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In this paper we present a theoretical study of the optical and microwave properties of microscopically
inhomogeneous disordered materials. We derive an eA'ective-medium theory (EMT) for the propagation of
light in a heterogeneous system by means of a self-consistent extension of a multiple-scattering model. This
approach is applicable when the correlation length for the fluctuation in the medium is much smaller than the
optical wavelength. The Maxwell-Garnett theory is also shown to result from our model under less general
circumstances. We present a. scheme for the derivation of the macroscopic complex dielectric constant e(co)
through numerical simulations of the inhomogeneous medium, which can be viewed as a generalization of the
numerical simulations of the electrical conductivity in resistor networks. On the basis of numerical simulations
we assert that the EMT for e(co) of a binary inhomogeneous medium is valid when the ratio x(ce) between the
complex dielectric constants of the two components obeys the condition 0.05 &

~
x(ts)~ & 20. Under more

general conditions numerical simulations are more reliable than the EMT at the percolation transition region.
The theory is applied to investigate the optical and microwave properties of some binary model systems. The
results of this analysis are utilized to explain some optical and microwave properties of granular metallic films,
n".etal-ammonia solutions, and amorphous germanium.

I. INTRODUCTION

The study of the optical properties of condensed
systems with inhomogeneities smaLL relative to the
wavelength reveals anomalous phenomena that do
not occur in the related homogeneous systems.
Such phenomena, usually resonances in the optical
conductivity, have been observed in aggregated
metallic films, ,

' ' in suspensions of fine metallic
particles in a dielectric medium, ' ' in colloidal
color centers in alkali halide crystals, ' and in
amorphous germanium with voids. ' "

The behavior of some of these systems has been
accounted fear by means of the Maxwell-Garnett
(MG) theory, ""which is essentially a first-order
multiple-scattering treatment for the propagation
of an electromagnetic wave through a medium in
which scatterers small relative to the wavelength
A. are embedded. The MG theory is therefore ap-
propriate for a binary composite material in which
one of the components forms separate inclusions
in a matrix formed by the other. In genera. l, for
random heterogeneous binary systems such a situ-
ation prevails only when the concentration of either
component is smaller than the percolation thresh-
old C*."" For C& C* most of the volume of this
component forms extended channels. There is
evidence from numerical simulation of electronic
transport in disordered systems" "that for con-
tinuous percolation C*=0.145 &0.01 while experi-
mental data ' jndjcate a value of C+ of. 0.15—0.17.
For such systems the MG theory is not appropriate
in the region C*& C & 1 —C*.

In this work we present a. self-consistent exten-
sion of the multiple-scattering model, which
yields an effective-medium theory (EMT) for the
propagation of light in a heterogeneous system.
The effective-medium approximation for electronic
transport properties"'" "has been recently suc-
cessfully applied to account for the behavior of
some disordered materials which undergo metal-
nonmetal transitjons. 22' '2 ' In those materjals
the transition takes place via an inhomogeneous
regime in which percolation effects determine the
transport properties. C oncentrated metal-am-
monia solutions have been studied extensively. "
We have proposed that in the range of metal con-
centration 2.3-9 MPM (mole percent metal)
I,i-NH, and Na-NH3 solutions consist of metallic
and nonmetallic regions characterized by a short
correlation length of 15—30 A at -10'K above the
consolute temperature. Since this length is much
smaller than the optical wavelength, one condition
for the applicability of EMT to the optical con-
stants is satisfied. The other condition for the
validity oi EMT is that fluctuations in the local
microscopic values of the dielectric constant
would not be too la,rge. This condition is also met
in metal-ammonia solutions. "'"Accordingly, we
have presented elsewhere" an account of an analysis
of the opticalproperties of metal-ammonia solutions
based on EMT and the above inhomogeneous model.

The MG approximation has been used to explain
the resonances that appea, r in systems composed
of metallic clusters within a dielectric. "'" We
find that in the limit of low metal concentration,
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C&0.05, the EMT reproduces the MG results, i.e. ,
a Mie resonance at roa=—or~/(1+ 2e,)'~'. However,
as C increases beyond 0.1 the peak becomes very
broad. We shall demonstrate that both the EMT
and the MG formula correspond to special cases of
a single-ce11 approximation for the frequency-de-
pendent dielectric constant. The MG result is
adequate for a binary system where one component
is embedded a,s isolated regions in the other com-
ponent, while the EMT constitutes a self-consis-
tent approximation to the dielectric constant.

II. EFFECTIVE-MEDIUM APPROXIMATION FOR THE
PROPAGATION OF LIGHT IN A RANDOM

HETEROGENEOUS MEDIUM

e(~.) = &D(~;, ~.))/&E(~;, ~.)&,

where (f(e,.)) stands for J P(c)f(z) de. This gen-
era, l single-cell approximation can be made self-
consistent by setting e(e,) = e,. If the form of the
cells is assumed to be spherical, Eq. (2.1) be-
comes

(2.1)

(2.2)

We first review the effective medium theory for
the static dielectric constant of a random hetero-
geneous medium, and then proceed to generalize
the derivation for the optical case.

A random heterogeneous medium with correla-
tion length b can be approximated by dividing its
volume into cells of dimension b centered on the
points r„.. . , r„having a constant value of the
dielectric constant e,. in each cell i.

The assumption that the medium is random may
be expressed by the fact that the N-cell distribu-
tion function P(e„.. . , e„) is equal to the product
of single-cell probability functions P(e, ) x P(e, )
x P(e„). The field and the displacement in the ith
cell are evaluated assuming that the cell is em-
bedded in a homogeneous medium of dielectric con-
sta, nt &, and that the whole sample is in an external
field E. The effective dielectric constant is then
defined as:

For the case of binary system A, B in the limit of
small concentration C„of component A. , one may
set e, = ca and Eq. (2.2) becomes

] 2C A. 8
y C A B

It has been shown by Hashin and Strickma. n" that
this exyression and the expression obtained from
Eq. (2.4) when 8 and A are exchanged coristitute
lower and the upper bounds, respectively (as-
suming ca & z„},for the exact value of the medium
dielectric constant. However, this theorem is
proved only for real c or o. Equation (2.3} for a
binary system is symmetric in the two compo-
nents. This does not apply to Eq. (2.4), which
therefore is applicable only for small values of
concentration of one component.

The above derivation of the EMT may be imme-
diately generalized to the frequency-dependent
ca,se. e,. is theri complex and (d dependent. When
the wavelength X in the medium is much larger
than the sample size, the sample can be said to be
in a uniform average field, and the same argu-
ments used for the static case hold. Springett has
carried out such an analysis for the ac conductiv-
ity."

In the more general case, X smaller than sample
size, one has to study the propagation of an elec- .

tromagnetic wave through an inhomogeneous me-
dium. We shall show that under the assumption
that the correlation length b and the wavelength
satisfy b/X «1, one still obtains formulas identi-
cal to Eqs. (2.2) and (2.3) for the complex dielec-
tric constant. We make use of the Ewald-Qseen
extinction theorem, '4 which is an integral equation
for the wave propagating in a medium with scat-
terers. Within the single-cell approximation
scheme we assume that the jth cell scatters as a
spherical region of dielectric consta. nt e,. embedded
in a medium of dielectric constant &0 The scat-
tering amplitude under the condition b «X is pro-
portional to the yolarizability:

n(e, ) = 0'(e, —e,)/(e, . + 2c,) . (2.5)

Setting e = e, we get the EMT formula

(2.3)

The integral for the propagation of a wave in the
medium with given configuration of cells
(~„.. . , ~J is

E(r, e„.. . , e„, . . . , e„)= E,(r) +4 (v„, x v„,) x n(c„,)E(r', e„.. . , e„, , . . . , &„, . . . , &„)G( I
r —r' I) dr',

47t ~~(~

where

(2.6b)

is the propagator for an assumed homogeneous

0', = ( co'/C') e

E,(r} is an incident wave of wave vector k„which

(2.7)

(2.6a.)
I

medium of complex dielectric constant e, where
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propagates in a homogeneous region of the medium
characterized by a dielectric constant 6'p and
enters the inhomogeneous region via the boundary

between the bvo regions.
The integration is over all the volume of the in-

homogeneous region excluding a sphere S(r) of a
size small relative to I, around the cell at r. We
proceed with the formal statistical arguments which
lead to an equation for an averaged wave

x n(c )(E(r'))'""~'

&«( Ir —r'I ) dr' «„.
(2.8)

The average ( )"~) denotes the result of averaging
over the configuration fe„.. . , e„] excluding the
cell at y. Here we introduce an approximation
similar to the quasicrystalline approximation":

«(r')&"" "'= &E(r'))""'. (2.9)

The physical content of this approximation is that
the wave incident at r' does not depend on the con-
tent of the cell at r.

Equation (2.8) can be viewed as the first equation
in a hieraichy of averaged multiple-scattering
equations, the next equation being an equation for
(E(r'))"""~' and would have (E(r"))"&"&'~ '~"' in the
integrand. Equation (2.9) is a procedure for the
truncation of the hierarchy of equations. " Equa-
tion (2.8) can now be recast as'4

Q(r) = E,(r)+—(i x i„)x z(e~)n(c„,)Q(r')G( Ir —r' l)dr «„,—2P(e„)n(e„)Q(r),
S(5

where

(2.10a)

(2.10b)

The assumption represented by Eq. (2.9), together with the exclusion of the cell at x from the integral in
Eq. (2.8), implies that (E(r))"~) does not depend on the content of the cell at ~ We m.ay therefore trans-
form Eq. (2.10a) by averaging over e„and e„ into

()(r) =E (r)+—(a)(r, x rr) x f ()(r')G(
~

r- r'
~) dr —2(a' )()(r) .

S (F)
(2.11)

For a wave Q(x) which obeys the equation

V'Q(r) —k'Q(r) = 0

with

(2.12a)

x(tr)=r„(tr)((+2 ' '
}

e,.( (d) —6,( (0)

e,((o) —c,((u)

6,(())) + 26,((d)
(2.15)

k' =- ((d'/C') E

Eq. (2.11) reduces to"
(2.12b)

Q(r) = E,(r) +I,(r) + (o.') Q(r) —. 2(o.)Q(r) .

(2.13)

The term f,(r), which originates from the con-
tribution of the surface Z to the integral in Eq.
(2.11), represents a, wave propagating with a wave
vector k, given by Eq. (2.7). Since Q(&.) propagates
with a wave vector k w k, the term E,(r) + f,(r) van
ishes inside the inhomogeneous medium. We are
now left with the following equation for e(v)

[c((o) —e,((d)]/[2&, (ur) + c(u))] = (n((u)), (2.14)

where (n(ur)) is the average polarizability of a re-
gion'of statistically distributed &,.((()) in a medium
of dielectric constant, e,((d). Solving for e((d) using
Eq. (2.5) we get an equation analogous to Eq. (2.2)

6„((0) —E()((d)
e(())) = es(())) 1+2C~

( ) ( )-

e„((u) —as((d)
c„((o)+ 2&s(ur)

(2.16)

On the other hand, if we make a self-consistent
approximation by setting &,((d) = e(ur), the effective
medium approximation for e(&u) results.

&,.( co) —e((d)
E.(())) + 26((d)

(2.1V)

and related to the Lorentz-Lorenz formula. " We
can regard this formula as a single-cell approxi-
mation for e((d), where e,((d) is any assumed initial
homogeneous approximation for the medium.

For a binary system in the case when one com-
ponent is embedded as isolated regions in the other
component, it is reasonable to choose e,((d) equal
to the dielectric constant of the matrix component,
resulting in the Maxwell-Garnett formula,
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In this case Eq. (2.11) simply reduces to

Q(r) =E,(r) . (2.18)

The formulation of the equation for Q as the first
member of a hierarchy allows for the possibility
of going beyond the EMT. For example, Hori and
Yonezawa"'" have substantially improved the EM'I
for the DC conductivity by noting a formal analogy
with the problem of an electron moving in a random
medium and by exploiting higher-order cumulant
approximations. A similar improvement could be
introduced here.

In the case of a binary disordered medium Eq.
(2.17) takes the form

6 ((d) —C((d) E ((d) —&(CO)

e'(~) + 2&(&o) e'(ur) + 2e(~)

(2.19)

where

&'((u) —=c((o), C = 1,
e'(~) -=&(&o), c= 0.

It is convenient to write the explicit solution
of Eq. (2.19) in the following form:

the range of fluctuation in the local value of e,.(&o)

is not too wide.

8 4m
V x H(r) = —"—E(r) +—a E(r) .Ct C

(3.1)

For a monochromatic wave of frequency (d

V x H(r) = —(i(o/C) e„(ur)E(r), (3.2)

where

III. NUMERICAL SIMULATIONS OF THE COMPLEX

DIELECTRIC CONSTANT

Numerical studies of the conductivity of a random
network of resistors have proved important for
the understanding of electronic transport in a ran-

omogeneous medium ls, 20, a2, 23 A general
zation of this approach for the case of frequency-
dependent complex dielectric constant is presented
herein. The random inhomogeneous medium with
a correlation length b is viewed as divided into
cells of dimension b. Each cell at z is assumed
to be characterized by a real dielectric constant
e„' and a conductivity a„. The following Maxwell
equation is thus obeyed at x:

e((o) = e'((o)f(x((o), C), e„((o)= e„'+ i4ma„/&o, (3.2')

f(x(ur), C) = a(&u) + [a(&u)2+ 2x(u&)]~~2,

2f(&C 2) [1 x(~)] + 2x(+))

X((0) = 6 ((d)/6 ((d) .

(2.20}

(3.3)

and where e„' and o„ean now be e dependent. Op-
erating with V on Eq. (3.2} and bearing in mind
that V ~ Vx H=O, we get

V [c„(&o)E(r)]= 0.

O. O5& ix((o) i
&2O. (2.21)

When condition [Eq. (2.21) ] is violated, the EMT
does not yield correct results for concentration
of.component of higher absolute value of dielectric
constant in the ranges 0.1&C&0.4 since in this
region percolation effects are important. In the
case of a random medium with a continuous dis-
tribution function P(c,) a requirement analogous
to Eq. (2.21) for the validity of EMT would be that

The sign of the square root is chosen so as to
give a solution with e,(ur) =—Im(e(ur)) ~ 0. It is clear
from the symmetry of Eq. (2.19) that the choice
of C, e, and &' may be reversed without changing
the results. This choice can therefore be guided

by convenience. Finally, we note that the relation-
ship between the frequency-dependent conductivity
and e,(+) is a(&u) = e,&ue, (ur), where e, =8.854 x 10"
and a is in units of (0 m) '. If both components of
the binary system possess a finite conductivity at
&a- 0, i.e., &'(ur) and e'(&o) increase as I/&u in this
limit, Eq. (2.19) reduces to the well-known EMT
equation for the dc conductivity.

In analogy with the ElVlT for the dc conductivi-
ty"'" a necessary condition for the validity of Eq.
(2.17) for 0~ C- 1 is

This equation serves as the basis for numerical
simulation of the complex dielectric constant in
analogy to the equation V [a„E(r)]=0for the sim-
ulation of dc conductivity.

The procedure of numerical simulation of e(~}
is based on the solution of Eq. (3.3) by a finite
difference approximation. Introducing a cubic net-
work of points r; with spacing 6„one obtains a sys-
tem of linear equations.

Q e,,((o)(y, —y, ) =0, (3.4)

where the sum is over six neighbors of i

~~A~) = 5r~~=&s;+~,&i2 (3.5)

and P,. is the potential at r, Each bond is assigned
a value of e according to the distribution function
P(c). For a binary system a fraction C of the
bonds is assigned randomly the value e', and the
rest are assigned the value c'.

A simplified representation of the cubic network
is shown in Fig. 1. The electromagnetic wave is
assumed to be polarized in the x direction, and to
propagate in the z direction. The network on which
the numerical simulations are performed may be
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FIG. 1. Scheznatic description of the cubic nebvork
employed for the numerical simulation of the optical
properties of a microscopically inhomogeneous medium.
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(3.6)

where k and k' represent neighboring sites on the
two planes, P„, Q„, are the (complex) potentials that
solve Eq. (3.4), and N,. is the number of sites in

yg planes. The direction of D„„„is parallel to
the field imposed on the cube, and normal to the
yz planes. The continuity of the normal component
of 0 across surfaces implies the equality

Da,.=D.,3= ' "=De-1,x (3.7)

This is also the final value of D. Finally, the ef-

considered to represent a cubic region of the me-
dium small with respect to the wavelength but much
larger than the average size of the correlation
length for the fluctuations. Such a choice is pos-
sible since X» b. The variation of the electric
field over the sample due to the factor e'~ ~ where

~
k

~

= 2m/X can therefore be disregarded so that the
spatial dependence of the field amplitude will fol-
low the fluctuations in the local complex dielectric
constant e„(sr). The system of N' equations [Eq.
(2.4) ] is solved by means of an over-relaxed Gauss-
Seidel iteration procedure with the following bound-
ary conditions: (i) constant potentials P =0 on the
~ = 0 face of the cube and g = 1 on the opposite face;
(ii) cyclic boundary conditions. in the y and z di-
rections. The initial potential values for the itera-
tions are linear in the x direction and constant over
the yz planes. The average value of the complex
displacement in the slab formed by the n and (n+ 1)
yz planes is evaluated by

fective dielectric constant e(ur) of a random medi-
um is defined by the relation

(3.8)

where &„and E„are the local values of the dielec-
tric constant and the field. In this case &E&=1/L
so that c is given by e=DL.

In simulating the dielectric properties of a binary
material one deals with a continuous percolation
problem. ""The random cubic network simula-
tion described above, which is an extension of
Kirkpatrick's model for the dc conductivity, "is
related however to bond percolation on a sc lat-
tice. We have shown recently' that a closer sim-
ulation of a continuous system can be obtained by
imposing correlations between the e values as-
signed to neighboring bonds. Regions of & = e' or
of e = e' are formed which extend over several
lattice distances. The effect of correlation is
mainly to shift the percolation threshold from
C*= 0.25 to C* = 0.15 + 0.01 which corresponds to
the threshold in a random continuous system. Nu-
merical simulations for model systems demon-
strate that this effect is evident only when

~

«'/co~
& 0.05. Otherwise

~(&)EMT (+)ooc cor ~(+)cor

throughout the entire concentration range.
I

JV. APPLICATIONS TO SOME MODEL SYSTEMS

In this section we apply the effective-medium
theory together with numerical network simulations
of e(&u) to explore the optical and microwave prop-
erties of some simple inhomogeneous model sys-
tems. These results will enable us to gain some
insight into the gross features of the optical con-
stants and the frequency-dependent conductivity of
microscopically inhomogeneous materials. We
shall be able to establish the criteria for the va-
lidity of the EMT and of the Maxwell-Qarnett rela-
tion on the basis of direct comparison with numer-
ical results. We shall start our discussion by con-
sidering a binary metal-insulator inhomogeneous
system, which is relevant to the understanding of
the optical properties of granular metals. ' ' Anoth-
er system studied by us involves again a binary
metal-nonmetal mixture where the nonmetallic
regimes are characterized by a Lorentz-type di-
electric constant centered around a frequency +,
which is lower than the plasma frequency co~ of
the metallic regions. Such a model is of interest
for understanding the optical properties of inhomo-
geneous materials undergoing a metal-nonmetal
transition, such as metal-ammonia solutions. "
Next, we focus attention on the dielectric func-
tion of a dielectric material containing voids, which
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e'(~) =1 —&o2~/~(ur+fy), (4.1)

where co~ is the plasma frequency and y is the in-
verse relaxation time, while for the insulating
region we take

6'((d) = E', (4.2)

where e' is real and frequency independent.
We now proceed to the study of Mie resonances

is pertinent to the elucidation of the optical prop-
erties of amorphous germanium.

A. Drude metal-insulator system

We consider a binary disordered medium where
the metallic regions are characterized by a Drude
dielectric function

exhibited by metallic particles embedded in a di-
electric. ' ' In Fig. 2 we display the results of
numerical simulations of the optical properties
of a two-component system where the optical prop-
erties of the metallic regions of volume fraction
C are given by Eq. (4.1) with y/&v~=0. 4 while the
nonmetallic regions of volume fraction 1 —C are
characterized by Eq. (4.2} with c'=1. These nu-
merical data for 0&C &0.25 are compared with
predictions of the EMT, Eq. (2.17), and of the
Maxwell-Garnett (MG} relation, Eq. (2.16). Below
the percolation threshold C*=0.15i0.01 there is
good agreement between the results of the EMT
and the numerical simulations, as is evident for
the data for C=0.046, 0.1, 0.15, and 0.25 in Figs.
2(a)-2(d), respectively. At C=0.25 the numerical
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FIG. 2. Complex dielectric function of a Drude metal-insulator two-component inhomogeneous system evaluated by
numerica1 simulation, effective medium theory (EMT) and the Maxwell-Garnett (MG) relation. The dielectric function
~ (co) of the metallic regions (with probability C) is given by Kq. (4.1) with y/co~= 0.4, while for the nonmetallic regions
(with probability 1—C) & = 1.
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results exhibit a fast increase of e,(~) as &u-0,
while the EMT still predicts a broad peak at finite

The same broad peak for C=0.25 is observed
in the results calculated on the basis of the Max-
well-Garnett relation. This discrepancy between
the EMT and the MG schemes, Eqs. (2.17) and
(2.16), and the results of the numerical simulations
originates from the failure of the mean-field theo-
ries above the percolation threshold. The apparent
percolation threshold in the EMT is C~» = 0.33
which is considerably higher than the value C*
= 0.15 +0.02 characterizing a random continuous
system. Figure 2(d) reveals that the disagree-
ment between e(&u) obtained from the EMT and
from numerical simulations occur when ~x(e)

~

&0.05, in agreement with the general criteria for
the validity of the EMT presented in Sec. III. The
EMT fails at &u &y where t c'(&u)

~
assumes high

values. %e thus conclude that Mie resonances
characterized by a maximum in e,(&o) are exhibited
in a binary metal-insulator random mixture in the
range 0&C&C*. For C) C*, e,(~) assumes a me-
tallic-type behavior, reflecting the effect of the
metal-nonmetal transition on the optical proper-
ties.

Experimental results' on metallic films show
Mie resonance peaks for C = 0.1—0.2. Some recent
data on granular metals show a persistence of the
peaks up to 60% metal without any comparable
shift to the red. 4 It is, however, apparent from
the conductivity da.ta, which show a transition
to metallic behavior at C = 0.4-0.6 instead of the
value C*=0.15—0.2 expected for a random inhomo-
geneous system, and from the structure revealed
by electron micrograph of metallic regions isolated
from one another by an insulating matrix whichper-
sists up to C = 0.5, that the Ag-SiO, and Au-SiO, films
are not random to the degree required for the validity
of our theory. The optical data for granular met-
als were treated' by the application of the MG theo-
ry. The basic assumption underlying the MQ theo-
ry, that of metal regions isolated by an insulating
matrix, holds up to about C = 0.5 for these ma-
terials. The only approximation which might be
inaccurate is the use only of dipolar fields. One
expects, therefore the MQ theory to hold better
for granular metals than the EMT, and indeed it
does, as can be seen from the comparison between
the two schemes given in the Appendix.

B. Drude-metal-Lorentzian resonance

The Li-NH, and Na-NH, in the range of metallic
concentration 2.3-9 MPM consist of metallic and
nonmetallic regions characterized by a Debye
short correlation length of 15-30 A." The optical
properties of the metallic component e'(&u) are de-

scribed quite well by the Drude model2' "with cop

-1.6-1.9 eV and y = 0.4-0.5 eV. The nonmetallic
component exhibits a wide peak in e', (u&) centered
at -0.65 eV, which corresponds to the red-shifted
absorption peak of the electron cavity resonance
observed at lower metal concentration. In order
to mimic the gross features of the optical proper-
ties of metal-ammonia solutions in the inhomo-
geneous regime, we have performed numerical
simulation of e(~) for a model system where eo(&e)

of the metallic regions is given by the Drude form,
Eq. (4.1), while the nonmetallic regions are char-
acterized by the Lorentz function

c'((o) = 1 fl((u' ——(oo2+iy~(o), (4.3)

where the resonance is characterized by a peak
at the energy ~„awidth y~ and an oscillator
strength f. In Fig. 3, we present the numerical
results together with the predictions of the EMT
and the MG equation. For &u) 0.1&v~, where ~x(v)

~

is of the order of unity, the agreement between
the numerical results and the EMT is excellent,
as expected. On the other hand, the MQ relation
is inapplicable, as it is unjustified to approximate
the zero-order value of r(&). We conclude that
for such systems the resonance structure of the
Lorentzian characterizing the nonmetallic regions
persists for high values of C. Even for C=0.8
a pronounced peak in e,(&o) and an inflection in
&,(&u) are exhibited. A detailed analysis of the
optical properties of metal-ammonia solutions
demonstrates the persistence of the resonance
structure at high metal concentrations, in accord
with the results of the present model calculations.

C. Lorentzian-void resonance

Qur theory is applicable to the study of the ef-
fects of submicroscopic voids in a semiconducting
medium which is characterized by a Lorentzian di-
electric function. Amorphous films of Ge and Si
contain voids which are assumed to account for
their (10-30)% density deficit with respect to the
crystalline substances. "" The form, size, and
volume fraction of the voids was found to vary
widely with the deposition method and with the
substrate temperature. "" In recent small angle
x-ray scattering experiments Schevchik and Paul~'
found that 0-Ge f iles prepared by evaporation con-
tain about 10% of approximately spherical voids
with size distribution peaked at b-15 A. Sputtered
films contained -10% of smaller voids with b s 5 A.
Qaleener' has interpreted the observed void reso-
nance by means of a MG formula for nonspherical
voids. He assumed that the voids are disklike
with normals lying on the surface of the films.
There is no evidence that this type of void struc-
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c,' & 9C(e,') 'e, (&u) /a'. (5.6)

For a, dielectric &,'(e) & e,'(&u) usually holds, and
e', (&u) is a slowly varying function of &u. Under the
condition Eq. (5.6) or in the limiting case of e, = 0
we thus have o(&a) ~ uP for low concentrations of
the metallic component.

At the transition region C-C~«~ for frequencies
which obey Ix(&o) I

«1 we have from Eq. (2.16)

e(&o) = [2 e'(&o) c'(ur) j'~'. (5.7)

Since
I
eo(&o)

I
1/&o and

I
e'(&o)

I
is weakly frequen-

cy dependent Eq. (5.7) yields

eo(v)x 9(1 —C)C ([,( ) )2 [ g( ) )2) (5 5)
H(1 c/c*,„,)'

a((o) = e,e,((o)&o .
The second term in Eq. (5.5) is dominant if the
following inequality is obeyed:

Numerical simulations at C- C* result in a similar
frequency-dependent behavior, a(&o) ~ u&'. The ex-
ponent s depends on C and varies from s = 0.75 for
C~ C~ to s=0.5 for C=C*. Numerical results for
C = C* are presented together with eaM~(v) at C
= 0.33 in Fig. 7.

We now compare these general conclusions with
some ac conductivity data. In annealed granular
metal films"'" the transition to metallic behavior
occurs at metallic volume fraction C = 0.47 +0.05,
while for a three-dimensional random system the
percolation threshold C*= 0.145 + 0.005. The rea-
son for this discrepancy is that in the annealed
films the grains have grown so that the metal re-
gions are. isolated by an insulating matrix up to
C = 0.45-0.47,"as indicated by electron micro-
graphy and the persistence of the Mie resonance
(Sec. IVA). The conduction is then by a (three di-
mensional) percolation process for which C*= 0.5.
The application of our present random medium
models to these systems is still meaningful if
we compare experimental data in the nonmetallic
regime C & C+. Similarly, the metallic regime
C & C~ should be compared with the theory for
C& C*:

(a) C& C*—EMT and numerical simultions pre-
dict a decrease of o(~) with decreasing C accord-
ing to Eq. (5.3). Since in the ac and microwave
regions v «y, co&, no change of the e-dependent
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behavior of o(ur) from the metallic behavior is ex-
pected. The reported ' ' experimental data for
metallic o(&u) show an increased skin depth as C
decreases in agreement with the theory.

(b) C &C*—According to the EMT result for a
metal-dielectric system, Eq. (5.5), o(~) follows
the frequency-dependent conductivity of the di-
electric matrix at low ~ values. At higher fre-
quencies the second term in Eq. (5.5) becomes
dominant, and o(ur) ~ uP is predicted.

The ac conductivity of granular films in the non-
metallic regime at low (~ & 6 x 10' sec ') frequen-
cies manifests a o c ~' dependence with s -0.8."~"
The ~-dependent term in the conductivity of the
dielectric matrix of these films Al,O„SiO„and
SnO, follow a similar power law" in the same low-
frequency range (ur & 6 x 10'). We can attribute the
&' behavior of these granular films to the ac trans-
port properties of the dielectric. For higher fre-
quencies (&u =6 x 10' sec '), Abeles et aL4' report a
o(&o) ~ &u' behavior in granular films in th+non-
metallic regime. At this higher-frequency range
the second term in Eq. (5;5) becomes dominant.

An increase of e,(&u) with increasing C has been
observed in granula~ films in the nonmetallic
regime. The value of e, (u&) increased up to -100
as the percolation threshold was approached.
Such behavior of the dielectric constant is pre-
dicted by EMT, as evident from Eq. (5.4). A
similar effect has been observed in the microwave
region in Na-NH, solutions. ""
APPENDIX: RESONANCE OF e(w) IN A METAL-INSULATOR

SYSTEM WITHIN THE MG AND EMT SCHEMES

The complex dielectric constant e(&u) of a binary
metal insulator system is given according to the
MQ theory by

e(u&) = e'(ur) [1+2K(&a)]/[1 —K(ur)],

where

(Ala)

Re[%(ur) —1]=0.
Equation (A2) may be transformed into

Re[(2+ C)e'(ur)+(1 —C)e (&o)] = 0.

(A2)

We specialize now to the model system which con-
sists of a Drude metal and a perfect insulator
characterized by

Z((u) = C[a'((o) —e'((u)]/[~'((o) + 2~'((o)], (Alb)

and where C is the concentration of the metallic
compound e'(ur) embedded in a medium of dielec-
tric constant e'(&o).

The resonances of e(ur) given by Eq. (Ala), occur
at energies A~~ for which the following condition
is obeyed:

It

&'((o) = 1 —(u2~/(u((u+ iy),
c'((o) = e'.

For small C values (C &y/z~)

(o —= (o /(2&'+1)' '

The half width of the resonance is given by

6v„=y, &'

(A4a, )

(A4b)

(A5)

(A6)

and the peak height is linear in C

e,(&oz) = (2e'+ 1)'~'(&u~/y)C . (A7)

The EMT formula for e(&o) may be recast in the
following form:

e'(1+ L(&o)) + e(e)L(&a)
1 —L((o)

C e'(&o) —&(&o)

1 —C e'((o)+2&(ur)
'

(A8a)

(A8b)

For small C values setting e(ur)- d(ur) and 1 —C-1
in the rjght-hand side of Eqs. (A8a) and (A8b) leads to
the MG formula Eq. (Al). This qualitative observa-
tion will be studied now in more detail near ~ = co~.
For C& y/&u~ Eq. (A1) may be approximated by

e(e) = e'[1+ 3E(&u) ]. (A9)

The resonance frequency is now given by the pole
of K(ur) and is thus determined by the condition

Re[2m'+ c,(ur) ] = 0. (A10)

[2e' —c'((u)] [c'((o) —~']
[2e'+ i'((o)]' (A11)

For the Drude metal-insulator system with e'(ur)
given by Eq. (A4a) and e', =1, Eq. (A11) reduces
at co= co„=~~&, to the following condition:

C «y'/2uP~ . (A12)

At C values given by Eq. (A12) as&„",&~ reproduces
the narrow resonance of the MG model. At higher
metal concentration the peak in e&„& broadens and
is shifted to lower frequencies as C increases
towards C~. At C& CE~„~-—0.33 e,„, has a maxi-
mum s,t &u= 0, and is qualitatively similar to e (ur).
In the MG scheme which represents a set of iso-
lated metallic regions embedded in a matrix char-
acterized by e =a,', urs(C) as given by solving Eq.
(A3) decreases slowly with increasing C and ap-
proaches zero as C —1. The MQ resonance width
does not increase significantly with increasing
metal concentration.

The EMT expression Eq. (A8) may also be reduced
by a small C expansion to Eq. (A9). The criterion
for the validity of this approximation may be ob-
tained by handling the explicit expression for &. . .
Eq. (2.20). The following condition on C has to
hold.
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