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Vibrational properties of a bicrystal interface: Different-interface phonons
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The vibrational properties of a coherent interface between two different crystals are studied in this paper on
an atomic model. In the long-wavelength approximation, we recover the well-known Stoneley waves of
elasticity theory and their existence conditions. We establish also that when these localized Stoneley waves do
not exist, one has nevertheless at least one semilocalized acoustic mode (localized in one of the crystals and
resonant in the other one). We also report for the first time on a few other interface modes: localized in
interface gaps appearing for some values of the propagation vector kN parallel to the interface; localized,
semilocalized, and resonant modes, some of them being in the optically active region. The relations between
these different interface modes are discussed. We also derive in thie paper. for the first time an atomic model's
variation in the low-temperature specific heat due to a bicrystal interface and to a planar bulk defect.

I. INTRODUCTION

The vibrational properties of crystal surfaces
were extensively studied in the last years, from
the theoretical point of view' ap well as from the
experimental one. Analogous studies of a bicrys-
tal interface are still rare. However, the know-
ledge of the phonons localized at an 'interface can
be useful, for example, in the study of electrical
transport through a semiconductor heterojunction,
where the electron-phonon coupling plays an im-
portant role. This knowledge should give also a
better understanding of the crystalline growth.
These localized modes can give also a nondisper-
sive phonon propagation at an interface. On the
other hand, the recent progress in the fabrication
of lamellar crystals and also of small crystalline
particles imbedded in another crystal (Guinier-
Preston zones, for example) creates systems
where the ratio between the number of interface
atoms and their total number is non-negligible.
It should be possible on such systems to measure
the interface specific heat, a quantity we calcu-
late also here for the first time on an atomic mod-
el. In this paper, we present also a study of the
interface phonons using a well-defined model due
to Hosenzweig. ' In the frame of this model, we
obtain the localized arid resonagt phonons at an
interface, as well as their conditions of existence.

Let us describe precisely the model used here.
The interface is formed by coupling by their (001)

surface two semi-infinite simple cubic crystals
A and B. The two crystals are supposed to have
the same lattice parameter a. The interactions
between the atoms are derived from central po-
tentials between first- and second-nearest neigh-
bors. The force constants between first- and
second-nearest neighbors are, respectively, K;
and ~, (i=A, B). The interface coupling is de-
scribed similarly by K' and &K' (see Fig. 1). The
crystals A and B are situated, respectively, in
the half spaces l, ) 1 and l, (0, where l, gives the
position of the planes parallel to the interface.

This model was already used' to study the inter-
face phonons at a high-symmetry point (k„=m/a,

k, =0) of the two-dimensional Brillouin zone,
and the phonons near a planar defect' (A =B) along
the & axis (0 (k„(m/a, k, = 0). This last problem
was studied before, ' ' but often using models of
the Montroll-Potts type' not invariant for the de-
fect atoms under infinitesimal rotation of the
whole crystal. ' The model used here does not have
this defect. We study in this paper for the first
time the localized and resonant phonons along the
4 axis at a coherent interface between two differ-
ent crystals. The relations between localized and
resonant interface modes are discussed.

In the elastic limit, the model used here was
chosen to be isotropic. This combined with the
central character of the interactions, yields for
each crystal the fol}.owing relations between the
elastic constants:
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agrees with the result" obtained recently in the
frame of the theory of elasticity.

In Sec. II we present the Rosenzweig' model and
the Green's-function method" used to solve our
problem. In Secs. III and IV we give the results
obtained for the interface waves and the relations
between those being localized and those being re-
sonant with bulk waves. In Sec. V, we derive in
closed form the low-temperature specific heat
of an interface between two different crystals and
of a planar defect in a bulk crystal.

FIG. 1. Schematic representation of the interface
model.

Cyy 3Cy2 3C44 or C) 3C
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where C, and C, are the longitudinal and trans-
verse speeds of sound.

In this limit (C', = 3C',), our results for the lo-
calized phonons in the long-wavelength limit agree
with the well-known Stoneley" waves. In the same
limit, the interface specific heat obtained here

II. MODEL

In the Rosenzweig model, along the b axis (k,
= 0) of the Brillouin zone, the bulk phonon disper-
sion. curves are given by:

{d'„.(y, ) = (d,', (y, ) = (4K, /M, )(2 —cosy„—cosy, ),
(d,'&(y, ) = (4K;/M;)(4 —cosy„—cosy, —2 cosy„cosy,),

(2.1)

where M; is the mass of the atoms in the crystal
i (i =A, 8) a.nd y = ka.

The corresponding eigenvectors are:

l ((secor/, ){l—coop.,) 'r,', ()—cosrp, )((+cosrp, ))'r')

e(y„2)= (e„(y„2)= 0, e,(y„2)= 1, e,(y„2)= 0),

e(y„3)=(e„(y„3)= -e,(y„1), e,(y„3)= 0, e,(y„3)—e„(y„,1)). (2.2)

One sees that along the & axis, the phonons of band
2 are polarized along the y axis and are then de-
coupled from those of bands 1 and 3 polarized in
the plane (x, z). This is the main reason why the
calculations of the Green's functions can be done
in closed form. At points of even higher symmetry
like y„=0 and y„=m, the atomic motions along x
and z are also decoupled. For y„=0, band 1 cor-
responds to the polarization x and band 3 to the
polarization z; for y„=m, it is the inverse.

For a semi-infinite crystal, one recovers' in
this model the Rayleigh waves and more generally"
all along the 4 axis, one has a branch of surface
phonons polarized in the sa.gittal plane (x, a). One
has another localized mode polarized in the (x, z)
plane and appearing in a gap existing between bands
1 and 3 and also some resonant modes inside the
bulk bands. An adsorbed monolayer" modifies
these modes and can give even new ones.

In the surface studies, '" one finds the frequency
of the localized and resonant modes from

Rene((u'+ i&) = 0,
with

&~(v'+ i@)= dettT-V~ G,((d'+ is)],
G, is the bulk Green's function:

G, ({()'+i{.') = [(&u'+ ie)I —5,] ',
where & is an infinitesimal number, I is the iden-
tity matrix, Do is the bulk dynamical matrix, and

V, is the change in D, due to the cutting of all the
interactions between two adjacent planes. Let D
be the new dynamical matrix, then

s=D -Do.

Let us now create an interface by coupling two
semi-infinite crystals A and 8 by the interactions
K'. The surface modes will be transformed in
interface localized and resonant modes. Other
modes can also appea, r, depending on the value
of K'. The frequencies of all these modes are
solutions of":
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R((u') =Re&((o'+i&) =0,

(2.3)

possibility of an optical interfa, ce mode.
In what follows, we use the notations:

4(~'+ ie) = det[I -Vz .G(&u'+ i&)],

where 6 is the Green's function of the two nonin-
teracting semi-infinite crystals and VI is the
change in their dynamical matrices enabling us to
couple them. We calculate 4 analytically in
Appendix C.

The variation of the density of states nn(uP) can
be calculated" from the knowledge of the real
part R(~') and of the imaginary part. Z(&') of 6(&'
+ ic)

(3.1)

(3.2)

z, gives the strength of the interface adhesion. We
will consider only z, & 0 and will suppose for a
given value of k that the bulk frequencies in A are
lower than those in B (0 &6 & 1).

A. Interface modes polarized along they axis

For the y-polarized modes, we obtained in Ap-
pendix D [Eq. (D5)]:

(2.4)

where the phase angle

(2.5)

For frequencies near a resonance frequency,
&n(&u ) can be approximated by the well-known re-
lation"

g ( ) I

CAELA

QBtB
+x9 t 1 t 1B

where [see Egs. (D2) and (D3)]:

—(0', —I)' t', if t, &1

t, = f, +i(1 —f', )'t', . if -1&/, &1

+(g) —I.)' t', if fq& -1

(3.3)

(3.4)

(2.6) and

g, = 2 —cosy„-M, &u'/4K, (i =A, B) .

I'/ro'„« I . (2.8)

Thanks to the decoupling along the & axis be-
tween the phonons polarized along y and those po-
larized in the plane (x, z), we have

(2.9)

The coupling VI is due to central interactions
K' between first- and second-nearest neighbors
situated only in the pla. nes l, =0 and l, = 1. There-
fore, for each value of y„,we will solve in Sec.
III one 2&& 2 determinant for the y modes and one
4 x 4 determinant for the xz modes.

III. INTERFACE MODES: ANALYTICAL RESULTS

As seen above [Eg. (2.9)] one can study along the
4 axis, separating the vibrations polarized along
y and those polarized in the plane xz. In Sec. IIIA,
we will discuss the y modes and in Secs. IIIB
and III C, the xz modes. In Sec. III 8, we make
the long-wavelength approximation and recover
the Stoneley" waves and their existence condi-
tions. Section IIIC will be devoted to the high-
symmetry points (y„=w, y, = 0) and (y„=y, =0).
For the last of these points, we investigate the

(2.7)
r

The resonance is a well-defined feature in the den-
sity of states when:

We can study now with the help of Egs. (2.3) and
(2.4) the localized and resonant modes having y
polarization. They are given by

Re&,(y„,&u) = 0.

The solutions of this equation will correspond to
localized modes if they correspond to frequencies
lying outside bands 2 (of polarization y) of the two
crystals A and B. This corresponds to ~g„~&1
and ~f~~ &1. The solutions correspond to resonant
modes (localized at most on one side only of the
interface) if the corresponding frequencies are at
least inside one of the two bands 2(~t;„~& 1 or

In Fig. 2, we represented these bulk bands 2.
Figures 2(a) and 2(b) correspond, respectively,
to two different cases forwhichone has 0.5&5&1.
Note that when one has 0 &6 &0.5, +,~(0) and ~~(n)
cross for a given value of y„and a gap (domain 6)
appears between the two bulk bands. The localized
and resonant modes can be calculated easily from
the expression [ Eq. (2.3)] in the five regions de-
fined in Figs. 2, as well as in the gap (domain 6).

Region 1. We have 0&t, &1 and &&0. Then there
is no localized mode below the bands.

Region 2. When g„=t„=1,let us define

Vs = 2 —cosy„-6(1—cosy„)
and

to $0 [ (go )2 1]1/2
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In the case 0.5 &5 &1, there exists a resonant
mode if

B KB pKB
t B-1 2KA K

For the case 0& 5&0.5, we have the same con-

dition when the top limit of this region 2 is &o»(0).
But when this top limit is (u»(vr), the above condi-
tion is replaced by

KB KB
tB —1 2KA K'

where

0 5

(o)

(o)

&s = 2- cosy„-6(3—cosy„) .
Region 3. There is no resonant mode.
Region 4. There exists a resonant mode in the

case 0.5&6&1, when

tA KA KA &
1 KA

tA-1 2KB K' 2 2KB '

where

g„'= 2 —cosy„-(1/5)(3 —cosy„)

q00 g 100 ]50 (I) = ~xa
X

t„'=&„+[(t~)—1]

An example of such a mode is given in Fig. 2(a).
Its dispersion curve is going tangent to +~(s)
when one is going away from the long-wavelength
limit.

In the case 0&5&0.5, we have the same condi-
tion when the bottom of region 4 is &o~(m). Hut

when this bottom is ~»(0), the above conditions
are replaced by

&KA& tA

tA-1 2KB K' tA —1 2KB '

where

g„'= 2- cosy„-(1/5) (1-cosy„)

0.5

50 100
2

150 g

t~ = gx+ (lx' —1)'

Region 5. There exists a localized mode when

one has the following condition:

t„' KA ~KA
tA-1 2KB K

An example of such a mode is given in Fig. 2(b).
Region 6. We can have a localized mode in this

gap, if

tB KB KB
t,'-1 2KA K' '

FIG. 2. Transverse interface modes. Limits of the
bulk transverse bands are (or~(0), a&2&(~)) and ((its(0),
co2s(m)). Figures 2(a) and 2(b)' correspond, respectively,
to the choice of parameters given by Eqs. (4.1) and (4.2).
In Fig. 2(a) one has a semilocglized mode close to &2A(7t)

and in Pig. 2(b) a localized mode close to u2B(vr).

We see now that for a, given value of y„,one can
have zero, one, or two localized or resonant
modes; this number depending on the parameters
characterizing each crystal, on the interface
coupling, and on the value of y„.Especially for
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y„=0, one can have only zero or one optical
modes. For a given value of y„,when the inter-
face coupling is increased, the frequencies of
these modes are increasing and new modes may
appear.

Let us note also that the phase shift [Eq. (2.5)]:

o'a&(y)
+ O(p„'

where

K~(r) = ' F.G.&.(y)A A. B

(3.8)

Im42((/)23 (3))
)7,((/)„,(d) = -Atan ~'(

"'
)

(3.5)
2 (G~ —3I„)(E 3) ))—

4g~ A B
Sy2(5

B. Sagittal modes and their existence conditions

in the elastic limit

In Sec. III A, we saw that there was no y local-
ized mode below the bulk bands. We will study
here the sagittal modes polarized in the (x, z)
plane in the long-wavelength limit. We will re-
cover the Stoneley wave and its existence condi-
tion and show that when the localized Stoneley
wave does not exist, a resonant mode appears.

Let us go to the limit (/)„«1. From Eqs. (2.1),
the bulk transverse wave in crystal A can be
written

~»(V.= 0) = (2K~/M~) V!+O(V.') . (3.6)

1. Stoneley modes

A localized interface mode will exist if we can
find a solution of Re&, = 0 of the form:

(u2 = (2K„/M„)y//)„2+ 0 ((/)„') (3.7)

with y&1.
Let us expand the expression of 4„,obtained

from Eq. (C5) as a function of (/)„. We substitute
also to (d2 its expression (3.7). Finally

has a, discontinuous jump of (a2)/) when &o crosses
~;„(0),i = 1 or 2, because Im&, diverges when

(d —(3)3~(0) + 0.
The results given here for the y modes are in-

teresting by themselves. They can also help to
describe other analogous cases. For example,
Eqs. (D12), (D13), (D19), and (D20) giving &„„,
at the high-symmetry points ((/)„=0and v) are
formerly identical to the expression of &, [Eq.
(3.3)]. Similarly in the Montroll-Potts2 model,
often used to study the qualitative behavior of the
vibrational properties, &, (cr=x, y, . z) can be
studied in the whole Brillouin zone in the same
manner as here 4, is studied [Eq. (3.3)]. The
magnetic" and electronic" "localized modes at
an interface can also be understood by a similar
mathematical approach.

(F.-».)(G.-» )+ 8 3y
6'&so/ling(r)

O( )
(3.9)

(I y)1/2 31/2(3 y)
1/2

. G. = 3"'(3-y)"'-3(1-y)-"',

(1 y)1/2 3 1/2(3 y)1/2

(3.10)

1 (F„-»„)(G„3f„)
4

'
3y

(3.11)

I'~, G~, I~, and &~ are obtained, respectively,
from I'„,6„,I„,and 4„byreplacing y by y5.
b„and &s a.re the expressions [Eqs. (B9a) and
(B9b)] expanded to order zero.

Let us note that the equations 4„(y)=0 and 4s(y)
= 0 give, respectively, the Rayleigh waves on the
free surface of crystals A and B.

A Stoneley wave will exist when the equation

&(r) =0 (3.12)

has a solution for y& 1. The ratio between the
speed of this wave and the speed of the bulk trans-
verse wave of crystal A. is then y' '.

Let us remark that 8 (y) and therefore the fre-
quency of the Stoneley wave are independent of the
interface coupling K'. This can be easily under-
stood as the wavelength of these waves is much
bigger than the range of this interface coupling.
The Stoneley waves depend only onthe relativebulk
properties of the crystals A. and B through the two
pa, rameters o~/n~ and 6 (or K„/K~ and M„/M~).

In order to obtain the existence conditions of the
Stoneley waves, we put y= 1 in Eq. (3.12). In this
case, G„diverges. This is owing to the fact that
we kept in the expansions (3.6) and (3.7) of uP» and
+' only the terms of order y„'. If we take into ac-
count in the expansions (3.6) and (3.7) the terms of
order y„':
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~2 — x1 (1 g 1 (72) )'
(/)2 + 0 ((/)6)

2K

(3.13)

(3.14)

then G~ becomes of order y„'by comparison to
F~, G~, I» F» I„.The first-order terms in y„
in the expansion of h [Eq. (3.9)] are then those
proportional to G„.Equation (3.12), after division
by G&[1- (1-5)'/'(1- 5/3)'/2] becomes

I

( j(2—5)'.—4 [(1—5) (1 —~25)1' '} — '
&2(2 —5) —4

I (1 —5) (1 —65)1' '+ 5 [2(1—5)]' ']
K~

+1 —[(1—5) (1 ——', 5)]'/ =0. (3.15)

The curve defined by Eq. (3.15) bounds the region
of existence of the Stoneley waves in the plane
(KB/K„,5), in fact, in the section of thjs plane
corresponding to 0&5 &1. An equation analogous
to Eq. (3.15) can be deduced for the case 5&1 by
replacing in Eq. (3.15) 5 by 1/5 and KB/K„byK„/
K~. These results were obtained by Scholte" in
elasticity theory. The region of existence of these
localized waves is displayed in Fig. 3(a) in the
plane (KB/K„,MB/M„): it corresponds to the
region inside the curves 1 and 1'. The curve 1
has an asymptote 5 =0.845. (Let us remark that
this value represents in our model the ratio CB„/
C,'„—= CBB/C,'B, where C» and C» are the Ray-
leigh wa, ves velocity of the crystals A and B, re-
spectively. ) The curve 1' has an horizontal asymp-
tote with KB/K„=2.912.

We calculated the velocity of the Stoneley waves
for M„/MB =2.4 for values of K„/KB satisfying
5 &1 [Fig. 3(a)]. The results are given in Fig. 3(b).
One sees that, when the bulk bands of crystals A
and B are getting closer to one another, then the
relative speed of the Stoneley waves (C.„,f, /C, ~)
decreases.

When the condition [Eq. (3.15)] is exactly satis-
fied, one can ask if there exists a localized inter-
face mode given by Eq. (3.14) with the constants
& 1 and y = 1. However, it seems ra ther impossible to
find two different crystals lying exactly on the bound-
ary of the existence region for Stoneley waves. The
only case of practical interest seems to be that of
a planar defect in the same crysta. l (A = B). This-

case was studied before" and a localized mode of
type [Eq. (3.14)with y=1] was found.

X 2~g( 1) (3.16)

where

2. Semilocalized interface mode

In the elastic limit, ' we investigate also the pos-
sibility of existence of a resonant mode of wave-
like type, in the crystal A, but exponentially
damped inside the crystal B. The frequency u of
such a mode has to be inside at least one of the
bulk bands of .crystal A and outside the bulk bands
of crystal B [&u,„(0)«d«B»(0)].

In other words, we look for a. solution (3.7) of
the equation Heh„,=0 but with 1&y&5 ', where 5
was defined by Eq. (3.2).

The expression of b,„,in the long-wavelength
limit requires the distinguishing of the two follow-
ing cases:

(a) (d& v»(0). This case holds for two possibili-
ties:

(d, „(0)& (u & (B2„(0)& (O, B(0)

or

((),„(0)& (1) & (()1B(0)& (B2B(0)

Then

4 —y o'B[g'(y) +if'(y)]
8r'(r —1) (3 r) l &,(y-) I'&, (y)

1

3'"(3-y)'" 3 3y' 10y+48 (y) = —3 (4-y) b B(y) + —
. [~6(y —2)'EB —(y —1) GB] + —

2 IB(GB -FB))l

+, , (3y' —24y + 56y —32) +0((/)„),4y'6'

gy(y)31/2(y 1)1/2(3y)1/2

x y (4- )a (y)+y— — +y ~ 11 G +, y, (a -y )I
K . 1 K 3' '(3-y)' (y —2) 3(2-y)
K~ Q K~ „ y

B 4 3 y B 2y25 B B B

(3.17)

(3.17')
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y —4y+8 . 7y' —28y+24-' 4~"(.- 1)"(3-.)
is the elastic limit expansion of Eq. (B9a) appropriate to the frequency range under study here

(b) (d&(d»(0). This case holds for:

R1~(0)( M2~( ) R M12 (0) .
Then

os[&"(y) + 2&"(y)1 -.,O(, )xx 4y2~ yy (y) g (y) 9 x 'Px

where

2

x"(y)= —3( p„s„a(y)+ 4, , (G p (F —3I )(s„—y„)+xx„(o —3I )(p„—Sx„)]

+5 b.~(y)Es Ge+O(P„),

q„() E~ G~P~+3I'~S„
4g

(3.18)

(3.19)

(3.20)

(3.20 )

(y 1)1/2+ 31/2 (y 3)-1/2

S (y 1)- + 3-1/2
(y 3)1/2 (3.21)

( 1)1/2 3 1/2
(y 3)1/2

&~(y) = l [1-(1/y') (S~ —T~) (I"~ —»~)]+O(q„).

(3.22)

As above, b, „"(y)is the elastic limit expansion of
Eq. (B9a) appropriate to the frequency range un-
der study here.

Equations analogous to Fqs. (3.16)-(3.22) can be
deduced for 5&1 by replacing in these equations 5

by 1/5 and Ka/K„by K„/Ks.
With the help of the expressions [Eqs. (3.16)-

(3.22)] one can search numerically for a resonant
mode for each point of the plane defined by the
parameters K2/K„and 5. In fact, instead of fixing
5 and Ks/K„and looking for a solution in y of
equation Re6„,=0, it is interesting to note that
the expressions (3.17) and (3.20) of (x '(y) and h "(y)
are of second degree with respect of the variable
K2/K„, then one can choose 5 and y and find the
solution of Be6„,=0 in Ks/K„. Varying 5 and y,
we search the region of the plane in Fig. 1(a),
where there exist resonant modes. The result of
this investigation is the following. When the lo-
calized Stoneley wave exists, there is no resonant
mode in the elastic limit and for &u, „(0)«o ( (()»(0).

On the other hand, when there are no Stoneley
waves, one has one or three semilocalized inter-
face modes. There are three such modes when
the parameters of the two crystals correspond to
a point inside the shaded region of Fig. 2(a). (Let

us remark that curves 2 and 3 bounding this region
when 5&1 both have the asymptote 5 =0.845/3. ) In
such a case' two of these modes may correspond
to an association of a resonance and an antireso-
nance, which are characterized, respectively, by
an increase and a decrease due to the interface in
the bulk density of states (see Sec. IV). In fact,
in the examples treated in Sec. IV, for which there
exists only one resonant mode below &()»(0), we
shall find (see Figs. 4 and 7) a pair of resonant
and antiresonant modes with frequency above
~»(0), i.e. , outside the region under study here.

Depending upon the relative parameters of the
two crystals, these resonances are or are not
well-defined features in the density of states.
Let us limit ourselves to the half plane 5&1. In-
side the region between curves 1 and 2 [Fig. 2(a)]
the quantity

~
I'/(()2

~
[see Eq. (2.8)] corresponding

to the single resonant mode can attain values of
the order of 0.75, but it can be much smaller,
especially in two cases: (i) when the point of in-
terest is near the curve 1, i.e. , the solution for
the parameter y defining. the velocity of the reso-
nant mode is close to 1; this condition is partic-
ularly fulfilled for points for which the parameter
5 is itself close to 1. (ii) When Ks/K„ is large;
this condition can be realized only if 0.845 6
a0.845/3. Between curves 2 and 3 [Fig. 2(a)]
there are three resonant modes —the second of
these is often well-defined contrary to the two
others which are not; nevertheless, when the
velocities of two of these modes are close to each
other, their widths become very large and diverge
even when these two velocities are going to coin-
cide. Finally, in the region above curve 3, the
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bands. When KB/K„and 5 [Eq. (3.2)] are fixed, we
can determine the strength of the coupling K' for
which these modes are at the limits of bands 1 of
the crystals A. and I3. Let us illustrate this on the
following example for which we choose KB/K„
= 1/1.9 and 5 ' =2.4/1. 9. The two surface modes
reach e»(0), ar»(0), &u»(n), 'u&, B(n') for, respec-
tively, nB(=K'/KB) =0.190 and 1.453; otB =0.629
and 2.140; (y~ = 1.071 and 3.082; n~ = 1.274 and

5.103. The full results for this case along the 6
axis will be given for one value of K' in Sec. IV B.

(b) x-polarized modes. Because of the analogy
between b.„(v,&u) [Eq. (D12)] and A, (cp„,&u) [Eq.
(D5)], one can transpose for this case the results
of See. IIIA. There is no localized mode below
bulk bands 3 (of polarization x), but one can have
for sufficiently high values of the interface cou-
pling K' either resonant modes inside the bulk
bands 3 or localized modes above or in between
the bulk bands 3. One can have zero, one, or two

such modes. When one has two modes, one of
them is below ~»(z) and the other above the

highest value oi &»(z) ands&2„(0). Finally let us
remark that the phase shift q„(y„,~) defined, by
analogy with Eq. (3.5), has a discontinuous jump
of + —2v or ——', v when &u crosses +2„(v)or ~2B(v).

2. Opticulinterface modes for y~ =py

Let us now look for interface modes having a
finite frequency for y„=y,=0.

The expressions of 6„(0,&u) and b, ,(0, &u) are
given by Eqs. (D19) and (D20) and are again anal-
ogous to a, (y„,&o) [Eq. (D5)]. We can therefore
transpose to our present study the results of Sec.
IIIA.

(a) z polarized modes. There is no resonant
mode with polarization z below &u»(n'). However,
a resonant mode appears between &u»(m) and

(u2B(n) for

and a localized mode exists above a&»(v) if

K' KB [5 1 5 1/2 (5
1 I)1/2] I

A

(3.24)

(b) x polarized modes There is no re. sonant
mode below ~,~(2). Such a mode appears between
~»(n) and &u»(v) if the condition (3.23) is satis-
fied. A localized mode exists above +»(v) if the
inequality [ Eq. (3.24)] is fulfilled.

This discussion shows that when the interface

coupling is strong enough, optically active inter-
face modes may exist, even when one has two
monoatomic crystals. Such interface phonons can
couple to photons. Such polaritons have already
been observed" for lamellar structures formed
by two different biatomic crystals.

IU. DISPERSION CURUES OF LOCALIZED AND

RESONANT INTERFACE MODES

The y-polarized modes corresponding to the two
above cases were already given in Sec. III A (see
Fig. 2).

A. Interface with a Stoneley wave

The dispersion curves of the interface modes
are displayed in Fig. 4, where all the frequencies
are reported by comparison to z», the maximum
bulk frequency of crystal B.

~„B= (24KB/MB)'/ (4.3)

We obtain a localized mode below the two bulk
bands (curve 1), corresponding to the Stoneley
wave in the long-wavelength limit.

At higher frequencies, between &u»(0) and ~~(0),
one has a resonance (curve 2), associated to an
antiresonance (curve 3). The resonance and the
antiresonanee are characterized, respectively,
by an increase and a decrease due to the interface
in the bulk density of states. The surface antire-
sonances were found before" in association with
a surface window mode. We call surface window
mode a localized rhode situated in a gap like
AA,A, (see Fig. 4). In Fig. 5(a), we give the
generalized partial phase shift'4 [Eq. (2.5)]:

R„,(p„,(g) = —arg A„,(p„,(g)

for y„=36'and as a function of ~. The resonance

We obtained in Sec. III the sagittal interface
modes in the long-wavelength limit and at a Bril-
louin zone boundary. In order to obtain the dis-
persion relations of these modes polarized in the
(x, z) plane, we study them here for the first time
all along the & axis of the Brillouin zone. We saw
that there are mainly two distinct possibilities,
depending on the existence or nonexistence of the
Stoneley wave. We choose therefore: (i) For a
case where a Stoneley wave exists

K /K =2.2, M /M =2.4, K'/K =1.4.
(4.1)

(ii) For a case without a Stoneley wave

K„/K,= 1.9, M„/M,=2.4, K'/K, = I.a.

(4.2)
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d. J2.

-0.1

One has also near p, = m a semilocalized mode
(10) associated with an antiresonance (9). The
mode (10) is very close to &u~(0) for y„going to
Ss

B. Interface without a Stoneley wave

0.1-

0
U

45'

0.G5

150'

(b)

c 0 6b'

140'

l

! +x

S 7'

~f)4) 4)V
QR

0 a
0

Let us first note that with the choice of param-
eters given by Eq. (4.2), the frequency ass(p„)of
the surface mode of the crystal S is in the long-
wavelength limit between &u,„(0)and m»(0); more
precisely

(us„0.845@„' „(u',„(0)0.792@„'
Q)ggg 12 Qp~g 12

But outside the long-wavelength limit, &u»(y„) is
below &u»(0).

The semilocalized acoustic mode found in Sec.
IIIB2 (see Fig. 7) is here very close to z». Then
it crosses w,„(0)and becomes localized. Its fre-
quency is beginning to be sensibly different from
~» for y„=0.67m. Finally this localized mode is
getting semilocalized again for 0.7m & y„&s [curve
(1)]. The definition of this mode (1) is studied in
Fig. 8(a): I'/e'„ is of the order of 0.2 and this
mode is rather well defined. Near point 8 where
this mode becomes localized, J(&„)is going to

-10-

4)

&f(8

100'
I

11G'
20 . 0 r~

FIG. 6. Study of the definition of some of the semi-
localized and resonant modes given in Fig. 4. J (co) and
R (ce) are, respectively, the imaginary and real parts of
b, (~) given by Eq. (2.3). Modes are well defined when

~

I'/m ~«1, where I'=J/(BR/Rut}~&u =&st. (a) Mode (5);
(b) mode (6); (c) mode (8). Pull, dash-dotted and dashed
lines give, respectively, J (~„),~

I'/cot~, and BR/da&t.

8(O)

(0)

proaches the point S where it merges into mode
(7). Mode (6) appears to be relatively well de-
fined (I'/&'„=0.2) and very well defined near S
where BR/BaF is slowly varying and

l
I'/&o'„l is

going to zero like J(~„).
For 0.57z&p„&0.65m, mode (7) is associated

with a partially semilocalized and resonant mode
[curve (8)]. The definition of this mode (8) is
studied in Fig. 6(c). It is formed to be well de-
fined. Near the point J where it merges into
mode (7), J(&c„)and BR/Btc' vary linearly with y„,
and I'/tc'„ is going to a finite value of the order of
0.05. The sharpness of the peak in the density of
states is then more important near J' for mode (8)
than near S for mode (6).

0,5-

0 )I/2

FIG. 7. Different interface modes [(1)-(11)]polarized
in the sagittal plane for the parameters given by Eq.
(4.2). Limits of the bulk bands are indicated by (cu&z(0),
cu&z(x)), (cosz(0), &us&(w)}, and similarly for the crystal
B.
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zero and SR/8 ~' to a nonzero value. The semi-
localized mode is going to a 6(&o} peak at the point
S. When the interface coupling is decreased (ns
= 1.1), this mode (1) becomes localized [curve (1')]
and is again very close to &uzi(y„) for p„~130'.

Between &o»(0) and &o~(0) (see Fig. I), we have
a resonance [curve (2}] and an antiresonance [curve
(3)] similar to the ones discussed in Sec. IV A (Fig.
4). From Fig. 8(b), we are getting the same con-

'

clusions about the definition of these modes as
those we reached from Fig. 5(b) in Sec. IV A,
especially near the point J' where the resonance
and the antiresonance are meeting.

Inside the bulk bands 3 of the two crystals, we
have a resonance [curve (4)] of optical type. Its
frequency is above ~»(m). To this resonance is
associated an antiresonance lying very close to
~»(v). We represented it in Fig. 9(a). The def-
inition of these modes can be understood from
Fig. 9(b) where we give the partial phase shift
q„,(y„,~) for three values of p„.These two modes
have the same qualitative behavior as modes (2)
and (3).

Inside the interface window CDE (Fig. 7), we
have a localized mode [curve (5)]. This mode
exists for 105 & y„&112' together with the semi-
localized mode (6). For y„=112',mode (6) is
getting localized [curve (11)]. Mode (11}is run-
ning close to the optical mode (8) and then is get-
ting semilocalized again [curve (7)]. The defini-
tion of the semilo'calized mode (6) is studied in
Fig. 8(c). The junction Z(y„=105')of this mode

(6) with the localized mode (5) is of the same type
as in Fig. 6(c). The junction S (p„=112')of the
mode with the localized mode (11) is displaying a
much bigger increase in the density of states.

In the region between ~~(0) and ~»(v) we have
also a resonance (9) and an antiresonance (10)
similar to those obtained in Fig. 4 and discussed
in Sec. IVA.

(a}

2lf

iI fp/(d2 [ (b}

ANTI-RES

i.5-

RESONANC

I

I

I

I

I

I

I

I

I( I[i~-'„l

However, to our knowledge the interface speci-
fic heat was not studied, neither theoretically nor
experimentally. Recently we obtainedxi the low
temperature specific heat of the interface between
two different crystals. . This result was obtained
in elasticity theory by the method proposed by
Maradudin and Wallis. " Here we obtain it with

V. LOW-TEMPERATURE INTERFACE AND

PLANAR DEFECT SPECIFIC HEAT

The surface contribution to the specific heat of
a finite crystal has been studied extensively, both

theoretically and experimentally. '
Some of the calculations of the low-temperature

surface specific heat of a crystal were carried out
for finite or semi-infinite isotropic elastic con-
tinua, giving qualitative"~23 and quantitative" "
results. Other calculations' t" "of the surface
specific heat of a crystal which are lattice dynami-
cal in character have also been published. The
theoretical results are in good agreement with the
experimental values" of the low-temperature. sur-
face specific heat obtained for NaCl powder.

105'
J

FIG. 8. Study as in Fig. 6 of the definition of some of
the semilocalized and resonant modes given in Fig. 7.
(a) Mode (1); (b) modes (2) and (3); (c) mode (6).
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A. General formulation of the problem

Let us first recall the method introduced by
Maradudin and Wallis" for the calculation of the
surface specific heat at low temperatures.

En the harmonic approximation the specific heat
of an arbitrary crystal can be written

CT=I
(sin/p)( —,

' p8'&o, )

0 580 .

0.555
10' 20 50

&x

where P = (k~T) ', with T the absolute temperature
and k~ is Boltzmann's constant; &,. is the frequency
of the ith normal mode, and the sum on i runs over
all normal modes of the crystal. The second form
of the expression for the specific heat is particu-
larly convenient for its evaluation in the low-
temperature limit where P is large.

To evaluate the sum on i in Eq. (5.1) we intro-
duce for the two coupled crystals the function El(y)
by

(b) (5.2)

0.605 "

We can write" for the difference between the spe-
cific heats of the two crystals before and after ad-
hesion

bC"'(T) =C' '(T) —C' '(T)

0.580-

Q n y'Q(y) sinn Pky dy,
2~, {pn)'

n=i

(5.3)

where we have put

fl{y) =& {y)-& {y» (5.4)

0.555

2

FIG. 9. Study of the definition of mode (4) given in
Fig. 7. This mode is associated to an antiresonanee-
Fig. 9(a). In Fig. 9(b) we give the partial phase shift
'q„~(q„,~) near these modes for three values of y„.

the atomic model described above, which enables
us to also derive the variation in the specific
heat due to a planar defect.

Let us first describe the method used here (Sec.
VA) before deriving the interface (Sec. VB) and
the planar defect (Sec. VC) specific heats.

Ez(y) being the function given by Eq. (5.2) but for
the two uncoupled crystals with their free sur-
faces.

Because n is greater than or equal to unity, and

P is large, we require the asymptotic behavior of
the integral

y'Q(y) sinnPQ dy
~o

(5.5)

in the limit as n Ph-+ ~. Lighthill's theory of the
asymptotic behavior of Fourier integrals" yields
the result that if the function A(y) has as its only
singularity a logarithmic dependence on ly l

in the
limit as y-0, i.e., if

&(y)--»nly I+o{lnly I), y-o, (5.5)

then the dominant term in the asymptotic expan-
sion of the integral J in the limitnPS-+~ is
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Z= [3~&/(nPn)']+a(n-4), nPh-+ (5 7)

It follows from Eqs. (5.3), (5.5), and (5.7) that the
adhesion specific heat is given by

~C& )(T) = -~g(3)a, s +o(T')k T (5.8)

det(I —Vl'6) =det(I —GI p)

detG Q (&() —&dg+fE. ) (5 11)
g, (& (d, +«)-

And fina, lly" with the definitions (5.2), (5.4), and

(2 .3):

11(y) = — —inc(ia))
2(d d(d

(5.12)

It is simpler for an atomic model to obtain Q(y)
from Eq. (5.12) than from Eq. (5.9).

a(&0) is obtained from ~(y„,«)„;(d) by

b, (&u) = g &(&('„p„;~) (5.13)

B. Calculation of the interface specific heat

in the limit as T-0, where g(3) is the Riemann f
function.

The problem of calculating the adhesion specific
heat is therefore reduced to showing that the func-
tion Q(y) associated with the adhesion between the
two crystals has the asymptotic form given 'by Eq.
(5.6) in the limit as y- 0, and of determining the
coeff icient A.

From the definitions of Q(y) and F(y) [Eqs.
(5.4) and (5.2)] it is easy to see that Q(y) can be
obtained from the knowledge of the Green's func-
tions Gz((d) and G(~) for, respectively, two cou-
pled and uncoupled crystals

Q(y) =Tr[G,(fy) —G(~y)] . (5.9)

It is enough then to calculate the Green's func-
tions before and after the introduction of the per-
turbation. This was done first by Maradudin and
Wallis" for an atomic model of a surface and then
in elasticity theory for a surface" and an inter-
face." Here we prefer, however, to use a slightly
different and simpler approach.

The Green's functions G~(&) and G((d) are re-
lated by

GI=G+G' VI' GI ~
(5.10)

where VI is the interface coupling. One can deduce
from Eq. (5.10)

4(y„,y, ; &()) in the long-wavelength approximation.
In Sec. III, we calculated 4(y„,0; «)). But in the
long-wavelength approximation, the Bosenzweig2
model is isotropic. Therefore

b,(y„,0; &0) =d (y, &()), (5.14)

x [«~o's'(1 —y) ' '+ (1 y5) '—']&I '+ o(0 ')

(5.17)

where (&l(y) is given by Eq. (3.9), &z(y) and &s(y)
are given, respectively, by Eq. (3.11).

Owing to the isotropy in the elastic limit, Q(y}
[Eqs. (5.15) and (5.16)] can be calculated as

s j. d
Q(y) =,— f y dqt )n&(y, ~))

(5.18)

where S is the interface area, S/a' is the number
of atoms in a (001) plane, and 9), is a cutoff. Such

a cutoff arises naturally in a lattice theory, where
the allowed values of y are restricted to be inside
the two-dimensional first Brillouin zone. We will
find that Q(y) has a logarithmic dependence on &&)„

in the limit as ~y ~

-0, so that a precise value of

y, is not needed. for our purposes.
It -is convenient to make the change of variable

y = iy qua/c, „,
where c,„=a(2K„/M„)'~'is the bulk transverse
speed of sound in crystal A. . Let us remark also
that Eq. (3.2) can be rewritten

(5.19}

~ = c'&~/c'sa (5.20)

with this. change of variables, Q(y) [Eq. (5 18)]be-
comes

where

v =( '.+v',)'". (5.15)

~e saw also [Eq. (2.4)] that & is the product of

&, and &„,. The long-wavelength expansion of this
last quantity was already given [Eqs. (3.8)-(3.10)].
The expression (3.3) of &, takes the following form
in the long-wavelength approximation:

&,(V, y) =[a~(1 y) -'"+ ~&(1 —5y) '"]m '+o(e '), -

(5.16)

where we used the relation (3.7}between y and &(P

as well as the isotropy in the long-wavelength ap-
proximation (4)„—= &&)}. Finally

&(p, y)= '&(y)[«(y)& (y)y'] '

At low temperatures, the main contribution to
the specific heat is due to the low-frequency
modes. It is enough then to use the value of

D(1')= 4„,, d ()" j &u»(~));

(5.21)
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where the expression for E(u) can be deduced from
Eqs. (5.17) and (5.18)

as the difference between the specific heat of the
bicrystal and those of the same two crystals but
infinite (without surfaces}. These two entities are
obviously related by

+In[c.„ca&(1—y) '~'+ (1-yS) '~']. (5.22)
gC(i) gC( s )A+ gC(8 )B gC(a)

'V V V V (5.27)

The quantity F(u) is only function of u. Indeed
when using the relation (3.7) between y and &0', as
well as u& =iy and the Eq. (5.19), one obtains

«2y= —u (s.a3)

Q(y) =," C, inlyl+ o(lnlyl) . (s.as)

Finally with the help of Eqs. (5.6), (5.8), (5.24),
and (5.25}, we obtain the adhesion specific heat

aC&'&(T) =],2« — C $T2+ o(T )
k3 j(3)

V Pg2 C2 2
tA

(5.26)

'The adhesion specific heat was defined as the
difference between the specific heat of the two
semi-infinite crystals and those of the bicrystal.
We can also define an interface specific heat &C(„"

If it were necessary to evaluate the integral
(5.21) exactly, the determination of Q(y) would
be a difficult problem indeed. Fortunately this
is not the case. We require only the dominant
term in Q(y) in the limit as ly I-0. From Eq.
(5.21) we see that ly I

appears only in the upper
limit of the integral. This means that the small-
ly I

behavior of Q(y) is determined by the behavior
of uF(u) for large u. This is most easily seen by
breaking up the range of integration (0, c,„k,/ly I)

to two mtervais (o, T) and (T, c,~k,/Iy I), where
T is independent of y and large enough that an ex-
pansion of F(u) in powers of u ' is valid. Thus T
should be greater than unity. The only y-dep(. n-
dent contribution to Q(y) comes from the upper
limit of the integral over the interval (T, c,„k,/
ly I) and the dominant contribution as ly I

arises from the leading term in the expansion of
E(u} in powers of u ' for large u. After some al-
gebra one obtains

u E(u) = C„u—C,u '+ o(u '),
where C, and C, are independent of u and

2(Ka/K„)'+g (1+5)Ka/K„+25 1 KB/K„+6
2(Ka/K„}2+5Ka/K„+2 2 Ka/K„+1

(5.24)

Note that the first term in C, is contributed by the
(x, z) modes and the second by the y modes.

We do not give C, explicitly, as only the term
of order u in E(u) gives after integration a singu-
lar contribution to Q(y) in the limit y -0. More
precisely we obtain

where &C„'~"(I =A, B) is the surface specific heat
of the crystal whose value" is for C', =3C',.

&C& "=10m . $T'+o(T')
k' g(3)

v I2 C2 (5.28)

The result obtained here in the frame of an atom-
ic model for the interface specific heat agrees
with those obtained without the restrictive condi-
tion (C', =3C',) in elasticity theory. "

Let us note also that if we go to the limit of two
identical crystals (A =13), the-above result boils
down to

~C&i) o(T2) (5.29)

In Sec.VC we will derive the variation of the
specific heat due to a planar defect and show that
it behaves like T' at low temperatures.

where

Q, (y) = —In&(&0)
I „;, (5.32)

C. Specific heat of a planar defect

We derive here the specific heat &C„(T}of a
planar defect as the difference between the spe-
cific heat of a crystal with a planar defect and
those of the same bulk crystal. The model is
given by Fig. 1, but with A =8. &C„(T}can be
obtained also here from Eqs. (5.3) and (5.12),
where one substitutes &C„(T)to &C&„"(T),Q(y)
to Q(y), and Z(&o) to &(&o); with

&(&o) =det[I —VD Go(&d)1, (5.30)

where VD is the perturbation which creates a pla-
nar defect in an infinite crystal for which the
Green's function is G,(v).

However, we will see that Q(y) will not have
here a logarithmic singularity like Q(y) in (5.6).
We will have therefore to use a different method
than above for the calculation of &C„(T}.We adapt
to this problem a method used by Maradudin
et a/."for the calculation of the free energy of
a defect at low temperatures. When integrating
by parts several times Eq. (5.3}one obtains

kT2
&C„(T)= —ka a Q (0) ——'n' Q"(0}

2m4
+ Q'"(0) a + ~ .~'2l 1 I-

(s.31)
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I~1"((x)=
d 4 ~~,(y)
dg

(5,33)

zweig model in the long-wavelength limit to ob-
tain E((p; &o), where (p = ((p'„+(p'„)' '. For (p, =0,
one has also here

In the same manner as we obtained Eq. (5.18)
we obtain here

G, (y)=, —
Jt (p dp in&((p, ~)

2XQ dg +=i'

(5.34}

As for the interface, we calculate &((p„,('p„;(4))

for y, =0 and then use the isotropy of the Hosen-

&..(V, ~) =&&(V, ~}&~6(V,~}

with

(5.36)

&(e., ~) =t] „(V., ~) &..(V., a)). (5.35)

The expression of &„,was given before4 and was
factorized in tw'o parts corresponding, respective-
ly, to symmetrical and antisymmetrical displace-
ments, as the planar defect has a mirror plane of
symmetry

1 n( „,3 5t, 1 3 '" 3-y '' (1—c(} 3
(q ty)=a+(y (1 y)' ——(3 —y)' ' —— + + —(( —r)

I
yo((y)

y 2 2 3-y

(5.3V)

(5.38)

where

n =K'/K. (5.39)

4,((p, (()) can be easily obtained by transposition
from a similar calculation done for the interface
magnons. " The mathematics of this problem
being identical to those of the y modes in the
Rosenzweig model:

+„(Py(() = 1 —(1 —2o;)t
t+1

to substitute in to y its value given by Eq. (3.'I}.

MQMy'
2K qP 2K

(5.42)

~C„(r)=7]2 —;,aST5+O(r4),
n4 e(n (5.4Sa)

where

Finally Eq. (5.31) enables us to see that the first
nonvanishing term in the expression of &C„(T)is
of order T' and reads:

= n+ (p (1 —y)'~'+ o((p),
1 —o. (5.40) $(().) =. ——v 3+ ——4 29 99 l

675 16 4 3 ~3 15+9 +—

1 —Q
In&((p, ~) =3 inn+(p 8, (5.41a)

where

where t is defined by Eq. (3.4).
Finally with the help of Eqs. (5.35}-(5.40), one

obtains

(5.4Sb)

where C, =( K2/M)'~'a is the transverse speed of

sound and a is the lattice parameter.
Note that the above expression is not valid for

a =0 (free surfaces), as then the expansions (5.3V},
(5.38), and (5.40}are no longer valid.

VI. CONCLUSIONS

+ 4[3(3-y)]'~'-, , -6(1-y}'t'
6y (1 r't'-

—&((-yt'") +l((-r)"*. (5.41b)

With the help of Eqs. (5.41) and (5.32), one can
now calculate Q,(y). In this calculation, one has

In this paper, we recovered the Stoneley waves
and their existence conditions. But we give also
for the first time new types of vibrational inter-
face modes.

In the elastic limit we found three different
modes (see Figs. 4 and 7): the Stoneley wave or
a new semilocalized mode (localized in one of the
two crystals and resonant in the other}; a new

resonant mode (2), and a new antiresonant one

(3). These modes may be excited by acoustical
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methods used for Bayleigh waves.
In the optical region (top of the bulk bands and

large wavelengths), we also indicate, for an inter-
face between two monoatomic crystals, the pos-
sibility of existence of new modes. Some are of
transverse character [see Figs. 2(a) and 2(b)],
some correspond to motions inside the sagittal
plane: mode (6}on Fig. (4) and mode (8) on Fig.
7. These modes could be excited by optical
means. " Another important finding is the exis-
tence of interface gaps and windows for the same
given value of k„(seeFigs. 4 and 7). Now inter-
face modes may exist in these regions: modes
(4), (5), and (7) on Fig. 4 and modes (5), (8), and

(ll) on Fig. 7. Such types of modes were discov-
ered also in interface electronic excitations, '"""
for metal-semiconductor junctions they are prob-
ably the states predicted by Bardeen. 38

The considerations developed in Sec. IV about
the relations between resonant, antiresonant,
semilocalized, and localized states are probably
rather general and characteristic of surface and
interface problems. One can expect to find such
effects in other than vibrational interface excita-
tions. The fact that ti&e resonant and semilocalized
modes are, in general, well-defined features in
the density of states, means that this mode may
be observed directly and probably plays important
roles in interface properties.

Finally the fact that we studied a coherent inter-
face on an atomic level does not affect appreciably
the result obtained for long wavelengths. The re-
sults obtained for short wavelengths will be of
course influenced by interface roughness, disloca-
tions, and diffusion. These interface defects will
introduce couplings betwee~ the excitations of the
bicrystal. The couplings can be expected to be
roughly proportional to the concentration of inter-
face defects and then treated as first-order cor-
rections if the concentration of interface defects
remain small.

We obtain also here for the first time on an .
atomic model the variation in the low-temperature
specific heat due to a bicrystal interface and to a
pea, nar defect situated in the bulk of a crystal. The
interface specific heat varies like T at low tem-
peratures and the specific heat due to a planar de-
fect like T'. From the experimental point of view,
the measure of the interface specific heat should be
possible as already mentioned in Sec. I. Our hope'

is that the theoretical results given here will stim-
ulate some experimental work.

(A1)

where the bulk eigenvalue ~,'.(y,) and eigenvectors
e,(y„.j) are given by Eqs. (2.1) and (2.2).

In fact, we need here only the m.atrix elements
of 0, between l, and l,'= 0 or 1. They were cal-
culated" in a basis of symmetrical and antisym-
metrical functions through the plane l, = —,', respec-
tively

10@)—I lz) I oy)+ 1 ly))
W2

10x) —
I la) 10')+ Ilz)

~2
'

v&

1 oy) —
I ly)

)vY

The matrix elements of 0, between a symmetrical
and antisymmetrical function are nil.

We will separate the real and imaginary part
of 0,

(A2)G«(o, o'}= R„(o,a') + i8„(o,o'),
where X stands for S (symmetrical) or AS (anti-
symmetrical).

I et us introduce the following notations:

1, inside the band i x=1, 2, 3

0, outside the band i

—1, above the band i

5',."' = 0, inside the band i

1, below the band i;

(As)

W = (co —(u. (m) i'i'

8 =4(K/M)(1+ 2 cosy„),
C = 8(K/M)(1+ 2 cosy„)[~'cosy„

(i =1, 2, 3)

+ 4(KIM) (1 —cosy.)'].
One has" the following results:

APPENDIX A: BULK GREEN'S FUNCTIONS

For the model defined in Sec. II, the bulk Green's
function is

xx + &x ex ex &36,'*(1+cosy, )(1+2 cosy„)V,W, —63"(1—cosy„)—'
3

3J'""= ——6,"(1+cosy„)(l+2 cosy„.)V W, + 6,"(1—cosy„)x 1 1 3 & y
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in
Gs=Gs=Gm=G 8=0 Ra"=

~~M ( l~'*l
& /s

2 2

"[5I'(1+2 cosy„)V,W, —5,"V,W, ], Ja'= — " — "[5,'*(I+2 cosy„)V,W, —5,'*V,W,],

R,"= — " + —5i"(I —cosy„)(1+2 cosy„)V, W, —g3*(l+ cosy„)
cosy„1 V,

x gf

Js Qy 1 cosy„1+ 2 cosy„VyWy + 53 1+ cosy„
3

Ii"„"8= — "+—b,'*(I -cosy„)V,W, —bi*(1+cosy„)(1+2 cosy„)xx + COS yx ex ex

1

As &z 1+cosy„1+2 cosy„'+ ~,"1 —cosyx V,S'3
p

1

GQAS GQAS G0AS 0~AS & ~A~8
4K/

-1+
I
&:"

I W2

@f3
": + —g,'"(I+ cosy„)V, W, —6i"(1 —cosy„)(1+ 2 cosy„)

2 1

as= i yx + yx + 3 + yx 3 3 y ops= ops= oa
1

APPENDIX B: SURFACE GREEN'S FUNCTIONS

I.et us remove all bonds coupling the two semi-
infinite crystals situated at l, ) 1 and l, & 0. This

creates a perturbation Vs in the dynamical matrix
(see Sec. II). Taking due account of the transla-
tional symmetry parallel to the (001) surfaces, one
obtains' for V~ along the & axis (y„=o):

Iox& Ios& IIz& Io~& Ily&

-cosy„ -i sing„0 0

-cosy„ i siny„
s 'M

i slny» -2 —cosy„

-i siny„-2—cosy„0 0

0 0

0 0
(B1)

The surface Green's function Gs can be obtained
from:

G & (1, o; 1, v') = Go(1, o; 1, o')

Gs = Go+ Go ' Vs ' Gs . (B2)
+ g B,,G(1, a"; 1, v'), (BSa)

fy"=x, y, s

As there is no more interactions between the
two semi-infinite crystals, the Green's function
elements will be nonzero only for both E, and l,'
&1 or (0.

In this paper, we need only G~ (1, v; 1, o') and
G~(0, o", 0, v').

.Using Eq. (82) we have:

where

a„,= -(2K/M)[-cosy„GO(1, o", 0, x)

—isiny„G,(1, o'; 0, z)+G, (1, c; 1,x)],
/

B„=-(2K/M)[ M, (1, o;. 0, y)+ G, (1, e; 1,y)],
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B„=—(2K/M)[-i siny„G,(l, o; 0, x)

—(2+ cosy„)G, (l, o; 0, z)

+ 3GO(1, o; 1,z)].

With the help of the elements of G, and noticing
that

we can rewrite Eq. (B3) as:

G, (1, y;1, o')=[Go', y/(1 —B„)]G,(l, y; 1,y),

(B4a)

B„,= — [G,(0, o;O, x) -cosy„G,(0, o; 1,x)

+ i siny„G,(0, o; 1, z)],

B„=— [G,(0, o", 0, y) —G, (0, o; 1,y)],
2K

2KB„=— [3G,(0, o; 0, z)+ i siny„G,(0, o; 1,x)

-(2+ cosy„)G,(0, o'; 1, z)].

And finally

G, (0, y; 0, o') = [6o', y/(1 —B„)]G,(0,y; 0, o'),

G, (1,x; 1,x) = [(1 -B„)/~]G,(1,x; 1,x),
G (1,z; 1, z) = [(1 —B„„)/4]G,(1, z; 1,z),
G (1,x; 1, z) = (B,„/&)G,(1, z; 1, z),

G, (1, z; 1,x) = (B„,/~)G, (1,x; 1,x),
where

&= (1-B,.)(1 -B..) -B.Q.„.
In the same manner, Eq. (B2) gives:

Gz(0, o; 0, o')

(B5a)

(B6a.)

(Bra)

(BSa.)

(Bga)

G 2 (0,x; 0, x) = (1 —B„)G,(0, x; 0, x)/&
&

G 2 (0, z; 0, z) = (1 B„„)G—,(0& z; 0, z )/b,

G, (o, x; 0, z) =B,„.G, (0, z; 0, z)/5,

G, (0, z; 0, x) =B„,G, (o, x; 0, x)/~,

where

6 = (1 -B„„)(1-B„)-B„Q,„.

(B4b)

(B5b)

(B6b)

(Bvb)

(Bab)

(B9b)

where

= G, (0, o; 0, o')+ g B~,,G (0, o";0, o'),
fy =X2 3l2 g

APPENDIX C: EXPRESSIONS OF ( I —VI G )

Let us first give the interface coupling matrix
Vl, which is easily found by analogy with Vz (Ap-
pendix B).

!ox& !oz& !Ix& Oy& ! Iy&

-Q cosy„ —iQ siny„ 0

-iQ siny„-Q(2+cosy„) 0 0

-Q cosy„ iQ siny„

iQ siny„-Q(2+cosy„)

0

3Q2

0 0

0 0

1 -Q

-Q Q'

(cl)

where

Q = (M, /M„)'~2. (c2)

We also need the Green's function G of the two
semi -infinite crystals without interactions

G~z(l„a",1'„o') if l„l', - 1,

As the coupling Vz acts only between the planes
l, =0 and l, =1, we need here for the calculation
of ( I —Vz G) only G~z(1, o", 1,o') and Gzz(0, o; 0, o')
which we gave in Appendix B. Finally

0 otherwise .

G(l„o;l'„o')= Gsz(l„o;1'„o')if l„l', ~ 0, (C3) t (I v; c)„. -
I

0 (l-v, G)„)
(c4)
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APPENDIX O' EXPRESSION& OF ~y (Px ~~}& ~xz {+&~)&

AND h„,(O,m)

1. h&(y„,w)

where f„is given by Eq. (D2) with

g„=M ~'/4K —5.

Similarly

(D9)

With the help of Eqs. (2.1), (2.2), and (Al), one
easil obtains:

G,(l„z;1,', z) = (M/2K) [t,"&4 "&/(8-, —1)], (D10)

where t, is also given by Eq. (D2) with

Go(lg~y i lg 3') 2K t~ —1

where

r..—(0'. 1)—

f, = g, +f(1 —j',)'~' n -1&g, :1,
C. +(S'.-1)" &r. = 1,-

with

g, = 2 —cosy„—,V&@'/4K.

(D1)

(D2)

(D3)

g, =3-Mar /4K.

Finally wit:h the help of Eq. (C5)

3a

t~ ~~~a" '(3t,„-1)(3f„—1)'

(D11)

(D12)

(D13)

The corresponding surface Green's function can
then be obtained from Eqs. (B4):

G (l,y; l,y) = G (O, y;O, y) =(M/2K)[t„/(t„—1)].

(D4)

We can now calculate A, (p„,&u) with the help of Eq.
(C6)

a„(p„,&a) =1 —a t,„/(t„„—1) —n f, /(f, —1),

where n„and os are defined by Eq. (3.1).

Z. h„,(n, w)

For y„=pand q, =0, modes 1 and 3 are also de-
coupled and one has from Eqs. (B7) and (B8):

b,„,(0, (u) = a„(0,(o) a, (0, (u). (D14)

In the same manner as above, one obtains:

G (l„x;f,', x) =(M/2K)[P+ lr~-s,'l/(P —1)], (D15)

Go(l„z;f,', z) =(M/6K)[t '~'~ '~~/(P, —1)], (D16)

where t„and t, are defined by Eqs. (D2) but now

with

5,(0,u)

Here also, we have the decoupling between modes
x and z, and as a consequence the relations (D6),
as well as

G~z(1, x; 1,z) = G~z(1, z; 1, x)= Gz(0, x; 0, z)

= G (O, z;O, x) =0

and also

(D6)

g„=1 Mu) /4K, —

g, = 1-M&@'/12K.

Finally with the help of Eq. (C5)

(D17)

(D18)

a„,(v, (u) = ~(v, &u) g(v, (u).

As above, one obtains

(D7)
~,(0, ~) = 1 —n„f.„/(t„„-1) —n,t„/(t„—1),

(D19)

~,.(0, ~) = 1 —~„f,„/(t,„-1)—~,t.,/(t„—1).

Go(l„x;lg, x) = —(M/2K)[t„'+ ~'~ '~~/(t„' —1)], (D8) (D20}
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