-
tivity dispersion observed in homogeneous and
heterogeneous dye-sensitized assemblies. 4

The present paper aims to show fundamental
features of dispersive behaviors of such conduc-

tivity components predicted for the multilayer sys-
tem within the framework of single rate scheme
by application of the extended Montroll-Weiss for-
malism"' (hereafter to be referred to as EMW).
All expressions to be presented are those for in-
finite system to retain the analytical forms char-
acterizing the fundamental features in physical
contexts.

EMW is briefly reviewed in Sec. II together with
its application for homogeneous assemblies whose
conductivity is found to be frequency independent.
Section III deals with heterogeneous assemblies,
each of which is predicted to show a frequency dis-
persion characteristic of the corresponding super-
structure in layer sequence. An explanation is
also given for the better understanding of photo-
conductivity dispersion. In Sec. IV, we discuss the
relevance of the predictions given in the preceding
sections when they are applied for the actual as-
sembly system inevitably associated with occa-
sional inhomogeneities such as structural and
compositional disorders or imperfections. Hopping
rates are evaluated for Cd-salt layers of a few
fatty acids easily available for assembly construc-
tion.

II. EMW FORMALISM AND ITS APPLICATION TO
HOMOGENEOUS ASSEMBLIES

Scher and Lax" start from an application of the
well-known fluctuation-dissipation theorem" to a
system of noninteracting carriers obeying Boltz-
mann statistics and derive the expression of con-
ductivity,

o((u) = (e'/kT)na((u), (2)

where n is the effective carrier concentration and

is the Fourier transform of diffusion coefficient.
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P(i(()) =g g(s, i~), (s)

i)(s, is)= J ((s, t)8 ' 'dt,
0

and R„(s, i&a} is the Fourier transform of the pro-
bability function for n steps and given as

(8)

R„(s, i&a) =gg P $(s„ i(d)
Sg S2 Sf(

x))l)(s, —s„ i(d} p(s —s„„i&@}. (7)

Let us consider our multilayer assemblies, in
which carriers are confined in interfaces and only
the flights to the neighboring interfaces are al-
lowed. Equation (4) is then reduced to a one-
dimensional case as

In Eq. (3), r is the position vector and the angular
brackets denote the ensemble average, and the
factor 3 in the integrand is due to the projection
of vector to the field direction. They then intro-
duce the Montroll-Weiss formalism for continuous
time random walk on a discrete lattice. ' The car-
rier positions are now confined to the lattice
points, every pair of which is characterized with
a transition probability g(s, t)b t that a flight of
carrier occurs in the time interval (t, t+r t) re-
sulting in a vector displacement s .

By means of the set of g, s, Eq. (3) is rewritten"

( )
('l (()) 1 —(t)(l (()) 1 g 2 P R (~, ) (4)

Z(d 3
S

where

(x') =nP. (13)

Using Eqs. (12) and (13), Eq. (8) yields a, frequen-
cy-independent coefficient

D((()) =PA. (14)

III. HETEROGENEOUS ASSEMBLIES AND DISPERSION
PHENOMENA

The general expression for heterogeneous as-
semblies has rather a complicated form. Let m
be the number of classes of inequivalent interfaces,
then each g(x, ice) in Eq. (9) should be replaced by
an mxm matrix q (x, i~). Consequently, Eq. (9)
is now an operator acting upon a ket vector
f = (f„f„.. . , f ) representing the equilibrium
carrier distribution with a condition Q f, =1, while
[1 —g(i+)]/is& in Eq. (8) should be replaced by a
bra vector [I-g(i&a)]/i&a =(1 —g„1—(t)„.. . , 1 —g )/
i ~ denoting the probability that a carrier stays in
an interface belonging to either of the different
classes.

Let us consider a heterogeneous assembly con-
structed by the alternate deposition of two different
layers (1) and (2), each characterized with l„h.,
or L„X,. As shown in Fig. 1(a), the layer sequence
-(1)-(2)-(1)-(2)- is associated with the interface
sequence -[1]-[2]-[1]-[2]-,and the corresponding
expressions are

which is equivalent to the expression of dc conduc-
tivity given in the previous papers' ' except for the
difference of factor 2 due to the different assump-
tion adopted in the present EMW scheme. "

)
(i&a)2 1 —$(i(d) g2 l(d

FP =QQ Q Q xaam(x~, i (d)
xg x2 «n- 1.

x g(x, —x„ i(()) g(x -x„„i&a) .

(8)

(9)

4(x, i(()) =
A. +A, ps~

z,s„,f +x,s„l,}-
1 xtg

t
0

(ls)

For homogeneous assemblies with layer thick-
ness l and transition rate ~, all interfaces are
equivalent and associated with the probability
function and

(17)

P(x, t) =he '"' &„»,
and, therefore,

P(x, i (()) = [X/(2)). + i(())]S„„.
The n-fold sum in Eq. (9}is reduced as

t!= &x'.&„[f(~~)]",
where (x'„),„ is the mean-square displacement
after n steps and given in this case as,"

(10)

(12)

x = [[r,(y) —r, (-)]l, +[ra(+) —r, (-)l I,], (18)

where r, (+) and r, (a) are the numbers of steps with
displacements +l, and +&„respectively, and there-
fore

n =r, (+) +r, (-)~r, (+) ~r, (-) . (19)

Equations (15)-(19)will lead to a rigorous solution
of conductivity. However, it lies beyond the scope
of the present paper to show the rigorous but too
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FIG. 1. Examples of heterogeneous assemblies con-
sisting of two different layers (1) and (2), each associ-
ated with the transition rate X& or X2. (a) The layers (1)
and (2) are alternately deposited; (b) alternate stacking
of the layer pairs (1)-(1) and (2)-(2).

much complicated solution. If we put l, =l, =I; the
above expressions are readily simplified as

~ ' "'" '" r!(n —r)! (A., +A, +i(d)"n ~ ~+nr av (20)

and

)[P 4r+P(1 —r/n) for n odd,
)l «t2««'

!4rP[1 —(r —1)/(n —1)] for n even,

l ' 4A.,A., (}(, A., )a i a)

2 2 «2, 2, 2, 2(2, ««, )+«««)
'

(22)

As shown in Fig. 2, Eq. (22) exhibits a frequency
dependence unless ~, =~„ in which ease the second
term vanishes, coinciding with Eq. (14) as a matter
of course. For ~, »~„ the real part is

((u/2)Ii)'
R«D( )=l' 22, +

2 ) ( yg2 ),), (23)

(21)

which lead to the diffusion coefficient expressed as

FIG. 2. Normalized plot of ReD((d) vs ~ for hetero-
geneous assemblies with layer sequences -(l)-(2)-
(A-D) and —(1)-(1)-(2)-(2)- (E) with Xt/X( ——1 (A), 2 (B),

(C), and 0 (D and E).

showing that the conductivity is approximated as a
sum of two components, each governed by either
of two rates. The first term gives the dc level
dependent on the slower rate ~,. The second com-
ponent is a Debye-type term to exhibit a dispersion
hump around 2~,. This dispersion term shows an
apparent similarity to that to be due to the Max-
well-Wagner-type interface polarization in an
analogous structure composed of the layers of
dielectric media (1) and (2), each characterized
with the dielectric constant e, or &, and the con-
ductivity o, or 0,." The characteristic frequency
is in this case governed by those macroscopic
physical constants as v, /(e, +e,), if o, »o, .

The dispersion frequency due to the present
scheme is, however, distinguishable from the
Maxwell-Wagner effect, since this is dependent
also on the interface sequence of the assembly,
while the Maxwell-Wagner scheme predicts the
invariance of over-all impedance to the sequence
of elements connected in series. Let us consider
another sequence -(1)-(l)-(2)-(2)-, which should
be equivalent to the above examined case as for
the Maxwell-Wagner effect. For simplicity, we
put ~, =0 besides I, =l„since the dispersion term
is now to be questioned. The interfaces are cate-
gorized into four classes as shown in Fig. 1(b)
with the interface sequence -[l]-[2]-[3]-[4]-.The
corresponding expressions are

)12(X, i(2)) = [})., /(X, +i (d)] &„,

[1. /(21., + i(d)] ()„,

0

(24)
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1
4

(25)

the diffusion coefficient is readily evaluated as

L2
D((u) =

(1 —a)A~+ah. ,

x ~g~)+a 1 —a

and

[ f —g(i(u)]/i(u
x Xq —X)2

2(1 —g)X„~2ai, +i ) ' (31)

The nonzero displacements are,
(26)

=((A., + i e) ', (2X, + i v) ', (A., + i e) ', (i e) ') . which is associated with a dispersion term unless
a =0 or 1. For the real. istic case, a& 0 and
~„»~„ the photoincrement of the real part is ap-
proximated as a Debye term governed by 2~„as

4l' for [1]-[3]and [3]-[1],
x' = l' for [1]-[2], [2]-[1],

[1]-[3],and [3]-[1].
The diffusion coefficient is obtained after a

straightforward calculation as

D(u)) =2l2A. i(o/(x, +i(u),

with the real part

(27)

(28)

(32)

In this model, the recombination range can be
evaluated as the layer thickness multiplied with
the square root of the average number of the high-
energy flights occurring successively. The recom-
bination range is therefore estimated as

(33)

(~/~, )'
ReD(&u)=-, i (29)

g(i&a) =a ". + (1 —a)
2&„2&

2~1, + z (al 2~g + 'L co
(30)

Using Eq. (30) together with Eqs. (8}, (12) and (13},

which is clearly different from the case (a) char-
acterized with Eq. (23), since for this case (b) the
dispersion frequency is no more 2~, but ~„as
shown in Fig. 2.

Any restriction of flight motion of carriers to a
localized region will result in a frequency-depen-
dent conductivity. " The above examined cases (a)
and (b) represent the structural restrictions due to
the heterogeneous layer sequences. Even in homo-
geneous assemblies, dispersion phenomena are
expected for photoconductivity within the present
scheme in accordance with the experimental re-
sults. 4 The excitable carriers move under illumi-
nation either with the high-energy rate ~~ or with
the low-energy rate &„each given by Eq. (1}. The
carrier motion with the high-energy rate should be
rather strongly restricted by the generation-re-
combination process, since the steady-state car-
rier distribution is far apart from that in the dark
thermal equilibrium.

Let us consider a simplified model in which the
fractions a and 1 —a of excitable carriers are at
the high-energy level and the low-energy level,
respectively, and this fractional distribution is
restored immediately after each flight event. For
this case, the probability function can be written

referring to Eq. (13), which is consistent with the
assumption that the fractional distribution is re-
stored immediately after the flight event.

If the fractional distribution is very slowly at-
tained, however, two energy levels should be
rather independently dealt with, each associated
with a or 1 —a fraction of the excitable carriers.
In this extreme case, the recombination range
tends to infinity and the diffusion coefficient can be
evaluated as a sum of two frequency-independent
components as

D(ur) =aPA~+ (1 —a)l'A, (34)

IV. DISCUSSION

In Secs. I-III, the frequency behaviors of diffu-
sion coefficient have been predicted for various
assemblies. The constituent layers have been
assumed to be "perfect" layers, each charac-
terized with a unique transition rate ~ for a given
energy level.

Let us consider the actual monolayers which are
inevitably associated with occasional structural
and compositional imperfections. As discussed

It should be emphasized that between two ex-
treme cases discussed above, the frequency be-
havior of photoconductivity generally depends on
the generation-recombination process. This is
important for actual application of the present
scheme to a system, since the dependence will
allow in turn the characterization of the process in
itself.
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in Ref. 7, the influence of imperfections is smeared
out, resulting in a unique rate given by Eq. (1) for
the average layer thickness, if the average size of
imperfections is far smaller than the correspond-
ing hopping domain defined as a range within which
an electron is likely to find a state to hop into. If
the imperfections are the large scale patches
covering many hopping domains, however, the rate
is subjected to local fluctuation and the intrainter-
face motion of carriers must be explicitly allowed
for as well as the interinterface flights.

Let ~, ~', ~„and l2, be the interinterface flight
rate of normal region, that of anomalous patches,
the intrainterface rate and its average square dis-
placement, respectively, then the local regions of
interface are categorized into three classes as
shown in Fig. 3, each associated with either of
three sets of the probability functions,

g, (i(u) =2A/[2(A, +A)+i(o],

g, (i(u)~~
——2A.,/[2(A. , +A)+ i(u] for (l)-(1), (35a}

g (i &u)~ = (A. + A. ')/(2A. , + A. + A.
' + i e),

q, (i(o),
~

2A, /(=2A, +A+A'+i(u) (35b)

for (1)-(2) and (2)-(1),

MO NOLAYERS

I NTERFACE

FIG. 3. Schematic representation of interface with im-
perfections. Monolayers with normal regions (1) and
anomalous patches (2) (upper figures) form an interface
associated with three different classes of local regions:
{1)normal regions on both sides, (1)-(l); (2) an anoma-
lous patch on one side, (1)-(2) and (2)-{l); (3) anomalous
patches on both sides, (2)-(2).

and

g, (i(u) =2A. '/[2(A, +A')+i(u],

g, (i&a)~~ =2A, /[2(A, +A')+i&a] for (2)-(2), (35c)

where g,. (i&a}~~ and g,. (i&u) are the sums of P, (x, is&)'s
for intra- and interinterface flights, respectively.
Let P be the fraction of anomalous area, the con-
figurational average of the interinterface-flight
probability function can be written

(4(i~)& =[P'4, (i~), +2P(1 - P)4.(i~). +(1 —P)'4, (i~).]
oo n n

Z ZZ, [P'S, (i~)ii]"'[2P(I —P)k. (i~)g]" [(1 —P)'4, (i~)ii]
n=0 &1=0 &2=0 1 ' 2' 1 2

if the average patch area is far smaller than l2A. ,/
Further, if we assume ~, +», ~', the above

expression is approximated as

(g(i~)) =—2A/(2A+ i&@), (37)

where ~ is the average defined as
A=PA'+(1 —P)A. (38)

It is suggested that the. single rate scheme remains
valid even for monolayers with large scale imper-
fections, since the above conditions are likely
fulfilled because of the very large value of l', A, /l'A
=g~, /p. as suggested by Lundstrom, LMgren, and
8tenberg, "who have estimated p ~~/p, , -2x 10' f»
stearate monolayers. Using this value and ~2-5
X10 "cm', we obtain a very tolerant condition
l', A, , /A, '- (A./A. ') x10 ' cm' as representing the criti-
cal patch size to violate the single rate scheme.

o-v = po, +(1 —p)o, (39)

if we recognize l' —= (l'),, „-=(l),'„, where o„P and

o„1—P are the conductivities and the molar frac-
tions of the corresponding pure monolayers, re-
spectively.

In the case of photoconduction, however, the
above discussion may not be applicable, since the
generation-recombination process should restrict
also the intrainterface motion. If each electron at
the high energy level has a recombination range
far smaller than the patch size, the averaged func-
tion can be rather written

It will be easily understood that Eq. (38) leads to
the same expression of conductivity as that for
homogeneous assemblies of inhomogeneously mixed
monolayers presented in Ref. 7,

(P~(i co)) = P'/~i (i (u)i Q [tI'I g (i (u)(i]" +2P (1 —P)g~, (i (u)~ Q [g„,(i (u)(i 1"+ (1 —P )'g„,(i (u), Q [P„,(i (u)~~]",
n=0 n=0 n=Q

(40)

where the suffix h, refers to the high-energy level.
Equation (40} is reduced to a linear combination of
three different rate processes,

(g„(i(g)) = P'g„, (i &u) +2P (1 —P)g„(i(u)

+ (1 —p)'tl'»(i &u}, (41)
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where

4»(i ~) = »»/(»» + i ~),

4..(i~) =(~»+~.,)/(~»+~. , +i~),
(42a)

(42b)

4..( i~) =»~./(». .+ i~) (42c)

However, the low-energy rate can be evaluated
within the single rate scheme by using Eq. (38),
and the probability function is written

(g, (ie)) =2X/(2X, +i ur). (43)

Equations (40)-(43), as is easily understood, will
yield a diffusion coefficient associated with three
dispersion terms by applying a treatment similar
to that for Eqs. (30)-(31) in Sec. Ill.

In the case of photoconduction, therefore, the
presence of large scale imperfections may violate
the single rate scheme, with the local high-energy
rates being preserved. This consideration supports
the actual situation that the dark dispersion phe-
nomena are more difficult to observe than the
photoeffects, since the higher quality of mono-
layers are required for the successful dark mea-
surements. The dark behaviors are indispensable
for the precise analyses of electron transports
under various conditions, since they characterize

the transport near the thermal equilibrium as rep-
resenting the reference to other conditions.

As for the dark state, the transition rates can be
estimated using the dc conductivity data so far ob-
tained' ' they are 10 '-10 ', 10 '-10 ', and
around 10 ' Hz for Cd-palmitate, Cd-stearate,
and Cd-arachidate, respectively, at liquid-nitrogen
temperature. Among these converitionally used
monolayers, the combination. of palmitate and
arachidate will be hopefu1. for the actual observa-
tion. The difference of rates by two decades or
more will be sufficient for dispersive behaviors
to be discernible as seen in Fig. 2.

It should be noted that the ac measurements of
dark and photoconductivities followed by the analy-
ses after the present scheme, if applied to various
assemblies, will allow to obtain precise informa-
tion of electronic states in organic molecules
and the electron transition processes between them.
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