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Physical approach to the H2=-H+ H reaction: Friction coefficient calculation*
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A study of the dynamical aspects related to the H2 H+ H reaction on a metal surface is presented. Starting
from a model Hamiltonian formulation the binding energy between the two adatoms and the friction
coefficient q, both for relative and center-of-mass motion, are calculated. q, which is related to the prefactor
in the Arrhenius reaction rate equation, shows variation over a wide range of values as a function of
separation between the adatoms. At the same time q exhibits a markedly different behavior depending on
whether the adatoms are in a magnetic or nonmagnetic configuration. The implications of our results for
recent work on catalysis are briefly discussed.

I. INTRODUCTION

Heterogeneous catalysis has been for a long time
a subject of interest for scientists and engineers
alike. In particular, the problem of a physical
approach to catalysis has recently received re-
newed attention, both from the theoretical' ' and
experimental' ' point of view. As a result, a
growing body of evidence that catalytic rates show
significant variations, whenever fluctuations in
the substrate degrees of freedom are large, has
emerged. These fluctuations may be related t;o

phase transitions, alloying or other causes.
Motivated by this body of evidence Suhl et al.2

have. developed a Brownian motion model of the
interactions between chemical species and metallic
electrons; the resulting formalism provides a gen-
eral expression for the friction coefficient q of the
reactants over the surface of the catalyst. This
coefficient q, in turn, determines the value of the
prefactor v in the Arrhenius reaction rate equation

v = v exp(-Fs/AT),
where v is the reaction rate, T the temperature,
kB the Boltzmann constant, I B the barrier free
energy, and the prefactor v is an, "attempt" fre-
quency to overcome the barrier.

Kramers' assumed that the time evolution equa-
tion for the distribution function for one-dimen-
sional motion of the adatoms along the reaction
path has Fokker-Planck form; the validity and
limitations of using this equation within the con-
text of a quantum-mechanical formulation of the
problem, have recently been discussed by Schaich. '

While a general solution for the Fokker-Planck
equation has not been obtained yet, Kramers" was
able to obtain approximate solutions in the small-
and large-q limits; these solutions have the form
of Eq. (1.1) with

v~q/k~T for q«u„ksT/Vs

V ~ (d~(d&/7J f01 'g & &d»

where

2 8 PI ~B A,~B
(1.2)

are related to the curvature at the top and bottom
of the potential barrier V(R), while M is the mass
of the reactant atoms. On the other hand, Kramers
also presented evidence to show that in the inter-
mediate region (i.e., ~~ &q&~„AT/Vs) the kine-
matic theory of Eyring et al. ,

"known as absolute
rate theory (ART), does apply. In fact, it is wide-
spread practice to assume that v is simply a con-
stant and that ART always applies.

To explore the validity of such a procedure we
have carried out and reported previously'3 a model
calculation for the friction coefficient g of an ad-
sorbed H atom on a metal surface, using the for-
malism proposed in Ref. 2. Our results supported
the claim that ART may not always be applicable.

The model we invoked in our previous publica-
tion followed the spirit of the treatment given by
Newns" for the chemisorption of an H atom on a
transition-metal surface. In this paper we carry
out a natural generalization of the model, in order
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to treat the significantly more complex reaction
H, -H+H. In Sec. II this model is formalized by
writing a Hamiltonian; however', in order to make
the problem tractable a truncation of the Hamil-
tonian proves to be necessary. The effective Ham-
iltonian thus obtained is,treated by means of
Green's-function techniques'; details of this
treatment are provided in Appendix B.

While our model Hamiltonian does include many
essential electron correlations, it does not incor-
porate directional forces from neighboring atoms
nor the vibrational motion of surface ions (pho-
nons), and thus several important aspects in the
description of, catalytic processes are not dealt
with in this contribution.

Knowledge of these Green's functions allows the
binding energy between two hydrogen atoms in an
electron gas to be evaluated; this calculation is
carried out in Sec. III. Next, the friction coeffi-
cient q is obtained in. gec. IV, while numerical re-
sults, both for the binding energy and the friction
coefficient as functions of interatomic distance,
are computed in Sec. V. A general discussion of
the results thus obtained and a summary of the
main conclusions that can be draw@. , closes the
paper. Several subsidiary matters are dealt with
in Appendices A-D.

II. HAMILTONIAN FORMULATION

In this section we formalize the model outlined
in the Introduction; as mentioned, for the pur-
poses we are interested in it is reasonable to re-
place the actual system, of two H atoms adsorbed
on a metal surface, by the idealized model of two
H atoms in an electron gas; in doing so we follow
quite closely the spirit of the presentation of
Newns" for the analogous one-atom case. In as-
suming this idealized model we lose all effects
which are explicitly related to the presence of the
surface.

The first step in the formalization is to choose
as our basis set the 1s wave functions ~a, ) and

~
a, ) of the two H atoms, plus the electron gys

eigenstates f ~
k) ); moreover, for the time being

and in order not to complicate excessively this
model calculation, intended principally to clarify
and illustrate the main features of the process, we
neglect nonorthogonality effects between ( ~

k) ) and

~
a, ), ~a, )." The latter are orthogonal to each

other only at large distances; thus, we choose the
mutually orthogonal linear combination

~
+) = [1/(2 a 2 n, )' ~']

( a, ) + [1/(2 a 2A)' ']
~
a, ),

(2.1)

where &(R) =—( a,
~
a, ) is the overlap integral when

the nuclei (protons) are a distance R apart ~+)

and —) are the bonding and antibonding wave func-
tions for the molecular hydrogen ion, respectively.

As our model Hamiltonian we write

H =Xm+H„+K (2.2)

where K„describes the metal (idealized as an
electron gas), Hs represents the H atoms, and
X „is the coupling term between the metal
and the hydrogen atoms. Within our basis
( ~k), ~a, ), a, )] we have

(2.3)

H„=Q (c,n, ,+e n, )+U„n, )n, ) +U n —(n. , )

+g(U, n. ,n, + U', n, ,n, )

+U„(a~ &a~ &a &a &+at &at &a, &a, &)

2

a
(2.4)

&/~=CD, aC&, a ~ g~ =0 0~

The operators ct (c„- ) are creation (destruction)kg

operators for metal electron states, while at,
(a, ,) are creation (destruction) operators for elec-
trons in the bonding and antibonding states of the
molecular hydrogen ion. The hopping matrix
element is given by

(2.6)

where V is the bare electron-ion potential plus
an effective potential V"' describing the electron-
electron interactions in the substrate; electron-
electron correlations in the localized levels are
incorporated through the bonding and antibonding
states ~+). The matrix elements U„,U, U, ,U, and U, , are linear combinations of Cou-
lomb 'and exchange integrals defined in Appendix
A, where expressions for the single-particle en-
ergies E, are also to be found.

Unfortunately, our Hamiltonian as formulated in
Eqs. (2.2)—(2.5) does give rise to an extremely
complicated set of self-consistency equations for
the occupation numbers (n, ,) and the expectation
values (at,a, ), (at,a, ,), and (at,a, ), which
arise from the terms proportional to U and U, ,

'in H„; this set of self-consistency equations does
not seem to be tractable analytically even in the
Hartree-Pock approximation, and thus we have to
invoke an additional approximation.

X„s=
(&),&, Q (v, „a, ,cf, ,+ v;,a,ch, +H.c.),

f, e

(2.5)where
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U„=U„—nU„

U =U +nU„

U, =U, +nU. . .

(2.7a)

(2.7b)

(2.7c)

In the absence of a metal H„ is the Hamiltonian
for two hydrogen atoms treated in molecular-or-
bital theory, including configuration interactions;
precisely these configuration interactions give
rise to the terms proportional to U„and U, ,
Neglect of these terms leads to completely wrong
values of the binding energies for large separation
between the two hydrogen atoms. We thus retain
configuration interactions phenomenologically
through the following renormalization:

3CH= 6 n +E n

d))) A A
=U„n, )n, )+U n, )n

+ Q (U, n, ,n, + U,
' n, ,n, ). (2.10)

The binding energy and the friction coefficient
which enters in the calculation of the reaction rate,
are now evaluated using Green's-function techniques
within a Hartree-Pock self- consistency scheme; the
details of the Green's-function evaluation can be
found in Appendix B. We will use these Green's
functions' in the calculation of the binding energy
which follows.

Ul' Uf (2.7d)
III. BINDING ENERGY

o. =1/(1+&)'.

Thus, the final form of our Hamiltonian is

(2 6)

where n is a function of the overlap integral 4
=—(a,

~
a, ) chosen to give a good fit to the energy"

in molecular-orbital theory. The required fit is
obtained with

In this section we evaluate the binding energy
between two hydrogen atoms immersed in an elec-
tron gas. This binding energy E~ is defined as the
difference in energy between the cases when the
two atoms are separated by a finite distance R
and when they are an infinite distance apart; thus

X =X~+Xs+X~ s, (2.9)

w'ith X„and X„„given in Eqs. (2.3) and (2.5), re-
spectively, and

Es =E(R) —E(~),

and E(R) is given by

(3.1)

6p gt e'
E(R) = Q Ep,'(6) 4K —Q 6 Q p-'(6) A —2c„+

Q»00 g»OO k

—U„n, &n, &
—U n &n &

—U, (n, &n &+n. &n &) U', (n, -&n t+n, &n &). (3.2)

, Here &„ is the binding energy of an isolated hydro-
gen atom and p', (&) is the total density of states
per spin direction, related io our Green's functions
through

This result constitutes the natural generalization
to the two-adatom case of the expression derived
by Newns" for the adsorption energy of one adatom.
To simplify Eq. (3.5) further, explicit forms for
the summations in the expression (811) for G„
a.nd G are needed; in order to obtain them we
note that as a consequence of Eq. (2.6)

The terms with U carry a minus sign since they
have been doubly counted in the summation P p', .

E~ and e~ are the Fermi energies of the inter-
acting and noninteracting systems, respectively;
since these systems differ by two electrons we have

) V&, ~' = [(Vf, )'/(1+~)](1+cosk H).

Thus

Iv).„l' 1 ~ IV~I' 1+cosk'R
N e —e~ N w —&„1+&

k

(3.6)

J d', (d)dd — Qd„-'(d)dd)=2. . (3.4)
ty »00

Combination of (3.2) and (3.4) then yields

E(R) = g f (e —ez) ———fmln[(G;, ) '(G') '] de
Sy a 1

e2
+2(q~ —&s)+ ——U„n, )n, )

—U n )n

(3 7)
where V~ is the usual Anderson-type" matrix ele-
ment between localized and itinerant one-electron
states. The summation is carried out using con-
stant density of states p with a band of width 2D,
assuming that Vk, is independent of the direction
of k and neglecting the real (principal) part of the
integral, to obtain

—U, n, ,n, —U,' n, ,n (3.5)
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where I' = mp~ V~'. Our approximations are reason-
able as long as we do not require to know the exact
position of split off states below and above the band
edges; this limits our results to the weak coupling

limit, i.e., to the case when the bandwidth is much
larger than the width of the molecular bonding and
antibonding states. Substitution of (3.8) in (Bl1)
and combination with Eq. (3.5) yields

D (D+ c, ,)Q. (D+ &,)0 e'

—U„n, &n, &

—U'n &n &
—J, n, n, —U, n, ,n

Q fy

(3.9)

where E, , and e„are measured relative to the
Fermi energy and D is the half bandwidth. This
concludes the evaluation of the binding energy
and everything is now set up for the calculation
of the friction coefficient. it follows that

(4.4a)

(4.4b)

IV. FRICTION COEFFICIENT

This section is devoted to the explicit evaluation
of the friction coefficient q„,n; n, 5 =(x,y, zj denote
the Cartesian components of the kth and Eth ad-
particle displacement vector, respectively. To
obtain q„,' we use the fluctuation-dissipation ex-
pression derived by Suhl et al.' which reads

CO A A A

'g„, =
2

Re dt([F, (0) —6: (0)]p, (t) —p (t)]).
(4.5)

Thus defining
A A

(4.6)

we obtain

'0»= —Re dt F„OP, t dt,
0

(4.1)
2M (4.7)

where the fluctuating part of the force operator
F~ is givenby

9a =Fa (Fa) (4.2)

A. Relative motion

Our main concerns are the relative and center-
of-mass friction coefficients, that is,

(4.3a)

A

We write the force operator F as
A A AF~ =I~+Z~

with

and

AJ = Z (&'c- a +W. c' a
S +gS k kS ~ S

k~S

(4.8)

(4.9a)

gQR g+fM + glXQ

Since

(4.3b)

where
+,k

(4.9b)

and

gn 2 ~R& Vr R,

+1 8
Vr Ry V r R2 &g + ~2

~
V r Ry Vr Q~ (4.10)

, 2 k
Vr R2 +2k ~Vr R, k

GV'"r'
k

eV'"r
(4.1la)

For the following calculations the definitions
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(4.11b)

are useful.
The definition of the force operator (4.11a) excludes terms which do not contribute to the fluctuating

force. At the same time, terms related to interactions between electrons in localized levels have been
neglected; they do not contribute to the force related to the motion of the center of mass of the two adatoms.
We neglect these interactions for the relative motion since their influence would be restricted to very small
separations between the adatoms by taking into account screening effects.

Combining Eq. (4.7) with Eq. (4.8) yields

Re dt[(I "(0)I"(t))+(J (0)I (t))+(I"(0)J"(t))'+(J (0)J (t))]. (4.12)

The correlation functions above are evaluated using Green's-function techniques within Hartree-Pock
approximation; the details are given in Appendix C. The resulting expressions, valid for T/T~«1 are

(4.13)

and

fy @+Q ~@+
(4.14)

fy +y(F + ws g' +y0' +

Q
+Q'

Q2 2 Q'- &2

+yV + afy, + + ~ fy ~% ~ fy

(4.15)

Here we have used the definitions B. Center-of-mass motion

I~k
Q, —= ——Im

N co, -E, '
k

y, -=- —imp1 )W )2

N
k

(4.16)

(4.17)

(4.18)

(4.19)

Having obtained an expression for the friction
coefficient for relative motion of two H atoms on
a transition metal surface, we now turn our atten-
tion to their center-of-mass motion. Owing to the
fact that only the sum of the forces on the two
atoms is relevant in this case, there is a consid-
erable simplification in the calculation of g,
when compared with the one carried out above for

In fact, combination of Eqs. (4.1), (4.2), and

(4.3b) yields

with ~, =v+iO'.
In obtaining the above results the two main ap-

proximations have been made; the first and most im-
portant one is the Hartree-Pock approximation,
which was used to solve the self-consistent
Green's-functions equations (see Appendix B) and

to evaluate the correlation functions (see Appendix

C). The second major approximation is to treat
0, $, A. , and y [defined in Eqs. (4.16)-(4.19)j as
parameters, while neglecting the real part of
their k summations, when computing numerically
our results.

1 2 Ipp sty

+ Vvf, c„;a, ,+ W, -„a, ,c-„,),

where W„„Wg~, are given by Eq. (4.1lb).
This equation can be rewritten

(4.21)

He dt %~0+, 0 ~N t+ 26t

(4.20)
A A,

where F~ is related to the force operator F„
through Eq. (4.2) and

Q 0)

(1N) t* (1+6 i)*, +
(1 &) i -, + ()+1)"i +. "" (1 —a)' * - ' ')

k, o'

(4.22)
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or more simply as
A QIi, +Ii, =

( ),I, (wLc„",a„,+w„- c„,a, +re, „a, ,c„-,+m "„a~,c~,).
kgb

(4.23)

which defines by comparison with Eq. (4.22) the coefficients w~, and m~ I.
The structural similarity between Eqs. (4.9b) and (4.23) is quite apparent; this allows us to write im-

mediately, purely by analogy to Eq. (4.15), that

ee ~ pe + +pe~c.m. +I~ + ~2 + g2

Q3 3
2+ol+0 + ~ 0 8

( K)2 + + Iz { Ix)2+0' ~' +0' + 0'+&'
+~II + ee~g + +gCF

(4.24)

where we have used the definitions

J
N co ~k+

(4.25)

(4.26)

1 )K pI', == ——Im
N

k

(4.27)

V. NUMERICAL RESULTS AND DISCUSSION

In order to obtain numerical results one has to
start with the solution of the self-consistency
equations (B8'); use of Eq. (3.8) allows the self-
consistency set to be recast into the form

1 &, ,+D ~+..(Q, , ) = — arctan "-- — —arctan

Having thus completed the derivation of analytic
expressions for q„, and g, we turn our attention
to the numerical computation of our results, in
order to obtain relevant physical information from
our model; explicit forms for g, , X, , y~. .. A~,
and l", are provided in Appendix D.

A. Nonmagnetic solutions

Results for the nonmagnetic case are displayed
in Figs. 1-6; here, as throughout this paper,
atomic units are used for the energies and lengths
are given in units of the Bohr radius.

Figures 1 and 2 show results of the binding en-
ergy calculation and can be summarized as fol-
lows: the position and depth of the binding energy
minimum depends on the strength of the coupling
to the metal F and the interatomic distance be-
tween adatoms B. The larger the value of I' the
larger the value of B, for minimum binding en-
ergy; on the other hand, increasing I" leads to
shallower E~-vs-R curves. %hen the atomic level
lies near the Fermi level of the electron gas it is
clearly seen that for I'=0.1 or larger, finite inter-
atornic distances between adatoms are not favored;
this result agrees with calculations carried out by
Ying, Smith, and Kohn using the density func-
tional formalism. However, for smaller values

0.4—

1 +D(n, ) =- arctan

where

—arctan

(5.1a)

(5.1b)
0.l—

Q)
LU

-0.1—

It is well known that Eqs. (5.1) have two types of
solutions: a nonmagnetic one, with (n, ,) =(6, );
and magnetic solutions with (n, ,) 0 (n, ,). It can
be checked that while nonmagnetic solutions always
do exist, magnetic solutions are only found for a
limited set of values of the parameters &„and I'
(we recall that &s determines c, [Eq. (A1)] and I'
does the same with 0, [Eq. (3.7)]).

0.5 5.0

FIG. 1. Binding energy E~ (measured in Hartree units)
vs nuclear, separation B (in Bohr radius units), for the
case when the atomic levdl e H is 0.5 below the Fermi
level. The coupling I' of the localized states to the metal
states is 0.001 (solid line), 0.05 (dashed line), and 0.1
(dash-dot line).
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04-

I O.l—
UJ

-0.1—

0.5 5.0

l,/'r''

//
/ ~

—102

FIG. 2.:; Same as Fig. 1 but now the atomic level is
0.05 below the Fermi energy.

I

\

\
~ ~~ ~

)p-4

of I" the adsorbed molecule seems to be favored
compared to isolated adatoms.

For I' =0.05 we see in Fig. 2 oscillations in the
binding energy E~ which are related to Friedel os-
cillations; for values of I"~ 1 these Friedel oscil-
lations become much stronger and they may be re-
sponsible for overlayer structures, as found by
Schrieffer and Einstein. " The general trends of

I 10-3
8

FIG. 4. Friction coefficient g vs nuclear separation
Jl. The atomic level lies 0.5 below the Fermi energy and
the coupling constant I"=0.05. The solid line corres-
ponds to g~,» the dashed line to g~m, the dash-dot line
to g~» and the dash-double-dot line to g~~m .

our results are not affected by variations of the
Fermi momentum k~; the effect of changing k~ is
only a quantitative variation of the position and
depth of the minimum and in the amplitude of the
Friedel oscillations. It can be stated that our re-
sults are in qualitative agreement with experi-
ment; the weak coupling case can be interpreted
as physisorption, while the strong coupling limit
corresponds to chemisorption.

We now turn our attention to the friction coeffi-

lp ~

8
R

FIG. 3. Friction doefficient g, in units of 8/a Pf,
where M is the proton mass vs nuclear separation R.
The atomic level is 0.5 below the Fermi energy and the
coupling constant I'= 0.001. The solid line corresponds
to g„&, the dp. shed line to g, ~, the dash-dot line to .

~rei. and the dash —double-dot line t pc.m. ~

I

I

I

I

I

I /

i I

1 I
I

i

, /

g,
'/

'jj

10-2

-10 3

104

-1O 6

8 10 7

FIG. 5. Friction coef-
ficient g vs nuclear separa-
tion R. The atomic level
lies 0.05 below the Fermi
energy and I'= 0.001. The
solid line corresponds to
g„» the dashed line to
g, ~, the dash-dot line to
q„» and the dash-double-
dot line to q~~
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I
I

I

I

I

I

I

I

I,

I /

3,'j
i

'.X..

1

1Ol

1O
2

8
10.3

FIG. 6. Friction coef-
ficient g vs nuclear separa-
tion R. The atomic level
'.s 0.05 below the Fermi
energy and 1 = 0.05. The
solid line corresponds to
q ~&, the dashed line to

, the dash-dot line to
and the dash-double-

dot line to g~

cient results; g~„, rl„, and q" „, g (where I,
stands for longitudinal and T for transverse) have
been evaluated by numerical computation of Eqs.
(4.13)-(4.15) and (4.24), while expressions for the
quantities involved: g, , A.,", p, and:. ,", A„, I', ,
are explicitly given in Appendix D.

The most striking and important result we have
obtained is that both p„, and p, vary over three
or four orders of magnitude, as displayed in Figs.
3-6; this is an indication that, depending on the
circumstances, the friction coefficient might
change considerably the value, of the reaction rate,
with the implication that absolute rate theory "
(ART) may not always be applicable, as was al-
ready suggested by Suhl and co-workers. "'

For short interatomic distances g~„ is always

several orders of magnitude larger than q,
both for the longitudinal (I,) and transverse (1")
cases.

As far as the oscillations seen in the q-vs-P.
graphs (which are related to Friedel oscillations
in the electron gas), is concerned, we note that
they are smoothed out as the coupling l" increases.

I ~

l
ll 't

„1
I

I
l fl

l .
'. l

l

'il
l~

\ $

\
0

&..r

~O-5
8

I

0.5 5.0
R

FIG. 7. Binding energy EJ, vs nuclear separation R
for the case when the atomic level e„ lies 0.05 rebore
the Fermi energy. The solid line corresponds to I"
=0.001, the dashed line to 1=0.05, and the dash-dot
line to I'= 0.1. The arrows indicate where the magnetic
solutions appear and disappear.

FIG. 8. Friction coefficient g~, &
vs nuclear separa-

tion R, when the atomic level lies 0.05 above the Fermi
energy. The solid line corresponds to I'=0.001, the
dash —double-dot line to I"=0.05, and the dashed line to
I'= 0.1. For I'= 0.001 only the magnetic solution has
been plotted. For I'= 0.05 the value of g for the stable
magnetic solution shoots up at R =2.5, while for I'=0.1
the magnetic value lies first below the unstable non-
magnetic value of q (3.5%R ~ 5) and later above (5SRc 6).
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102

-to 3

10 4

-io 6

R

FIG. 9. Friction coefficient q vs nuclear separation
R, when the atomic level lies 0.05 above the Fermi en-
ergy and I'= 0.001. The solid line corresponds to g~~&,
the dashed line to q~~m, the dash-double-dot line to

Only magnetic solutions are plotted.

This smoothing of g can be understood in terms of
the relation between the fricition coefficient and the
curvature of Es(R), which becomes apparent after
a careful inspection of the plotted curves. This
way small changes in Es(R) may induce large vari-
ations in q„„asdisplayed in Fig. 3.

Another remarkable effectis the occurrence of a
minimum in q„, whenever energetic considerations
favor the existence of an adsorbed molecule com-
pared to two isolated adatoms.

B. Magnetic solutions

In Figs. 7-11 analogous results to the ones
mentioned above are displayed; we simply focus
now our attention on the changes brought about by
the existence of magnetic solutions. Since the en-
ergy difference between the magnetic and non-
magnetic solution is tiny, we have only plotted the
solution with lower energy and indicated with ar-
rows the position R at which the magnetic solutions
appear and disappear as R is increased.

In Fig. 7 it is seen that the curvature of E~ vs R
changes drastically in the region where the tran-
sition from the nonmagnetic to the magnetic re-
gime occurs; and, as expected, Fig. 8 shows a
very large alteration in the values of g near these
transition points, especially for small values of
I'. On the other hand, the behavior of the friction
coefficient outside the transition region maintains
the characteristics indicated in Sec. VA.

-)0-'

-10

-&0-2

-10 2

10
8

FIG. 10. Friction coefficient q vs nuclear separation
8, when the atomic level lies 0.05 above the Fermi en-
ergy and I'=0.05. The magnetic (stable) values shoot
up at 8 = 2.5. The solid line corresponds to q~~e» the
dashed line to g, m, and the dash-double-dot line toI
& c.m. ~

)0

R

FIG. 11. Friction coefficient g vs nuclear separation
8, when the atomic level lies 0.05 above the Fermi en-
ergy and I = 0.1. The magnetic (stable) values are the
smaller ones in the region the curves are double valued.
The solid line corresponds to g~~&, the dashed line to
g ~m, , and the dash-double-dot line g ~~ .
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Focusing our attention on the case F =0.05 of
Fig. 8 we observe that for small R the nonmagne-
tic solution is stable; as R increases the onset of
the magnetic regime is accompanied by an in-
crease of q, which rapidly turns downwards to a
value at times more than a whole order of mag-
nitude smaller than the (unstable) nonmagnetic
value for g. For large values of R it seems that
both solutions always merge.

Both the increase and the reduction of the value
of g in the magnetic regime, relative to the non-
magnetic one, are sharp and large in the weak
coupling case. -As I' increases the curves become
smoother and the peaks broader. We should point
out here that it is not clear whether or not these
strong variations of q near the transition from the
magnetic to the nonmagnetic regime are purely a
consequence of the Hartree-Fock approximation.
It should be mentioned that these results and the
general trends discussed above constitute a natural
extension and generalization of what we already re-
ported" for the one-adatom case.

Summarizing, we state that our results strongly
support tQe suggestion that ABT is not always ap-
plicable to heterogeneously catalyzed reactions
unless phonon effects, neglected here, return the
friction value into the ART regime as recently
suggested by Nozieres, "and that in some cases
dynamical effects (i.e., the details of the energy
transfer mechanisms between catalyst and reacting
particles) may contain the clue to why certain re-
actions take place over a specific substrate sur-
face, while no reactions are catalyzed over an only
slightly different one. It seems to us that purely
structural considerations will not provide a com-
plete understanding of the problem.

p, (r)y2(~) d33 =e s (1+R+-,'R') . (A4)

+% 1 2
12

=(U+Z' —2Z')/[2(1- &')],

v', (,)q', ( .) d.
1 2

=(U+P+2K' +4+/[2 (1+&)'], (A6)

O'=U, — y, (r, )q (r2)y, (r2)y (r,) &3
&12

= (J' —Z') /(1 —&'), (AV)

and

v, (r, )y, (12)y (r,)y (r )d2.,
12

=(~-~')/[2 (1 —&')], (A8)

U, „,.= U„

Here, as throughout this. paper, energies and dis-
tances are measured in Hartree and Bohr radius
units, respectively; y;(r) is the normalized ls
wavefunctions of the ith adatom and R =

~
R, —H,

~

is the separation between the nuclei of adatoms 1
and 2.

In terms of these and other similar parameters
the Coulomb integrals are
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APPENDIX A: COULOMB INTEGRALS

91( 1)91( 2) d3 d3 5
8

12

y'.(,)m,'( .) d.
1 2

12

=1/R —e '~(1/R+' ,'+ ,'R+ ~R'),--

(A10)

In this appendix we provide explicit expressions
for the parameters which appear in the term II„
of our Hamiltonian [Eg. (2.4)].

The energies of the bonding and antibonding
states ~+) and

~

—), respectively, are given by

e, =e„+(@+X)/(1~~), (A1)

where

Z, 9.(r )V,(r,)V.(r.)V.(r.) „.
+12

= 5e ' ('-,' —&R —3R' ——',R')+(6/5R)

x b.'(C+ lnR) + &"Ei(—4R) —2&&' Ei(-2R)],
(A12)

V1(r1)el(r.)e.(r,) „,
~12

J'= — qP(r) = ——+e '" 1.+—,(A2)-2Z
Ir-82l R R

de r y r = =-e" 1+8, A3
and

&'=e (1-R+-',R'),

= e (R+ —', + 5/16R), (A13)

(A14)
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where the constant C =0.5772157. . . is known as
Euler's constant and

V
G& «(~) — +el

~' (N}'"

Ei(x) =
X —dt.

t (A15) V, „ 1 V„
(x)"' ~-e (x)'"

k

APPENDIX B: GREEN'S FUNCTIONS

In this Appendix we solve the self-consistent set
of equations for the Green's functions, used in
Sec. III to calculate the binding energy and in Ap-
pendix C to obtain the correlation functions of Eq.
(4.12), which in turn yields our result for the fric-
tion coefficient; the self-consistent solution we
have obtained is valid in Hartree-rock approxima-
tion.

We start from the definitiog. s'~

G f(t) =-«c;.(t) I;.(o)», (al)

G:,-(t}= «a...(t} I cf.(0)», (B2)

G' (t}= «a„.(t}I a!,.(0)», (as)
G' (f) = «...«}Ia'„.(0)» (B4)

w'here

(&a(t}
I
f (0)» = fe(t) &(a(t), f"(0)),&,

with 9(t) =1 for f)0 and 0 for f (0 and (a, bg, = a8
+ ba.

The equations of motion for these Green's func-
tions read

G"' ( ) = ( —~ ) '(&;;+ [1/(&)'"l(l'-,G;,T+ l'" G', T8

(as)

(as)

~ e ~ (N}112

k

x
( ),'„G +

( )„,G„, (BV)

where

~ —e' (N)"' ~ —~ (N)'"
k k

(as)

&', =&,+ U„&n, ,&+U, &n, ,&+ U,' &n, ,). (as' )

The average occupation numbers &n, ,& have to be
determined self-consistently using the relation

Equation (Bs) directly yields

1 tV» )2 «1

G& g(+)
( y

y2
k

(B9)
Combination of Eqs. (B5) and (B9) gives

fr 1 1 V»k V» 1 t V» )2 -1 1 V V ( 1 ) V )2 1

G (~)= ~ "+ — "' "' ~-e' — "' + — " ' ~-~'- — — " (B1O)
N e —&, + N & —qk. N N

Equation (BS) is also directly soluble and yields

I V„,I'
G~~((d) = (d —6~ ——

k

Equation (B7) can be rewritten

1 I Vk'-~( ")5 k

(B11)

G~((u) =0. (B14)

APPENDIX C: CORRELATION FUNCTIONS

x (1 —e-'"'")(1+e+'"'a) (B1.2)

and the k integration is easily seen to vanish be-
cause of symmetry arguments; thus

but

(B12)
N

k

In this appendix we evaluate the correlation func-
tions of our expressions for the friction coeffici-
ents [Eq. (4.12)], which provide explicit values for
g.„~ and q,

We start by considering

&I (0)I ( )&= g ((W,",)'&[n...(0) —&n, ,)][n, ,(t) —(n„,&]&+ W„W &[n. ,(0) —(n, ,&][n,(t) —(n,&])
S fy

+ W W„&[n,(0) —&n,&][n, ,(t) —&n„,)]&+(W ) &[n,,(0) —&n,&][n,(t) —&n g]&), (C1)
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which in Hartree-Fock approximation reduces to

(I (0)Io(t)) = g [(Wo,)'(at, (0)a, ,(t))(a, ,(0)at,(t))+(W )'(at (0)a, (t))(a, (0)a~ (t))].
Sy 0'

(c2)

The cross terms, proportional to W W, do vanish since they are related to G (~) which is shown to be
zero in Appendix 8 [E(I. (814)].

The correlation functions in E(I. (C2) are evaluated through the use of thermal Green s functions, which
by means of the formula'

(c,.(0)c,.(t)) = —J tttd [G,, (td ) G,. ( tt)d] d f(td) (cs)

OQ

(c,(0)ct~(t)) = ——
J

d(u [G;,(-(d.) —G;,.(-(d )]e '"'f((u),
«OC)

(c4)

where f(&u) =(ea"+1) ', yield the desired information. Thus, combination of (82)-(84) with (811), and using
the definition given by Eq. (14), gives

J
OQ A OQ OQ OQ

dt (I (0)I (t))=, ' dt d(d d(u' f((u)f( (d')e ""'"'"Z((d', &u'),
0 tt 0 «OQ «OQ

where

Z + ~t — WN 2 4 t' + Wct )2
Q 0 0 Q

Z ( (td —a ) dtt (td +a ) dt) (td —f ) dtt. (al +a. ) dt). )

(c5)

(ce)

In the integrand of (C5) only the exponential factor is complex, thus

OQ OQ OQ

Be dt(I (0)I (t)) = + Be dt d(d der'f((d)f(&u')e '"'~"Z((d, ~')
«OQ «OQ

P
OQ OQ 00

Be dt d&u d&u'f((d)f(&ot)e""a""Z(o) &u')
27t'

P
OQ . OQ OQ

d~ I d(d'f(&u)f(&u')e ""' "Z(a, (d').
4m

Changing the order of integration it follows that

Be dt I OI t = — (d -+2 v, -v. (C7)

Since pf((d}f( (d) = &flee& we-obtain-through combination of E(ls. (4.12), (C6}, and (CV), in the very-low-
temperature limit, the result given in E(I. (4.13).

Following the same procedure, we derive in the Hartree-Fock approximation

(Io(0}J'o(t))+P'"(0)Io(t)) = —,I ~ P Wo, (a, ,(0)at, (t)) P [Wo„(at,(0)cg,(t)) + W„,(c„",(0)a, ,(t))]
a ~O

+ W (a~,(0)a, ,(t)) Q [W, -„(c„",(0)a~,(t))+ W~(a, ,(0)c-„(t))]

+ W" (a,(0)a" .(t)) Q
[W",(a' .(0)c„..(t)) + W; (c;(0)a(t))7, ,

+W (a",(0)a,(t)) g[W"(c„-,(0)a,(t))+W-"(at,(0)c„-,(t))]), (CS)
k

which, combined with E(ls. (AS) and (A4), yields
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(l (0)J"(t))+(Z"(0)1 (t))= Pf dtd dw'f(v)f(td')e"
a&+ ~00

x(( C:,(~)+ [C:.(~)]*]W„(-z/2~)[G;, (-~',) — G;,(-&u')]

+(C (-(o) + [C"(-(u)]+] W„(i/2n')[G;, ((u,') —G;.(&u')]

+(C, (~) + [C; (&u) ]*)W' (-i/2m) [G' (-(u'.) —G'.(- &u') ]

+(C:( &u)+[C, (-&u)]*]W (i/2&)[G'(~.') —G' (~')]),
where we have used the definition

C.",(~)-=( )„,QW„—[G;",(td.) —G;;(~ )j.
Substitution of our result for the Green's function [Eg. (B9)], above yields

C„( ) = (,)
', =[C„( )]*,

where 0, and $; were defined through Egs. (4.16) and (4.17), respectively.
Combination of (C9), (C11), (Bll), and Eq. (4.12), and using the same procedure we followed when

evaluating (I (0)I (f) ) above, we finally obtain the result given in Eq. (4.14).
The last correlation function we need to evaluate, written in Hartree-Fock approximation takes the

form

(C10)

(J'(0)J'(f)) =—Q [W.'W (c'„-,(0) c;„(t))(a,„(0)at„(&))+W -W, (c.(0)c.' (t))(at,(0)a„,(t))

+ W, W .„(cl (0)c. (t) )(a,(0)g ~,(t) ) + W,W. (c, (0)c. (t) )(g,(0)g. ,(t) )

+ W. W, ( c1 (0)g,(t) )( ~, ,(0)c1 (t) ) + W„„-W "„(cf,(0)g ~,(t) )( a ", ,(0)c„-,,(t) )

+ W. W., (ct (0}a„,(t))( a, ,(0)c~ (f) )+ W „"W„„;(c„-(0)at,(t))(at, ,(0)c„;,(f))

+ W. W„., (c~ (0)g, ,(t})(~.,(0)c', (t))+ W. fW; „;(cg(0)a', ,(t))(at, (0)c"„,(f))

+ WP W. (ct (0)a,(t))(g,(0)ct (t) )+ W -„W „;(cg,(0)at,(t))(a~,(0)c„,,(t)) ].

Using again Egs. (C3) and (C4) we obtain
(C12)

(J "(0)J (f)) =Q d(o d&zy(~)y(~i)e-i(e+s&') t

where we used the definitions

A ((d) =
( )y Ia Q W~ [G& g((d ) G& f(4& )]

(C14)

I ~

x ——[G;,(-&u,') —G;,(-&u')]B„(&u)+
2 [G;„(&u,') —G;,(&u')]8„(-(o)

~.

[G'„(-~,') —G' (-(u'.)]B, (&u)+ —[G' ((o',) —G'. ((u'.))8, (-~)

+A„((u)A, (-(u') + [A;,(- (u) A, ((u')]*+A; ((u)A (—(u') + [A, (—(u)A (~') ]*
1

+ C ( )C (-(o')+ [C„(-(o)C~,((u')]*+ C," (&a))C, (-(u')+ [C, (-(u)C, ((a)')]*

(C13)

a,,(~) =—g W, W, —[G.'.(~,) —G:.(~ )],
k, k~

(C15}
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while C;,(&u) was defined through Eq. (C10). Sub-
stitution of (B9) in (C14) yields

and, making R, =O, the matrix element of (D4) can
be written

CO —E~

v ((d —6z) + Qz
(C16)

1 ~ 1
-&a, lv-, v(r, R,) Ia,) = —v-„e

lr-Rl
(D6)

Substitution of (B10) in (C15) yields

(~;)'n, (5;)'n,
Ir (td t I+0 (td f ) +0) (D7a)

In order to evaluate the integral it is convenient
to use spheriodal coordinates (A., g, y), where

~ =- (1/Z)(r+ Ir —RI),

where 0, (, &, and y were defined in Eqs. (4.16)—
(4.19), respectively. Combination of Eqs. (C13),
(C16), (C17), (BB), and (4.12) yield finally Eq.
(4.15}, which completes the evaluation of the
friction coefficient q„,.

and

i
=- (1/R)(~ —lr —Rl), (D7b)

APPENDIX D: EXPLICIT FORMS OF THE PARAMETERS
2 7f 1

dp dp dA. (A.
' —p. ') ~ ~ ~ . (D7c)

In this appendix we provide explicit forms for
the parameters $"„A,"„y"„„Am„andI'&, as well
as the matrix elements W& & and Wj„ in terms of
which the friction coefficients q"„~ and g,.,~, are
given. [See Eqs (4.13.) -(4.15) and Eq. (4.24).]

The estimation we carry out in this appendix is
obtained by taking plane waves for the set (kj and
1s hydrogenlike orbitals for a, and a„while the
potentials V(r, R;) are taken to be Coulomb poten-
tials.

A. Evaluation of &, ,
With the assumptions stated before it is easy to

prove that

—{a,IV; (r, R,) Ia „&
= + &a, lv; V(r, R,) la, ) (Dl)

Thus

-&a, lv, V(r, R,)la, &

=—VRA 4P=2m 3

8~ R

(DB)

-&a, lv-, v(r, R,)la, )

= (R/82) [1 (1 2+8 + 2R')e ~] . (D9)

The other matrix element in Eq (D3) fo. r W„ is

-&a, lVr V(r, R.}la.&

and also

&a.lV-, [V(r R.) —V(» R.)]la,&

= 2&a, lV.;V(r, R,) la, &

= &a, lV-, [V(r, R,) —V(r, R,)]la,& .
Thus

(D2)

1 1-R
I V ~)r -R' lr-R, I

(D10)

-&a„lV;V(r, R,) la, &
= 1~-(7+ 1

I -R
I ) V d3+r

which with definition (D5) reduces to

= [—2/(1+ a.)] [&a,lv;V(r, R.) Ia, &

+&a, lv, V(r, R,)la, &] ~ (D3)

The matrix elements above are now evaluated:

-&a, I v; V(r, R,) la, &

1e' ~ '~ -V- dr (D4)

(D11)

(D12)

it follows that

where now R, =O. Choosing the z axis along R the
terms related to y drop out, but we are required
to know cosl9 in spheroidal coordinates. From

r+ lr Rl =AA—,

where a =ao' is the inverse Bohr radius. From
now on we set n =1, 'that is, we use atomic units.
With the definition

R=R2 —R, (D5)

A(X' —2X —1)=2r cos8

and thus

cos& = (1+ay)/(x+ p, ) .
Combination of' (D7), (D11), and (D14) yield

(D13)

(D14)
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—(a, lvr v(r, R2)la, & =R -z~dhe d((j
(

A. +1
dA. e (3A. —1) ln —6A.

A. —1

= Re " dx e "" (3x'+6x+2) ln —6(x+],)
0 x (D15)

These Laplace transforms can be handled and yield after a lengthy calculation

-(a, lV-, V(r, R,) Ia, &
= 2R(e "/R') [(3+3R + R') ln(2CR) —3R(2+ R) —(3 —3R + R') e~ Ei(-2R)], (D16)

where C is the Euler-Mascheroni constant and
Ei(x) was given by Eq. (A15). Substitution of (D9)
and (D16) into '(D3) completes the evaluation of
W~ ~.

B. Evaluation of Vf&~,

We replace (klV-, V (r)la;) by (klv;V(r, R,.)la, &;
this approximation is reasonable except for Aap- 1. Furthermore within the assumpt'ions made
above

-(klv-, v(r, R,)la, & =+ (klv;v(r, R,)l a,&e'"' '
(D17)

Thus there are only two independent matrix ele-
ments in Eq. (4.11), which we now evaluate:

«lv-, v(r, R.) Ia, &

-fk r + -I 1 -R
&1 d3 D19

and, using again (D5) with R, =0,

-«Iv;v(r, R.) la, &

1
=m ''V e ' - e dt'. (D20)R lr- Rl

Defining

(klv-, v(r, R,) Ia, &
= (klv;v(r, R,) Ia,&e"' .

4

(D16)

e-r
fg(R) -=e-' ' d'r,

lr-Rl (D21)

we obtain, using standard expansions for the plane
waves and the denominator,

(D22)

ce ~ l R ~l+2 oo g l
je(R)=(4e)' ' P,i, Y„(e,r) „,j, ()er)e dr+, , j,( r)ed'dr),

R

where j, (z) is a spherical Bessel function and the coordinate system has been chosen with k= (-k„0,0) and
R=(R, e, q).

For our purposes the region of physical interest is when the distance between nuclei is larger than a
Bohr radius; in that case the second integral in Eq. (D22) can be safely neglected. Moreover, since k~-a, ' the spherical Bessel function j,(kr) can be approximated by

n

-
(2 ,1). . .

where (2n+ 1)!!= lx 3x 5&& ~ ~ ~ && (2n+1). Then

l l R
4(R ( e ~ (2)+1) e ' ( 'r R'+' (llr()!! f r"+*e dr,

which after some algebra yields

(D23)

Ig(R) =—4jj g i'P, (cos8)2'+'(1+1)!(k~R)'R g
l=p 2f + 2+j. ! (D25)

Substitution of this last expression into (D20) finally gives

—((c(o-(r(r, R )(e ) = -e '1' g 4 4"' '
(k R) Ri (j+l+1)p, '(coed)R+ . (cordi', —p, ,)!I),1+ 1)! t

(21 + 2 +j)! sine

(D26)
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and we recall that 8 is the angle between the R and
k vectors.

Next we evaluate the other distinct matrix ele-
ment Eq. (D18), that is,

&~l&;V(r, R,) l~, &

1-z/2 e-ik r

"Ir-R,
(D27)

Using again (D5) and making R, = 0 we obtain

(2lvV(r, 2,)~la, ,) =m '~*I e "'' —,e 'd'x

, kr coskr —sinkr
(kr)2

= ik4(v)'~'(I/k')(k tan 'k) .

1 8% 3 2g2 cosk' r
N I + b. ((u, —e2)(12+ k2)2

16w
1 sink~A p(0)

1+~ k„A 1'+k'

where p(0) is the density of states at the Fermi
level.

8, &„and y", have three components (o,
= 1, 2, 3); but due to the cylindrical symmetry of
our system only two of them are different and we
denote theni by I. (longitudinal) and T (transverse).

Combination of Eqs. (4.17), (D29), and (D31)
yields

z, 1 ~ W)12V2. k2= ——Irn ZN ~ (d+ E

2v "
2 W2 (k) V2(k)

(D28)

Substituting (D26) and (D28) in Eq (4.1.1) we ob-
tain

Wg, = kIV, (k) (1+e '
)

-[2/(2+26)' ']&klv;v(r, R2)la, &(lee ' '"),
(D29)

1

(e 1212 )) -e i2S 2 )-1

= -2v ImW2(k„) V 2(k~)j,(k„R)p(0),
where V,(k) is defined in analogy to (D30) as

4(v)'~2 1V'"=(2.2~)~ 1+k .

(D34)

(D35)

with

kw. (k) =-[-I/(2+ »)"]&klv;v(r R1)l~,& . (D30)
As a consequence of cylindrical symmetry the

azimuthal integrals vanish and thus

After careful numerical analysis of the above ex-
pression in combination with Eqs. (D26), (D28),
(D34), and (D41), it becomes apparent that the
matrix element obtained in Eq. (D26) yields only a
small contribution for small A, which decreases
rapidly as 8 becomes larger; thus it can safely
be neglected in the numerical computation as we
have done throughout.

C. Evaluation of Q, , P„X,, and p,

$1' 0
L

1 Wg, y, -„
A., =- ——Im ~N

k

2)Ti
" W (k)V (k)

~+-~.

(D36)

1
X (2 —e' ~)' —e '2")') p, d p, = 0,

(D37)
and a quite similar argument shows that

VT„= [1/(2s 2a)'~'](Vg, a Vt,",)
= [Vg,/(2a 2b, )'~'] (I+ e '"'R),

where

(D31)

We now evaluate the quantities defined in Eqs.
(4.16)-(4.19) within the same approximations used
above. Thus

2r= ——Im
N

„. I .()I'
+- &a

z'-0
Now we turn our attention to

1 ~ Iwhl
yp =- ——Im ~ ++-&a

(D38)

Vg, = &I IV(r, R,)Ia,&

-iX. I -Ir-R j) d3
I

-Rl
—4(v)1/2 ~-((1 K 1/(1 + k2) (D32)

(D39)

1
x d+ (2 e&212)) e-AR)I)~

-1

=-2vlw. (k ) I'I"(k„R)p(0),
where 1„(z) is given by

Substitution of Eqs. (D31) and (D32) into Eq. (4.16)
yields

L (~) =-4(l ~[(I/~)i, (~) (j~)])-
Analogously

(D4o)
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yp = ——Im~ e+- e&k

with

2'
x cos cpdy

0

= —v
~

W (k ) ~
L (k 8)p(0), (D41)

dkk Wp 0
N

1
x dg (2~e""~+e """)(1 —P')

-1

(4.22) and (4.23). Similarly

since .the azimuthal integrals vanish.
Next we consider

L~ ~k.V. .k™~
which can be written

N . ""

(D44)

(D46)

L.(~) =- ~3*4'.(~)+ 4[(1&~b,(~) i.(~)-] (D42)
1

i NR P e l as P )+ d ~
-1

(D46)

1

(1~ coskR p) p d p, = 0,-1 (D43)

D. @valuation of:",, A, , and V,

Now the quantities appearing in the expression
for the center of mass friction coefficient are
evaluated. Using the definition given in Eq. (4.23)

L

4w~
" „, W, (k)V, (k)

N 0 (d+- Eq

and by comparison with (D34) we have

V, (k~) (~ W, (k~) ]~
V, (k~)

'
W, (k~)

By the same token

A~=0.

(D4&)

(D48)

r', = [Jw, (k, ) ('/(w, (k, ) ['] r', ,

and also

(D49)

Finally, using the same type arguments, we ob-
tain

where we have used the relations given by Eqs. ~'= [lw. (k,)I'ilw, (k.) I'] ~; . (D50)

*Work supported in part by NSF Grant No. DMR74-
03838.

/Supported in part by a "Stipendium der Deutschen
For schungsgemeinschaft. "

fSupported in part by the John Simon Guggenheim Mem-
orial Foundation.

~E. G. d'Agliano, W. L. Schaich, P. Kumar, and H. Suhl,
in Proceedings of the Twenty-Fourth Nobel Symposium
on Collective Properties of Physical Systems, Aspen-
aasgarden, Sweden, 19T3, edited by B. Lundqvist and
S. Lundqvist (Nobel Foundation, Stockholm, 1973).

2E. G. d'Agliano, P. Kumar, W. Schaich, and H. Suhl,
Phys. Rev. B ll, 2122 (1975).

3W. L. Schaich, J. Chem. Phys. 60, 1087 (1974).
4W. Haidinger and J. Figar, Chem. Phys. Lett. 11, 543

(1971).
5A. Couper and D. D. Eley, Discuss. Faraday Soc. 8,

172 (1950).
6D. A. Dowden and P. W. Reynolds, Discuss. Faraday

Soc. 8, 184 (1950).
E. I. Evzerichin and G. D. Lubarskii, in Scientific
Selection of Catalysts, edited by A. Blandin et al.
(Israel Program of Scientific Research, Jerusalem,

1968) (unpublished).
8G. Parravano, J. Chem. Phys. 20, 342 (1952).
9G. S. Krinchik, R. A. Shvartsman, and A. Ya. Kipnis,

Zh. Eksp. Teor. Fiz. Pis'ma Red. 19, 231 (1974)
PETP-Lett. 19, 425 (1974)j.
H. A. Kramers, Physica (Utr. ) 7, 284 (1940).

~'S. Glasstone, K. J. Laidler, and H. Eyring, Theory
of Rate Processes (McGraw-Hill, New York, 1941).
Klaus-Peter Bohnen, Miguel Kiwi, and Harry Suhl,
Phys. Rev. Lett. 34, 1512 (1975).

SD. M. Newns, Phys. .Bev. 178, 1123 (1969).
~4D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) [Sov.

Phys. -Usp. 3, 320 (1960)].
~A. Bagchi and M. H. Cohen, Phys. Rev. B 9, 4103
(1974).

~J. C. Slater, Quantum Theory of Molecules and Solids
{McGraw-Hill, New York, 1963).

«~P. W. Anderson, Phys. Rev. 124, 41 (1961).
S. C. Ying, J. B. Smith, and W. Kohn, Phys. Bev.
B ll, 1483 {1975).
J. B. Schrieffer and T. Einstein, Phys. Bev. 8 7, 3929
(1973).

206. Iche and P. Nozieres {unpublished).


