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Critical exponents for the conductivity of random resistor lattices
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This paper presents three results concerning the critical exponents which characterize the conduction
threshold of a resistor lattice. (a) There are no rigorous inequalities similar to those for the phase-transition
critical exponents. (b) There is a dual transformation in two dimensions which relates the critical exponents:
in particular s = t, u = 1/2 for the two-dimensional bond problem. (c) The exponents for the two- and three-
dimensional bond and site problems are estimated by numerically solving for the voltage distributions of large
finite disordered lattices. The results are in agreement with the "scaling" exponent relationship.

I. CONDUCTION THRESHOLD AS A CRITICAL POINT

I et a finite resistor lattice of side I.be con-
structed of elements chosen randomly to have con-
ductance b (with probability p) or a (with probabil-
ity q), where a&b and p+q =1. In the limit that
L, is very large, the specific conductivity of such
a system comes to have the character of a ther-
modynamic state function: that is, the sample-to-
sample variation becomes vanishingly small, and
we may refer to the specific conductivity of a given
specimen as if it depended only on a, b, and p.

The case a=o, b finite (a resistor lattice with
some of the resistors removed) has received con-
siderable attention, ' ' and one aspect of this case
carefully noted: there is a threshold concentra-
tionp, such that for p&p, the lattice is so frag-
mented that it cannot conduct, and for p &p, there
are connected conducting paths of infinite extent.
Furthermore, it has been noticed that in the latter
regime the conductivity obeys a power-law rela-
tion' ' o -b(p —p,)' for p &p,. The author has re-
cently proposed' that a/b = O, p =p, is a critical
point of the specific conductivity analogous to those
studied in magriets and phase transitions, and that
the analogy may be pursued to the construction of
a homogeneous function representation. The rep-
resentation is modeled on the enormously suc-
cessful scaling theory" of the temperature de-
pendence and field dependence of the magnetization
of magnets near the Curie point. In the transla-
tion from that system to the resistor lattice the
variables temPerature and field strength are re-
placed, respectively, by composition & =p -p, and
the ratio of the conductivi ties (g/b) of the two com-
ponents. The homogeneous function representation
of the conductivity takes the form (o) = pS(eA. ',
ap, 'X ', pb 'X '), where S is defined wherever its
three arguments are less than unity and singular
only where more than one vanishes. The depen-
dence on the parameter p, states the invariance

under simultaneous change of scale a-jLi. a, b- p.b,
(o) -p(o). The parameter X takes on arbitrary
values; giving $ this dependence on A. is equivalent
to saying that it depends only on arguments like
(a/g)e ', (b/p)e', and (a/p)'(b/p)'. By hypothesis
this representation is accurate for a wide range of
A. and p, in the vicinity of the critical point.

The analogy is useful in construction of the homo-
geneous function representation, but cannot be
taken too literally: one of the interesting aspects
of this critical phenomenon is the many respects
in which it differs from phase transitions. The
problem is not readily defined in terms of a Ham-
iltonian. The bulk conductivity can be given a lo-
cal definition in terms of the average power dis-
sipated under the conditions of unit average gra-
dient of the potential; it is necessarily positive
but has no convexity property, with the conse~
quence that no rigorous exponent inequalities can
be proved (as will be demonstrated below). It is
only useful "order parameter" that can be de-
fined, with the consequence that the Legendre
transformation to conjugate variables does not
play an interesting role.

If the critical point is approached in different
'ways, different critical exponents will be observed.
Thus if a is finite, b = ~, and p &p, (a few super-
conducting links inserted into a normal resistor
lattice), the conductivity diverges as the threshold
is approached from below as o-a(p, -p) '. We
may also consider the casep =p, withboth a and b

finite, and then" v-g" 5' ". These aspects of the
conductivity of a random lattice are displayed in
Fig. i. The homogeneous function representation
relates these exponents; specific ally

u= t/(s+ t).

Some other examples and the extension to the case
of complex g and b (as would occur in ac circuits
with capacitance) have been given elsewhere, ' and
the relationship (1) has been successfully checked
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FIG. 1. Specific conductivity of a 3D bond lattice as a
function of p (the fraction of b bonds), for various values
of (a, b). The solid curves should be referred to the
right-hand scale; the dashed curves are on the left. The
two lines (a=0.05, b =1) and (@=1, b=20) are the same
curve shifted in scale.

against thp Bethe lattice model proposed by Stinch-
combe""

Another simple example can be provided: effec-
tive-medium theory shows a conduction threshold
(e.g. , see Kirkpatrick'), and exponents can be cal-
culated in the context of this theory with the re-
sults s=1, t=1, u=-,', which satisfies Eq. (1).

The Bethe "lattice" and effective-medium theory
provide tractable examples of systems having a
conduction threshold. However, they are not ex-
pected to be a good representation of real systems.
Thus it is of considerable interest to check the
theory against the more realistic two-dimensional
(2D) and three-dimensional (3D) lattices, as will be
done in Sec. III.
~e should first note two rigorous results: (i) for

the 2D bond problem there is an exact relationship
s= t, u=-2 (Sec. II). Thus the exponent relation is
known to be exactly satisfied for this geometry.
(ii) In the magnetic critical point it was possible to
prove rigorous inequalities, for which the scaling
equalities were the limiting case. In the resistor-
lattice problem there is a rigorous nonresult, that
no such inequalities can be proved. As a counter
example we consider a pair of lattices having the
same critical point but differing exponents, which
in each case satisfy the exponent relation. Let
those be coupled in parallel, so that o* = o, + o,.
The exponents which will be observed are s*
= max(s„s, ), t* = min(t„ t,), u* = min(g„u, ); and
one readily shows that u* ~ t*(s*+t*) '. Now
couple them in series and the reverse inequality
results. Thus any combination of s*, t~, u* can
be achieved, and no rigorous inequality exists.

Section III presents these exponents in two and
three dimensions resulting from the numerical so-
lution of large random lattices. The technical de-
tails of the calculations are discussed in Sec. IV.

t

II. DUALITY RELATIONSHIP FOR TWO DIMENSIONS

In this section it will be demonstrated that there
is a relationship between the conductivity of a 2D
lattice with conductances chosen at random and the
conductivity of a related distribution of conduc-
tances on the dual lattice. The continuum version
of this relationship was demonstrated by Keller"
and has been discussed by Mendelson. " The theo-
rem and proof will only be sketched here since it
differs only slightly from the foregoing discussions.

For simplicity consider a square quadratic lat-
tice, and let the potential at the vertices be V(i,j).
Define A, V(i,j) = V(i+ 1,j) —V(i,j), and define 6&

similarly. Let the conductance of the bond in the
i direction from site i to site i+1 be o,.(i,j). If
V(i,j) is the equilibrium potential appropriate to
a distribution of conductance (o), we can write two
conditions involving AV, which correspond to the
continuum conditions curl grad V= 0 and divt = 0:

6& V(i,j) —6; V(i —l,j + 1) —b& V(i —1,j)
+~,. V(t-l, j)=0, (2)

o,.(t,j)~,. V(i,j)+o,.(i,j)~,V(t,j)
=o,. (t —I,j)~,. V(i —I,j)+o,(i,j —I)n., V(z,g —1).

(3)

We now wish to introduce a function W(i,j) de-
fined on the dual lattice. " In the present case the
dual lattice is also square quadratic, and we can
label the dual lattice sites so that dual site (i,j) is .

directly associated with direct site (i,j), as in-
dicated in Fig. 2. Then choose W(0, 0) arbitrarily,
and define W elsewhere by

~,.W(i,j)=o, (i,j)~,. V(t,j)
and

W(i,j) = .—o,. (i —1,j+ 1)b,,- V(i —1,j+ 1);

the TV difference between regions separated by a
lattice bond is the current flowing along that bond.
In order that this definition be consistent, it is
necessary that the AR' around any closed loop sums
to zero. This is equivalent to the condition that the
net current into any vertex of the direct lattice is
zero, and indeed substitution of the equations de-
fining n.w into the ghw =0 condition gives Eq. (3).
Thus W exists. Now rewriting Eq. (2) in terms of
TV gives

(i,j)t,W(i,j)+q, (i,q. )n.,w(.i,q)

=q,.(i —l,j)~,.W(t —l,q)+q, (i,q —1)~,W(i,j —1),

(4)
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FIG. 2, Square lattice and its dual. The bonds of the
lattice (solid lines) divide the plane into squares, each
one of which is labeled by a dual lattice site (C)) at its
center. The bonds of the dual lattice (dashed lines) join
the centers of squares which have a side in common.
The dual of any planar lattice with noncrossing bonds can
be constructed in this same way.

where q(i,j) are functions defined on the dual lat-
tice by r), (ij, )o,. (i,j ) =. 1, q,.(i —1,j )o, (i,j —. 1) =. 1; the
conductivity of each dual bond is the reciprocal of
the conductivity of the direct bond it crosses, and
W is the solution to Kirchhoff's equations for this
dual problem.

The remainder of the discussion follows Mendel-
son very closely. Under the conditions that the
specific conductivity is isotropic and is in fact a
state function, we may proceed to show that the
conductivity o(q, a;p, b) of a concentration q of con-
ductances g and concentration p of conductances 5
is related to that for a system obtained by "inter-
changing the phases'-' by

a(P, a;q, b)(ab =o(P, b ';qa ')

= [o (q, a;P, b) ] '. (5)

The same relationship holds in the case of any
planar graph, except that generally a lattice is
differentfromitsdual, so that Eq. (5) relates the
conductivities of different lattices. We must fur-
ther realize that it is only the bond problem of the
square lattice that is self-dual. The site problem
(where the four bonds connected to a randomly
chosen site are simultaneously altered) is dual to
a different problem ("squareS, " where the four
bonds forming a square are simultaneously altered).

The duality relates a system above the condition
threshold to another one below it, and forces a
relationship between the relevant critical expon-
ents. Thus we see that for the bond problem, s=t,
and s(sites) = t(squares). Furthermore, in the bond
problem the lattice and its dual become indistin-
guishable at p „so that o(-,', a; —,', b) = (ah) ' ~', which
implies u = —,'.

TABLE I. Critical exponents for resistor lattices.

2D bond 2D sites 3D bond 3D sites

S
maxL

i.i0 +O.i5 0.70 +0.05 0.5 +O. i
i00 20 24

i.i0 +0.05 i.25 +0.05 i.70 +0.05 i.75 +O.i
ioo i00 25 30

lb
2

&b
2

0.55+0.07 0.72 +0.02 0.83 +0.02
i00 25 25

0.5S 0.247 0 307 c

8 was not determined, but is known to exactly equal t.
"Exact result.
'After Shante and Kirkpatrick (Ref. 2).

The specific conductivity of several samples of
large 2D (square) and 3D (simple cubic) lattices
have been obtained numerically, and the exponents
s, t, and u have been estimated (Table I). Need-
less to say, the calculations were not performed
on infinite lattic'es. Finite lattice size manifests
itself in the calculations in that there is now some
sample-to-sample variation in the specific con-
ductivity; similarly, on any one run (in which the
resistors of a lattice are altered in some chosen
sequence) o is no longer a smooth function of p,
since altering a given resistor may have a very
large effect (e.g. , by breaking the last conducting
path) or no effect at all (if it already carries no
current). In the studies reported here it was ob-
serv'ed that for the 3D bond problem the rms de-
viation from the mean was roughly independent of
g and decreased as L, '~', for the 2D problem the
rms error seemed to show a dependence on e (in-
creasing as the critical point is approached). This
variability places a limit on the accuracy to which
the critical exponents can be determined by studies
at any fixed finite L„and prohibits meaningfulstudy
of the most immediate vicinity of the critical point.
It may be possible to extend the useful range some-
what by averaging several runs based on different
random sequences or by least-squares fitting to a
given run, but it should be recognized that the
average conductivity for finite L (thus defined) is
not the same as its infinite-L, limit, and indeed has
no critical point whatsoever. In the present study
the only data that were used were those for which
the estimated error on each point (due to the finite
lattice effects) was less than 5/q. The quoted er-
rors on the exponents represent estimates of the
residual variability; they do not include any al-
lowance for the likelihood that calculations closer
to the critical point (on larger lattices) might find
somewhat different exponents.

Let us postpone the technical details of what was
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calculated and by what means to Sec. IV and turn to
a discussion of Table I. For each dimensionality,
two problems were considered, namely, the "bond"
problem in which the resistors are chosen (es-
sentially) independently; and the "site" problem in
which, starting from an all-5 lattice, all the re-
sistors which meet at randomly chosen sites are
altered simultaneously to a.

A. 2D bond problem

The exponent t has not been reported before. The
other two exponents quoted in Table I were not cal-
culated but rather inferred from the exact relation-
ships s=t, u= —,'.

B. 2D site problem

The quoted value of t is in good agreement with
the exponent which Watson and Leath' determined
by fitting their entire curve (f = 1.28+ 0.05), and in
reasonable agreement with the value they prefer
(t = 1.&8+ 0.12), which was based on a, least-squares
fit which extended somewhat into the variable re-
gion. The value quoted for s and u are quite -
certain, but Eq. (1) seems to be satisfied.

C. 3D bond problem

This problem was given the most careful study of
the group. The exponent t is larger then the es-
timate t= 1.6+ 0.1 due to Kirkpatrick4 and Web-
man et aL" but not clearly in conflict with it. For
the purposes of checking the exponent relation the
discrepancy is unimportant: Eq. (1) proves to be
fairly insensitive to the value of t. For the given
values of s and u, the agreement is quite good.

D. 3D site problem

The conductivity in the "s" geometry showed sur-
prisingly large sample-to-sample variability, ren-
dering it impossible to check the exponent relation
to any accuracy. The value quoted for t is con-
sistent with t = 1.5+ 0.2 found by Kirkpatrick. '

In summary, the exponent relation (1) is support-
ed by a rigorous result (2D bonds) and a numerical
result (3D bonds). The numerical results on the
site problem are inadequate to make any judgment
concerning the usefulness of the homogeneous func-
tion representation in those cases.

There is one further relationship among these
exponents which should be noted. Stinchcombe and
Watson" have argued on the basis of a renorma-
lization-group approach that the exponents for the
bond and site problems should be the same. Their
argument is by no means rigorous, but the hy-
pothesis is appealing because it places local sta-
tistics along with local geometry in the class of
irrelevant variables, so that all percolation con-
duction problems in a given dimensionality belong

to the same universality class. The exponents
given in Table I are for the most part consistent
with the universality hypothesis, with the excep-
tion of u for three dimensions.

IV. TECHNICAL DETAILS

The basic problem is to find the specific conduc-
tivity of a I.x 7. square pr Lx 2, x 7 cubic lattice of
resistors, where the limiting value of L is indi-
cated in Table I.

The boundaries of a lattice can give rise to sig-
nificant perturbations in finite geometry. In hopes
of minimizing such effects, the lattices considered
here differed from those discussed heretofore in
that they were continued periodically at the bound-
aries (so that the 2D lattice was actually the sur-
face of a torus), and rather than establishing a
potential difference by means of boundary elec-
trodes, a constant field E was imposed along one
of the coordinate axes (so that there was an emf of
EL driving current around the torus).

For a similar reason, bonds on the d-dimension-
al latticewere altered in d-plets, one along each
coordinate axis (but chosen independently and ran-
domly otherwise). This prevented statistical fluc-
tuations rendering the lattice anisotropic. The
constraint is unimportant because it becomes un-
necessary in the thermodynamic limit.

The primary tool in solving the lattice to find the
potential distribution was the relaxation method
discussed by Kirkpatrick, "with overrelaxation as
advocated by Webman et a/. ' However, it was
noted that the current in the direction of the field
(as measured in a layer perpendicular to that di-
rection) varied somewhat from layer to layer, even
for voltage distributions which seemed to pass the
convergence test at each site. This effect seemed
to be due to a coherence in the errors. The algo-
rithm was greatly improved by occasionally shift-
ing all the voltages in a way designed to make the
layer currents the same. This modification de-
pends on global current conservation, rather than
current conservation at a particular vertex, and
was particularly effective at eliminating errors
with slow spatial variation. Thus this modification
actually helped speed convergence.

In the case a = 0, b = 1, it proved useful to delete
from the lattice all sites which had only a single
5 link —these necessarily carry no current, but
their presence slows down the iteration procedure.
In the case a=1, b=~, it was essential to group
each cluster of sites joined by b links into a single
entity, whose voltage level was determined by the
condition that the net current entering at its peri-
meter vanished (due to the presence of the imposed
E field the interior of such a cluster is not an equi-
potential, but the relative potential differences are
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immediately determined by the condition 5= ~, and
only the voltage level remains to be determined).

The distribution of voltages (V(m, n)) which sat-
isfies Kirchhoff's laws is also the distribution
which minimizes the power dissipated in the net-
work for the given distribution of conductances and
boundary conditions. " The dissipated power for the
correct JV(m, n)) (which is then the minimum over
all voltage distributions) is directly related to the
conductivity of the lattice by P = crE'I.'. These two
facts explain that the conductivity should be calcu-
lated from the power dissipated, so that for an ap-
proximate solution the error in the calculated con-
ductivity is quadratic in the errors in the {V(m,n)).
This allows accurate values for the conductivity to
be extracted from poorly converged voltage distri-
butions. The conductivity calculated this way was
generally slightly smaller than the ratio of the cur-
rent to the field (for the same distribution of volt-
ages); for the distrfbutions that passed the con-
vergence tests, the two definitions differed by only

The critical exponents were determined by plot-
ting the results of several "runs" (in which the
critical point is approached in some way, such as
successively deleting resistors from the lattice) on
logarithmic paper, and drawing in straight lines
(representing power laws) which seemed to char-

acterize the data well. In the s and t geometries
the sample-to-sample variability expected for finite
lattices appeared in two ways: the points from any
one run did not fall on a single line, and points
from different runs disagreed. The error limits
quoted in Table I represent the extent to which the
data seemed to determine such a line. As noted
above, it was not regarded useful to use data too
far into the variable region. In practice, this lim-
ited e to be greater than O. I in the t geometries, and

e&0.05 in the s geometries.
The u geometry is a separate case: here one can

choose a particular disordered lattice with the crit-
ical concentration of good conductors, and vary the
conductivity of the poor conductors. This of course
gives a smooth curve when cr is plotted as a function
of a, and the finite-sample variability only shows
up when another sample is chosen. In the 2D sites
problem, this variability was rather severe for
a ~ 0.05. In the 3D cases, however, reproducibility
was good for all g~ 0.01 (beyond which convergence
of the algorithm became excessively slow), and all
data were well fit by a single power law. It is for
this reason that the error limits on u are so small
in Table I. As noted above, however, the two 3D
geometries probably should have the same expon-
ent u, which somewhat impeach|. s the error limits
given.
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