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A study of the dynamical aspects related to the H, ~~H + H reaction on a metal surface is presented. Starting
from a model Hamiltonian formulation the binding energy between the two adatoms and the friction
coefficient 7, both for relative and center-of-mass motion, are calculated. 7, which is related to the prefactor
in the Arrhenius reaction rate equation, shows variation over a wide range of values as a function of
separation between the adatoms. At the same time 7 exhibits a markedly different behavior depending on
whether the adatoms are in a magnetic or nonmagnetic configuration. The implications of our results for

recent work on catalysis are briefly discussed.

I. INTRODUCTION

Heterogeneous catalysis has been for a long time
a subject of interest for scientists and engineers
alike. In particular, the problem of a physical
approach to catalysis has recently received re-
newed attention, both from the theoretical*~® and
experimental®™® point of view. As a result, a
growing body of evidence that catalytic rates show
significant variations, whenever fluctuations in
the substrate degrees of freedom are large, has
emerged. These fluctuations may be related to
phase transitions, alloying or other causes.

Motivated by this body of evidence Suhl et al .2
have developed a Brownian motion model of the
interactions between chemical species and metallic
electrons; the resulting formalism provides a gen-
eral expression for the friction coefficient 7 of the
reactants over the surface of the catalyst. This
coefficient 7, in turn, determines the value of the
prefactor v in the Arrhenius reaction rate equation

k=vexp(-Fy/ksT), 1.1)

where k is the reaction rate, T the temperature,
kg the Boltzmann constant, Fy the barrier free
energy, and the prefactor v is an “attempt” fre-
quency to overcome the barrier.

Kramers' assumed that the time evolution equa-
tion for the distribution function for one-dimen-
sional motion of the adatoms along the reaction
path has Fokker-Planck form; the validity and
limitations of using this equation within the con-
text of a quantum-mechanical formulation of the
problem, have recently been discussed by Schaich.®

15

While a general solution for the Fokker-Planck
equation has not been obtained yet, Kramers!® was
able to obtain approximate solutions in the small-
and large-7 limits; these solutions have the form
of Eq. (1.1) with

ven/kyT for N<w, kyT/Vy
and

veew,wg/n for 1> wy,
where

_2
“a,B=77

9%y

by (1.2)

A, B

are related to the curvature at the top and bottom
of the potential barrier V(R), while M is the mass
of the reactant atoms. On the other hand, Kramers
also presented evidence to show that in the inter-
mediate region (i.e., wy<N<w,kzT/Vy) the kine-
matic theory of Eyring ef al.,'! known as absolute
rate theory (ART), does apply. In fact, it is wide-
spread practice to assume that v is simply a con-
stant and that ART always applies.

To explore the validity of such a procedure we
have carried out and reported previously'? a model
calculation for the friction coefficient n of an ad-
sorbed H atom on a metal surface, using the for-
malism proposed in Ref. 2. Our results supported
the claim that ART may not always be applicable.

The model we invoked in our previous publica-
tion followed the spirit of the treatment given by
Newns'® for the chemisorption of an H atom on a
transition-metal surface. In this paper we carry
out a natural generalization of the model, in order
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to treat the significantly more complex reaction
H,~H+H. In Sec. I this model is formalized by
writing a Hamiltonian; however, in order to make
the problem tractable a truncation of the Hamil-

tonian proves to be necessary. The effective Ham-

iltonian thus obtained is treated by means of
Green’s-function techniques'?; details of this
treatment are provided in Appendix B.

While our model Hamiltonian does include many

essential electron correlations, it does not incor- *°

porate directional forces from neighboring atoms '
nor the vibrational motion of surface ions (pho-
nons), and thus several important aspects in the
description of catalytic processes are not dealt
with in this contribution.

Knowledge of these Green’s functions allows the
binding energy between two hydrogen atoms in an
electron gas to be evaluated; this calculation is
carried out in Sec. III. Next, the friction coeffi-
cient 7 is obtained in Sec. IV, while numerical re-
sults, both for the binding energy and the friction
coefficient as functions of interatomic distance,
are computed in Sec. V. A general discussion of
the results thus obtained and a summary of the
main conclusions that ¢an be drawn, closes the
paper. Several subsidiary matters are dealt with
in Appendices A-D.

II. HAMILTONIAN FORMULATION

In this section we formalize the model outlined
in the Introduction; as mentioned, for the pur-
poses we are interested in it is reasonable to re-
place the actual system, of two H atoms adsorbed
on a metal surface, by the idealized model of two
H atoms in an electron gas; in doing so we follow
quite closely the spirit of the presentation of
Newns'® for the analogous one-atom case. In as-
suming this idealized model we lose all effects
which are explicitly related to the presence of the
surface.

The first step in the formalization is to choose
as our basis set the 1s wave functions |a, ) and
|a,) of the two H atoms, plus the electron gas
eigenstates { | k) }; moreover, for the time being
and in order not to complicate excessively this
model caleulation, intended principally to clarify
and illustrate the main fedatures of the process, we
neglect nonorthogonality effects between { |E)} and
|a,),|a,)2* The latter are orthogonal to each
other only at large distances; thus, we choose the
mutually orthogonal linear combination

|:t>=[1/(212A)1/2]|a1_>i[1/(2 +2A) 2] |a, ),
(2.1)

where A(R)=(q, |a,) is the overlap integral when
the nuclei (protons) are a distance R apart. |+)

and \—) are the bonding and antibonding wave func-
tions for the molecular hydrogen ion, respectively.
As our model Hamiltonian we write

H=3C,+Hy + 3y (2.2)
where 3C, describes the metal (idealized as an
electron gas), Hy represents the H atoms, and
¥nu i the coupling term between the metal
and the hydrégen atoms. Within our basis
{|k), |a,), |a,)} we have

HCn=_ €y, » - (2.3)
Ko

= T=0 b Tk

Hy=D (e, e, )+ U i, n, +Uf_ 7,
o

+D (T, R, 0 o+ U4, 0.,
g .
' tt
+U,,.(]d, ja_,a_y+al \al e, a, )

¢ 2
togt &
+U,_,. @,00%, o0, oot s (2.4)
kS o

1
Comere =72 EZ (V.50 oCt,0+ V.20 oC3, +Hoc ),
(2.5)

7 =t
2,0~ %y, 084,0 :

The operators c} (’c;q) are creation (destruction)

* operators for metal electron states, while af

(a,,,) are creation (destruction) operators for elec-
trons in the bonding and antibonding states of the
molecular hydrogen ion. The hopping matrix
element is given by

V*,§=f(:t vikyasr, (2.6)

where V is the bare electron-ion potential plus

an effective potential V*!f describing the electron-
electron interactions in the substrate; electron-
electron correlations in the localized levels are
incorporated through the bonding and antibonding
states |+). The matrix elements U,,,7__, U,_,
U,.., and U, _,_are linear combinations of Cou-
lomb and exchange integrals defined in Appendix
A, where expressions for the single-particle en-
ergies €, are also to be found.

Unfortunately, our Hamiltonian as formulated in
Egs. (2.2)-(2.5) does give rise to an extremely
complicated set of self-consistency equations for
the occupation numbers (#, ,) and the expectation
values (af ,a_,), (al .a, ), and (af ,a_ _ ), which

+90 %4y =0
arise from the terms proportional to U___and U

- g

“in Hy; this set of self-consistency equations does

not seem to be tractable analytically even in the
Hartree-Fock approximation, and thus we have to
invoke an additional approximation.



In the absence of a metal Hy is the Hamiltonian
for two hydrogen atoms treated in molecular-or-
bital theory, including configuration interactions;
precisely these configuration interactions give
rise to the terms proportional to U,,__ and U
Neglect of these terms leads to completely wrong
values of the binding energies for large separation
between the two hydrogen atoms. We thus retain
configuration interactions phenomenologically
through the following renormalization:

g

v, =0,,-aU,,__, (2.72)
U_=0_+aU,,._, (2.70)
U, —U +al,_,., (2.7¢c)
vl_=0_, (2.7d)

where a is a function of the overlap integral A
=(a,|a,) chosen to give a good fit to the energy
in molecular-orbital theory. The required fit is
obtained with
a=1/1+A)2. (2.8)
Thus, the final form-of our Hamiltonian is

P 3 =3C, +30y +3C, (2.9)

with 3¢, and 3, given in Egs. (2.3) and (2.5), re-
gpectively, and
)

R 14 2
E(R)=Zf €pd(€) de - Zf FéZp%(€)de—2<H+ =
o - I3 -0 P4

—Uth *n "—U

Here €y is the binding energy of an isolated hydro-
gen atom and pj(€) is the total density of states

per spin direction, related to our Green’s functions
through

)=~ 7 m( 3 CRO+E2O+62.(0). 6.9
k

The terms with U carry a minus sign since they
have been doubly counted in the summation 25 pS.
€, and €% are the Fermi energies of the inter-
acting and noninteracting systems, respectively;
since these systems differ by two electrons we have

Z ( f :F p(e) de - J:szj pg(e)d€>=

Combination of (3.2) and (3.4) then yields

LEED M C 2 oz~ FImnl(es) (62 ]) de

2
+2(€p—€y)+ E

_U Z +,a =0

(3.4)

-U..n

e +y

4
U+-Z"+.o”~,a-
o

n,y=U.n_yn

(3.5)

Ay = Ulng g g +n, ) = UL, g0y +m, ).
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A A
=U,# ¢n+,;+U__n_,’n_"

+4+ ey

+Z( Ay of, gt UL, o). (2.10)
The binding energy and the friction coefficient
which enters in the calculation of the reaction rate,
are now evaluated using Green’s-function techniques
within a Hartree-Fock self-consistency scheme;the

details of the Green’s-function evaluation can be
found in Appendix B. We will use these Green’s
functions' in the calculation of the binding energy
which follows.

III. BINDING ENERGY

In this section we evaluate the binding energy
between two hydrogen atoms immersed in an elec-
tron gas. This binding energy E g is defined as the
difference in energy between the cases when the
two atoms are separated by a finite distance R
and when they are an infinite distance apart; thus

EB——-E(R)_E(OO); (3.1)

and E(R) is given by

(3.2)

-
This result constitutes the natural generalization
to the two-adatom case of the expression derived
by Newns'? for the adsorption energy of one adatom.
To simplify Eq. (3.5) further, explicit forms for
the summations in the expression (B11) for G,,
and G__ are needed; in order to obtain them we
note that as a consequeance of Eq. (2.6)

| Ve, 2= Ve, |2/(1£8)]1 £ cosk- R). (3.6)
Thus
Z 1V, 12 :1 Vg 1? 1xcoskeR
N& o, —¢, N & w,-¢, 14’
(3.7

where Vy, is the usual Anderson-type'” matrix ele-
ment between localized and itinerant one-electron
states. The summation is carried out using con-
stant density of states p with a band of width 2D,
assuming that Vy, is independent of the direction
of k and neglecting the real (principal) part of the
integral, to obtain

> |2 ;
1 Vsl oyt <1i
N T w,— €, 1+A

sink, R

FoR (3.8)

>I‘E¢i§2£,
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limit, i.e., to the case when the bandwidth is much
larger than the width of the molecular bonding and
antibonding states. Substitution of (3.8) in (B11)
and combination with Eq. (3.5) yields

where T’ =11p!V\2. Our approximations are reason-
able as long as we do not require to know the exact
position of split off states below and above the band
edges; this limits our results to the weak coupling

1 €2 +QF €+
ER)= 3 [emn*,we-,on.,w g(ﬂ N pre yree tOIn m)

D (D+e, )R, (D+e_ ). :I 9% +e_2
Ta\(D+e, , P+ (Dre_ +QE)]TH

- U++n+. M, U:-n-, M,y - U. Z Pyo ey g = U+- Z 7,6Mep0s (3‘9) ‘
[ o

where €, ; and €, are measured relative to the
Fermi energy and D is the half bandwidth. This
concludes the evaluation of the binding energy
and everything is now set up for the calculation
of the friction coefficient.

IV. FRICTION COEFFICIENT

This section is devoted to the explicit evaluation
of the friction coefficient n%°% a, 5 ={x,v,z} denote
the Cartesian components of the kth and /th ad-
particle displacement vector, respectively. To
obtain ng‘f we use the fluctuation-dissipation ex-
pression derived by Suhl et al.? which reads

ne= 2 Re[ atGrOBW)aL, (4.1)
A .
where the fluctuating part of the force operator
F% is given by
§g=Fp- Fp). (4.2)

A. Relative motion

Our main concerns are the relative and center-
of-mass friction coefficients, that is,

Mo =N11" = N (4.32)
and

ey =Nt + 0y (4.3b)
Since

3aV(E,R,)
ara

av(T,R,)

@) ~2(a,

and

-1 -8V (F, R,)
@ - )22
we, (23:2A)1/2<2 <k\ ar,

o

For the following calculations the definitions

L oV(E, R
a1> F 2<k 1 __Vgx;: R,)

- aveff(F)
a2> + <kl———ay

R
& 0F 1) =GF,0, (4.42)
& OF ) =G.0F 0, (4.4b)

it follows that

B . A Y S S
ntt = s Re [ d([FH0) - FrO][Few) - Fan)).
0
(4.5)
Thus defining
F=F, -7,, (4.6)
we obtain
n = go-me [ ar@eO)F) (.1
rel 2M o v M .
We write the force operator F® as
f’“=f°‘+j°‘, (4.8)
with
Fe= > wei, +wen,) (4.92)
S
and
ja = ; (Wg+01k;sa+vs + W]%.césa"s
+ W2 ea cpo+ W_zadt et (4.9b)

where

a1>) (4.10)

al>4= <K‘%ﬁ(r‘) a2>f> . (4.11a)

o

o
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” :—<k| Veff(r) a1> and W°‘ _ <k. Veff(r)

Ot
are useful.

The definition of the force operator (4.11a) excludes terms which do not contribute to the fluctuating
force. At the same time, terms related to interactions between electrons in localized levels have been
neglected; they do not contribute to the force related to the motion of the center of mass of the two adatoms.
We neglect these interactions for the relative motion since their influence would be restricted to very small
separations between the adatoms by taking into account screening effects.

Combining Eq. (4.7) with Eq. (4.8) yields

B

W= ke [ at[ (77 (1) + (T *(OF () +(F2(0)7(¢)) + (F*(OWT *(2)]. (4.12)

a2> (4.11b)

The correlation functions above are evaluated using Green’s-function techniques within Hartree-Fock
approximation; the details are given in Appendix C. The resulting expressions, valid for 7/T,< 1 are

QZ Q?
- o )2 @ )2 __-__
e D) = Z,TMZ <(W i e AU ) (4.13)
Qe
nee - + 490 We g« =0
SN IEID == T ( T ) (4.14)
and
Q Q Q, Q
- — o * o - - )2 a)2 -
Mot (7 1rM <y+ e +Q Y. €+ 02 [+ 027] m+522 €+
€ € €? .
aya +20 =0 - a)2 90 @)2 =20 :
D08 gty st O G - 6 i) 1
r
Here we have used the definitions B. Center-of-mass motion
1 Ve, |2 Having obtained an expression for the friction
=— =Imy —&— (4.16)
w,~¢€,’ : coefficient for relative motion of two H atoms on
a transition metal surface, we now turn our atten-
go=_ —IImZ W--ls \4 , (4.17) tion to their center-of-mass motion. Owing to the
N = W, - €k fact that only the sum of the forces on the two
¢ atoms is relevant in this case, there is a consid-
A¢=— —lIm Z M_ , : (4.18) erable simplification in the calculation of n¢y
N T Wi when compared with the one carried out above for
N 1 |WE |2 1o neEe. In.fact, combination of Eqs. (4.1), (4.2), and
r¢=- 5Im E P (4.19) (4.3b) yields
with w, =w+0%. e = 337 Re f at([F(0)+FO) 1 [Fr 1)+ F2 (D)),
In obtaining the above results the two main ap- (4.20)

proximations have been made; the firstand mostim-
portant one is the Hartree-Fock approximation,
which was used to solve the self-consistent

where & ¢ is related to the force operator 1?;:
through Eq. (4.2) and

Green’s-functions equations (see Appendix B) and R 1
to evaluate the correlation functions (see Appendix Fy+Fg= WZ(W B0k @y, + Witial o3,
C). The second major approximation is to treat ¥

, £, A, and v [defined in Eqs. (4.16)-(4.19)] as + Wi, Choty, o + WE 301, 5Cho) s
parameters, while neglecting the real part of (4.21)
their k summations, when computing numerically where W; kl, sz are given by Eq. (4.11b).
our results. This equation can be rewritten

Ay A We +Wg, t Wa—Wa t Wk+W2k Wee+Wwe
Fi+Fy= Z <Tk_ll_—A)ﬁlk— CRoly,ot (1-Aa) 7% Cio@eyot (i +A)i7— a+ oCio™ War,ucfu (4.22)

ky0
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or more simply as

fo, po 1 E P P A @ gt
Fl +F2 - (2N)172 (wﬁbckqa-y,o"'"uk- ckua-,ﬂ+w+,ka

Cagt o
Cp.twezal cp).

, AND HARRY SUHL ) 15

(4.23)

k=0

which defines by comparison with Eq. (4.22) the coefficients w . and wg.
The structural similarity between Egs. (4.9b) and (4.23) is qu1te apparent; this allows us to write im-

mediately, purely by analogy to Eq. (4.15), that

Q SZ
Lt el Q7

(4.24)

qu ("‘a)z _S};_E_aﬂ
Q@+,

A. Nonmagnetic solutions

Results for the nonmagnetic case are displayed
in Figs. 1-6; here, as throughout this paper,
atomic units are used for the energies and lengths
are given in units of the Bohr radius.

Figures 1 and 2 show results of the binding en-
ergy calculation and can be summarized as fol-
lows: the position and depth of the binding energy

2t =737 20 (T8 g + T g - (07 (2]
ININ ii*;"ﬂz emz (=2 ;
where we have used the definitions |
ofd E———I Zw_ek , (4.25)
o= _ —1 Zw_sk, (4.26)
ri‘s—]l—vl Zk:l)w*_*elk (4.27)

Having thus completed the derivation of analytic
expressions for 753 and 7$% we turn our attention
to the numerical computation of our results, in
order to obtain relevant physical information from
our model; explicit forms for £, A%, v, E& A%,
and I'? are provided in Appendix D.

V. NUMERICAL RESULTS AND DISCUSSION

In order to obtain numerical results one has to
start with the solution of the self-consistency
equations (B8’); use of Eq. (3.8) allows the self-
consistency set to be recast into the form

A y=t s.._tB) Coo
(y,6) =2 [arctan( o )" arctan< & >] ,

+

(5.1a)
(fi.,4) =:,1; I:arctan <S'?z'—f—2> — arctan <€—§_¢’> } )
(5.1b)

where
€, 0=€,+ U, )+U, (B, )+ Ul (. (5.2)

It is well known that Egs. (5.1) have two types of
solutions: a nonmagnetic one, with (%, ) =(7,, );
and magnetic solutions with (%, ) # (#,, .,). It can
be checked that while nonmagnetic solutions always
do exist, magnetic solutions are only found for a
limited set of values of the parameters ¢, and I'
(we recall that €, determines ¢, [Eq. (A1)]and T'
does the same with Q, [Eq. (3.7)]).

minimum depends on the strength of the coupling
to the metal I" and the interatomic distance be-
tween adatoms R. The larger the value of T the
larger the value of R, for minimum binding en-
ergy; on the other hand, increasing I leads tc
shallower Eg-vs-R curves. When the atomic level
lies near the Fermi level of the electron gas it is
clearly seen that for I' =0.1 or larger, finite inter-
atomic distances between adatoms are not favored;
this result agrees with calculations carried out by
Ying, Smith, and Kohn'® using the density func-
tional formalism. However, for smaller values

04
"
U
i
\
1
\
"
W
o |\
& N
0 A\
-01F
1 1
05 50

FIG. 1. Binding energy Eg (measured in Hartree units)
vs nuclear, separation R (in Bohr radius units), for the
case when the atomic level €y is 0.5 below the Fermi
level. The coupling T of the localized states to the metal
states is 0.001 (solid line), 0.05 (dashed line), and 0.1
(dash-dot line).
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FIG. 2.; Same as Fig. 1 but now the atomic level is
0.05 below the Fermi energy.

of T' the adsorbed molecule seems to be favored
compared to isolated adatoms.

For I'=0.05 we see in Fig. 2 oscillations in the
binding energy E, which are related to Friedel os-
cillations; for values of I'=1 these Friedel oscil-
lations become much stronger and they may be re-
sponsible for overlayer structures, as found by
Schrieffer and Einstein.'® The general trends of

107

1 -7
I 5 — 8
i R )

FIG. 3. Friction coefficient 7, in units of #/adM,
where M is the proton mass vs nuclear separation R.
The atomic level is 0.5 below the Fermi energy and the
coupling constant I'=0.001. The solid line corresponds
to nZ,, the dashed line to nZy, , the dash-dot line to
nk,, and the dash—double-dot line to nZ,, .
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—107

1072

N

| 3
5 g 0

FIG. 4. Friction coefficient 7 vs nuclear separation
E. The atomic level lies 0.5 below the Fermi energy and
the coupling constant I'=0.05. The solid line corres-
ponds to nL,, the dashed line to nZ, , the dash-dot line
to nZ,, and the dash—double-dot line to ng“m_.

our results are not affected by variations of the
Fermi momentum k&y; the effect of changing & is
only a quantitative variation of the position and
depth of the minimum and in the amplitude of the

- Friedel oscillations. It can be stated that our re-

sults are in qualitative agreement with experi-
ment; the weak coupling case can be interpreted
as physisorption, while the strong coupling limit
corresponds to chemisorption.

We now turn our attention to the friction coeffi-

FIG. 5. Friction coef-
ficient 1 vs nuclear separa-
tion R. The atomic level
lies 0.05 below the Fermi
energy and I'=0.001. The

. solid line corresponds to
121, the dashed line to
7107: m.» the dash-dot line to
n%,, and the dash—double-
dot line to nZ, .

-7
i § "
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10

FIG. 6. Friction coef-
ficient 1 vs nuclear separa-
N tion R. The atomic level
is 0.05 below the Fermi
energy and I'=0.05. The
solid line corresponds to
nZ;, the dashed line to
nZy.» the dash-dot line to
nk,;, and the dash—double-
dot line to ’r]ém..

cient results; nk,;, n%, and n% . , 7%, (where L
stands for longitudinal and 7T for transverse) have
been evaluated by numerical computation of Eqgs.
(4.13)-(4.15) and (4.24), while expressions for the
quantities involved: £, A, y& and EY, AY, T2,
are explicitly given in Appendix D.

The most striking and important result we have
obtained is that both 7., and 7, , vary over three
or four orders of magnitude, as displayed in Figs.
3-6; this is an indication that, depending on the
circumstances, the friction coefficient might
change considerably the value.of the reaction rate,
with the implication that absolute rate theory !
(ART) may not always be applicable, as was al-
ready suggested by Suhl and co-workers.2

For short interatomic distances 7%, is always

Al
uT 0 et DU vV
\_.—-’—'—-—" -

0
(e
-0
1 I
05 50
R

FIG. 7. Binding energy Eg vs nuclear separation R
for the case when the atomic level ey lies 0.05 above
the Fermi energy. The solid line corresponds to T’
=0.001, the dashed line to I'=0.05, and the dash-dot
line to I'=0.1. The arrows indicate where the magnetic
solutions appear and disappear.

several orders of magnitude larger than 7, ,
both for the longitudinal (L) and transverse (T)
cases.

As far as the oscillations seen in the n-vs-R
graphs (which are related to Friedel oscillations
in the electron gas), is concerned, we note that
they are smoothed out as the coupling I'" increases.

— 10-‘

— 1072

[ | 1 1495
8 10

FIG. 8. Friction coefficient nk, vs nuclear separa-
tion R, when the atomic level lies 0.05 above the Fermi
energy. The solid line corresponds to I'=0.001, the
dash—double~dot line to I'=0.05, and the dashed line to
I'=0.1. For I'=0.001 only the magnetic solution has
been plotted. For I'=0.05 the value of n for the stable
magnetic solution shoots up at R =2.5, while for I'=0.1
the magnetic value lies first below the unstable non-

magnetic value of  (3.5<R < 5) and later above (5SR
< 6).
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106

L 1 -7
1 5 8‘0

FIG. 9. Friction coefficient n vs nuclear separation
R, when the atomic level lies 0.05 above the Fermi en-
ergy and I'=0.001. The solid line corresponds to %,
the dashed line to nJ,, , the dash~double-dot line to
Wém,- Only magnetic solutions are plotted.

107

102

h 1 L -3
1 3 g0

FIG. 10. Friction coefficient 7 vs nuclear separation
R, when the atomic level lies 0.05 above the Fermi en-
ergy and I'=0.05. The magnetic (stable) values shoot
up at R=2.5. The solid line corresponds to nZ%;, the
dished line to n %, and the dash—double-dot line to
M cem.
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This smoothing of 1 can be understood in terms of
the relation between the fricition coefficient and the
curvature of Ez(R), which becomes apparent after
a careful inspection of the plotted curves. This
way small changes in Ez(R) may induce large vari-
ations in 7,,,, as displayed in Fig. 3.

Ancther remarkable effectis the occurrence of a
minimum in 7., whenever energetic considerations
favor the existence of an adsorbed molecule com-
pared to two isolated adatoms.

B. Magnetic solutions

In Figs. 7-11 analogous results to the ones
mentioned above are displayed; we simply focus
now our attention on the changes brought about by
the existence of magnetic solutions. Since the en-
ergy difference between the magnetic and non-
magnetic solution is tiny, we have only plotted the
solution with lower energy and indicated with ar-
rows the position R at which the magnetic solutions
appear and disappear as R is increased.

In Fig. 7 it is seen that the curvature of E; vs R
changes drastically in the region where the tran-
sition from the nonmagnetic to the magnetic re-
gime occurs; and, as expected, Fig. 8 shows a
very large alteration in the values of 1 near these
transition points, especially for small values of
I'. On the other hand, the behavior of the friction
coefficient outside the transition region maintains
the characteristics indicated in Sec. V A.

J10°!

11072

1 1 '3
1 5 8 10

R
FIG. 11. Friction coefficient 7 vs nuclear separation
R, when the atomic level lies 0.05 above the Fermi en-
ergy and I'=0.1. The magnetic (stable) values are the
smaller ones in the region the curves are double valued.
The solid line corresponds to n.%,, the dashed line to
1 &m.» and the dash—double-dot line nZ,. .
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Focusing our attention on the case I' =0.05 of
Fig. 8 we observe that for small R the nonmagne-
tic solution is stable; as R increases the onset of
the magnetic regime is accompanied by an in-
crease of 7, which rapidly turns downwards to a
value at times more than a whole order of mag-
nitude smaller than the (unstable) nonmagnetic
value for 1. For large values of R it seems that
both solutions always merge.

Both the increase and the reduction of the value
of 1 in the magnetic regime, relative to the non-
magnetic one, are sharp and large in the weak
coupling case. -As I increases the curves become
smoother and the peaks broader. We should point
out here that it is not clear whether or not these
strong variations of 1 near the transition from the
magnetic to the nonmagnetic regime are purely a
consequence of the Hartree-Fock approximation.
It should be mentioned that these results and the
general trends discussed above constitute a natural
extension and generalization of what we already re-
ported'? for the one-adatom case.

Summarizing, we state that our results strongly
support the suggestion that ART is not always ap-
plicable to heterogeneously catalyzed reactions
unless phonon effects, neglected here, return the
friction value into the ART regime as recently
suggested by Noziéres,?® and that in some cases
dynamical effects (i.e., the details of the energy
transfer mechanisms between catalyst and reacting
particles) may contain the clue to why certain re-
actions take place over a specific substrate sur-
face, while no reactions are catalyzed over an only
slightly different one. It seems to us that purely
structural considerations will not provide a com-
plete understanding of the problem.

ACKNOWLEDGMENT

One of us (M.K.) would like to thank Professor
P. Fulde for hospitality and support at the Max-
Planck-Institute during the final stage of this work.

APPENDIX A: COULOMB INTEGRALS

In this appendix we provide explicit expressions
for the parameters which appear in the term Hy
of our Hamiltonian [Eq. (2.4)].

The energies of the bonding and antibonding
states [+) and |-), respectively, are given by

€, =g +(J+K)/(1£A), (A1)
where
-~ d3 1 1
- _ 2 —-_ 2R (4.,
f(pl(r) TR te (1+R> , (A2)
SO A% R
K= | ,(D)y(f) g—ay=-¢"(1+R), (a3)
lr_Rzl

and
a=[ o, (Pd*r=c® (1+R+3RY).  (A%)

Here, as throughout this paper, energies and dis-
tances are measured in Hartree and Bohr radius
units, respectively; ¢,;(¥) is the normalized 1s
wavefunctions of the i¢th adatom and R = rﬁl - -ﬁzl
is the separation between the nuclei of adatoms 1
and 2.

In terms of these and other similar parameters
the Coulomb integrals are

il __:f 99:(-{';)‘#%(?2) d3r. d3r
*= ,},12 1 2
=W+ -2K)/[20-89)] , (A5)

_ 2%\ 2 (%
U**=_[ %(r;’)ﬁog(rz) ddr, d%,
12

=(U+dJ’+2K' +4L)/[2(1xA)?] , (AB)

R

ijl =l7+-_f (p+(rl)¢-(r2)¢+(§)(p-(r1)d37,1d372

712
=" - K")/(1-2%), (A7)
U~ f %(fl)tm(fzzw-(?l)«p_(?z) dsy, dor,
=(U-J")/[2(1-a%)], (A8)
and
u,...=U,,... (A9)
Here
v=[ ———‘”f(fly)“’f(?z) dr, d%r, =%, (A10)

20% \ 2%
JI:f (pZ(r»,-]) 991(1'2) dr,d’r,
12

=1/R-e?*(1/R+L +iR+1iR?),

K;=f @, (£1)0,(F)0,(F)) @,(F,) d3r. dr
712 e

(A11)

=$e™F(% _ ¥R - 3R>~ 1R%) +(6/5R)

X A*(C+1nR) + A Ei(—4R) — 2AA’ Ei(-2R)],

(A12)
- o1 (FO3T)0o(F) o5 15
L f o~ d3y,d3r,
=e®(R+4$+5/16R), (A13)
and
A’ =¢®(1 - R+3R?), (A14)
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where the constant C=0.5772157. .. is known as 6T i(w) = V.1 1
Euler’s constant and @ w- e \(N)? w- <,
t
Ei(x) =fx _67 dt. ) (A15) + Z Vi 1 Vﬁg G° ..>
-0 - (N)f72 W - €k (N)I72 +1 /2
APPENDIX B: GREEN’S FUNCTIONS (B6)
: : : 1 V.: 1
In this A d lve the self-consistent set 0 ()= —— =31 S
n this Appendixwe solv elf-consistent se G (w) T ZW s

of equations for the Green’s functions, used in
Sec. III to calculate the binding energy and in Ap- v : v
pendix C t? ob.tain the f:orrelatlon functions of Eq X<'(F§ﬁ§ G + (N_kﬁ.z. G;;)’ (B7)
(4.12), which in turn yields our result for the fric-

tion coefficient; the self-consistent solution we

have obtained is valid in Hartree-Fock approxima- _ ( Vi 1 Ve, o
tion. Gllw)= 1+ Z NI? w—e, WV i73 Gis ) »
We start from the definitions*
c t (B8)
G 1(8) = (ezol?) ]CI,,(O)», (B1) where
G?1(8) =(a.,s(1) | c1,(0)), (B2) "
= I 61 =€+ U;t:k<n:k. a>+ U+ -<n$ .o> + Ui -<n=i=,a>' (BSI)
GL(1) ={(a,,q(1) |t (0D, (B3)
. The average occupation numbers (x,,,) have to be
GL(8) = {a,,q(D)]al,q(0)), : (B4) determined self-consistently using the relation
where 1
aA ; Ay A do f(w)[GL(w,) - GL(w.)].
Ka(t)|b(0)) = —io(t)da(), b(0)},) , .0 = f Sl =
with e(t)=1 for t>0 and 0 for #<0 and {a, 13}+=&5 Equation (B6) directly yields
+ba.
The equations of motion for these Green’s func- v 1 [V |2 )-1
. O o __tll._ —_—€l_ — LA T3
tions read G i(w) = (N)” o€ (“’ - N Zk: w-€,
Gi1(w) =(w - ) Mop 7+ [1/ (N 2)(Ve, 6,1+ Va.GL D}, (B9)
(B5) Combination of Eqs. (B5) and (B9) gives
J
o 1 1 v V.5 , 1 Ve, 12\ 1 Ve Vg ( - |Vk_lz>“]
- = - —_ J— < — Ze € 1
Gz 3(w) s [le i s <w €<- % 2’; w_ik') YN e \9my ; (B10)
L
Equation (B8) is also directly soluble and yields Z VeV, 1 2112
= w-¢, Z: w- sk 2(1 AZ)IT3
Vi, -ikoR iR
- o_ = X(l-e 1+e* . (B13
ou= (-3 TUEL). @) ( (1+erFR), - (B13)

and the k integration is easily seen to vanish be-
cause of symmetry arguments; thus

Equation (B7) can be rewritten
G%(w)=0. (B14)

<1 N(w ) Z | Vg | )G‘;(w) APPENDIX C: CORRELATION FUNCTIONS

In this appendix we evaluate the correlation func-
1 1 VaV. s tions of our expressions for the friction coeffici-
< - Z Bk (B12) ents [Eq. (4.12)], which provide explicit values for
N w-€ & w- € ac ao
k Mxel and Tlc_m.
but We start by considering

O (D) = Y AWl (0 = Gy, N[y, o) = Gy D+ WEWETR, (0) = G, ) 7, o) = Gy D)

+WeWa ([, 0) = B Ml7,,o8) = B, 1)+ (WOX([7,,4(0) - G, o) - G D}, (CD)
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which in Hartree-Fock approximation reduces to

@O @)= 3 [(Wa)Xal, (0)a,,,()Xa,,,(0)al, () + (We)at, (0)a,, (H)a, (0)al, (D)]. (C2)

Sy 0

The cross terms, proportional to W, W, do vanish since they are related to G -(w) which is shown to be
zero in Appendix B [Eq. (B14)].

The correlation functions in Eq. (C2) are evaluated through the use of thermal Green’s functions, which
by means of the formula**

(YOt = 5= [ dw[6,,(,) - Gyyfw e H(w), (©3)

and
(c0)et(D) =— % f T 10 [Cy(-0,) - Gy f-w) et (w), (C4)

where f(w)=(ef“+1)™, yield the desired information. Thus, combination of (B2)-(B4) with (B11), and using
the definition given by Eq. (14), gives

f at F40) %) = -2% f dt f dw f Ao’ f)f(w)e 9 Z(w w'), (C5)
4] . 1] =c0 .00
Where
Q Q Q Q
= o )2 * + o \2 - = X 6
20,012 2 (2 ey wrerre T Greye wrer®) )
In the integrand of (C5) only the exponential factor is complex, thus
Re [ dt O ()= Z—BFRe [atf aw f 4o’ flw)f(@)e Ntz (w, o)
o] 0 =00 =00
= B eodt °°d ood '3 r) i(wsw?) i r)
—z-ngRej; B w B o’ flw)f(w')e Z(w, w
- B R fwdt wd wd ’ )( I) -i(w+w')tz( I)
=12 e_e° -ww-w W' flw)f(w’)e w, w’).
Changing the order of integration it follows that
Re [ at@OF®) = & [ foM-wz(0,-0). (€
0 =00

Since Bf(w)f(-w)=-28f/8w we obtain through combination of Eqs. (4.12), (C6), and (C7), in the very-low-
temperature limit, the result given in Eq. (4.13).
Following the same procedure, we derive in the Hartree-Fock approximation

A

T 0)T(B) + (T*(0) *(8)) = (_N)ITE D (Wf;(aw(O)a}:m(t)) > [Wexal, (0)cz, (1)) + Wﬁ(cE,U(O)ahu(t))]
¢ X

W o(0)a,, (1)) 2 [Wei(er, o(0)al, o (0) + W (a, . O)ck, (2]
k

+Wea_, (0)at () ; [WSx(a®, (0)cz, (1) + Wi {cf, (0)a_ o()]

W, (0)a_, (1) 3 [Ws(e, 0., 1) + WE.(al, o (0)c, (1) ]) ., (C8)

which, combined with Eqs. (A3) and (A4), yields



15 PHYSICAL APPROACH TO THE H, ~—~H + H REACTION:... 5669

F @3+ Oy = 3 [ do [ aw ftopeeet
x({ Ca(w) +[Ce(w) I} We(-4/2M)[G2 (- wl) - G2, (-w!)]
+{Ca(-0)+ [Co (- @) W, /267, (w)) - 67, (w)]
+{ Co(w) + [Co() [} W2 (=i/2M[G% (- ) - GZ(-w!)]
+H G-+ [CL-w) P We i/2m[G2 (@) - G2, (C9)
where we have used the definition
Co(w)= (—N)—m }; Wiy o [62,3(0,) - G2, ()] (C10)

Substitution of our result for the Green’s function [Eq. (B9)], above yields

w - €

Crw =% o - e, | (€11)

where Q, and £ were defined through Eqgs. (4.16) and (4.17), respectively.

Combmatmn of (C9) (C11), (B11), and Eq. (4.12), and using the same procedure we followed when
evaluating ( «(0)7*(2)) above, we finally obtain the result given in Eq. (4.14).

The last correlation function we need to evaluate, written in Hartree-Fock approximation takes the
form

k‘c +90

(OO =5 3 VEW,, (ch(0) ¢, (D)as, (0)al, o6)) + W W2, (e, (O)ct, (D)(a, (0)a, (1)
k,k?

[

+WEwe., (et (0, (1) Xa ., (0)al, 1))+ we W (e, (0)ck, ())Xal,(0)a. (1)
FWEWE (et (0)a, oD a,f0)ch, (0)+ W We i cg(0)at, o) at, (O)cgo(®)
FWEWE (1 (0)a,, o)X a.,o0)ck, () + W W (e (0)al, (D)X a, Oz (1)
$WEWE (L (0)a, (DN @, oO)c], (1)) + W WS 1 2 (0)al, () al, o(0)cp(®))

+ Wz W2 (et (0a.,,()Xa ,0(0)0* (t) Y+W2We e (cg,(0)al (1) X at (O)cz () ].
(c12)
Using again Eqs. (C3) and (C4) we obtain

(F@F D) =3 [~ aw [ duw’ flw) ettt
x|~ 52 [62 (-0 - 654~ w182, (0)+ (55 [62, () - 62, (D] B ()’
g om0 - G2l B )+ (g [0n.6) - 61w BE- )|
gy (07 @) = Glm @) 1B @l (g7 16uAw) = &A@ B
+AZ (WA (-w") + [A% (- w) AZ (") ¥ + AL ()AL (—w') + [AZ (- w)AZ, (") ]*

+ €2 (0)CE, (= ) + [C5, (= 0)C2 (&) J# + €2 (0)CE(~ ") + [CE (-~ w)Cg‘_(w’)]*] ,

13
where we used the definitions (C13)
= 1 (Y 0 o
A:*(w) = (—N)’ﬁ k* 217 [G (“’J - G;,k(w.)] ’ (C14)

(w)“—z WeWes 211 - (G2 (w,) - GZ (w)], (C15)

k'k
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while C%(w) was defined through Eq. (C10). Sub-
stitution of (B9) in (C14) yields

w - €]

Y
Ag‘*(w) =—§- m;ﬂz . (016)

Substitution of (B10) in (C15) yields

1 ()\oc 20 (§°‘ 20
Balw)=2 <7: " w- Z?;)Z:QZ - (w-z?’)zisz,i) ’
F +

where ©, £, A, and ¥ were defined in Eqs. (4.16)-
(4.19), respectively. Combination of Egs. (C13),
(Cc1s), (C17), (B8), and (4.12) yield finally Eq.
(4.15), which completes the evaluation of the
friction coefficient 7&g.

APPENDIX D: EXPLICIT FORMS OF THE PARAMETERS

In this appendix we provide explicit forms for
the parameters £%, A%, %, =3, A%, andT'¢, aswell
as the matrix elements W%, and W%,, in terms of
which the friction coefficients n%; and nig. are
given. [See Egs. (4.13)—(4.15) and Eq. (4.24).]

The estimation we carry out in this appendix is
obtained by taking plane waves for the set {k} and
1s hydrogenlike orbitals for a, and a,, while the
potentials V(T, ﬁi) are taken to be Coulomb poten-
tials.

A. Evaluation of Wi .

With the assumptions stated before it is easy to
prove that :

-@,|V: @, Ry)la,) =+ (a,|V: V (T, R la,) (D1)
and also
(a,|vz[V(F,Ry) - V(F, R)]la,)
=2(a,|vzV (T, Ry)lay)
=(a,|V:[VE, Rp) =V, R)]la,) . (D2)
Thus
W, =[-2/(1%a)][{a,|V;V (T, Ry)la,)
+{(a,|VzV(F, Ry)la,)].  (D3)
The matrix elements above are now evaluated:

—(aIIV;V(Y', ﬁ2)|a1>

- &L et (cor ey, o)
s Ir =R,

where @ =a;" is the inverse Bohr radius. From
now on we set o =1, ‘that is, we use atomic units.
With the definition

R=R,-R, (D5)

and, making §1=0, the matrix element of (D4) can
be written

. 1 o 1
“<a1[V?V(r’ R2)1a1> =— V§ fe T == d¥ .
4 Ir - R

(D6)

In order to evaluate the integral it is convenient
to use spheriodal coordinates (A, u,¢), where

A= (1/R)(r +|T-R]|), (D7a)

w=(1/R)r -|T=Rl), (DTb)
d

fffdxdydz---

3 27 1 © ’
=%f d(pf duf A (A2 =u?--- . (D7Tc)
0 -1 1

Thus
_<a1|V?V(—{'y Ez)l“;)

o © 2 1
== vzR? A2 = u)e RO+ S~
7 VR f_ld“fl A (O - e R A=u’

(D8)
—(a1[V?V(;, ﬁ2)|a1>

=(R/R?[1-(1+2R +2R»e™*]. (DY)
The other matrix element in Eq. (D3) for W, . is
~{a,|vsV(F, Ry)a,)

=1 [ (.V; 1 )e-nr-ﬁzn &,
m Ir-R,

(D10)

which with definition (D5) reduces to

—(a ViV (F, Ry)la,) =:;£ fe"”‘;'ﬁ‘)v;(% ar,

(D11)

where now ﬁz= 0. Choosing the z axis along R the
terms related to ¢ drop out, but we are required
to know cosf in spheroidal coordinates. From

T+|T-R| =aR, (D12)
it follows that

R(\*=2x=1)=27cosh (D13)
and thus

cosf=(1+Ap)/(A+ 1) . (D14)

Combination of (D7), (D11), and (D14) yield
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A=
(A +p)?

—Rf dhe"”‘[(hz 1)1n(“11>-6x:|

=Re® f dx e®* [:(3;(2 +6x +2) 1n<x
0

—{a,|vzV (T, R 2)|az> Rf d)\e"”‘f au ——5

;2>f6(x+1)]dx . (D15)

These Laplace transforms can be handled and yield after a lengthy calculation

—{a,|V;V (T, R,)la,) = 2R (e ®/R?) [(3+3R + R?) In(2CR) = 3R(2 + R) - (3 — 3R + R?) e® Ei(-2R)], (D16)
where C is the Euler-Mascheroni constant and Thus there are only two independent matrix ele-
Ei(x) was given by Eq. (A15). Substitution of (D9) ments in.Eq. (4.11), which we now evaluate:
and (D16) into (D3) completes the evaluation of vV (E, ﬁz Yay)

s 1 1
. - -k T (g -T-Ry| ;3 (D19)
¥ =—75 ] € e ar
B. Evaluation ofV_':lzt (m)¥/? —/ < fr- ED )
We replace (K|vi V™ (F)|a;) by (K|ViV(r, Ry)la;); and, using again (D5) with R,=0,
this approximation is reasonable except for Ra, -~
~ 1. Furthermore within the assumptions made - ~(K[VrV (T, Ry)lay)
above =172y f ik TR LI (D20)
—(K|v:V(T, Ryla,) = + (K|vz V(F, R)| a,)ei R
(D17) Defining
and It (R)= f etk F RI d’r (D21)
Tl - (Tl - ii'.ﬁ
<k|vﬁ V(E R)lay) = (RIVV(E, Ry)lay)e ’ we obtain, using standard expansions for the plane
ki (D18) waves and the denominator,
L) Z'l R 7,,I'I'Z ) Rl
IER)= 60" 3 e V0, 0) (| e e ar v [T B e ar) (D22)
= (21+1) o R e 7

where j1(z) is a spherical Bessel function and the coordinate system has been chosen with k= (—~k,,0,0) and
R=(R,6,¢).
For our purposes the region of physical interest is when the distance between nuclei is larger than a
Bohr radius; in that case the second integral in Eq. (D22) can be safely neglected. Moreover, since kg
o' the spherical Bessel function j;(k») can be approximated by

n

z
Jz(z) = @i DI (D23)
where (22 +1)!11=1X3X5X.«+X(2n+1). Then
N it kL 1 R _
IE(R)E (471)3/2 2 (2l+ 1)1 2 ch(e) (p)ﬁ% m _/0‘ 721-‘.28 rdr ’ (D24)
which after some algebra yields
i
[T(R)=4n Z i'P, (cos8)2"* (1 + 1)1 (ke R)'R Z} R (D25)

2l+2+5) °

Substitution of this last expression into (D20) finally gives

)

—(k|V;V(F, Ry)la,) = -n-V2 D itans -@i—l—)—)—, (keR)'R’ ((j +1+1)P, (cosO)R +

(coséP, - P, _ )§> ,
1,i=0 21 +2 !

t
sinf
(D26)
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and we recall that 6 is the angle between the R and
Kk vectors.

Next we evaluate the other distinct matrix ele~
ment Eq. (D18), that is,

(K|viv(E, R)la,)

= _q-i/2 e—i'}?-}' " 1 e—-oz|?-'§1l ar
Rj Ir - R1| *

(D27)

Using again (D5) and making R, =0 we obtain
<E|V?V(;, ﬁ1)|a1> p—ve fe_k.

-3 e |7 -r k¥ coskr —sinkr
R (n) /2% f e

ik4(m)V2(1/k?) (b - tan™ k) .
(D28)

Substituting (D26) and (D28) in Eq. (4.11) we ob-
tain

W = W, (B) (15 e 5 )
—[2/@+28)2 (kv V(E, Ry)la,) Qe ER)
(D29)

with .
W, (k) =[-1/(2+ 28)Y2)(K|Vs V(F,R)a,) .  (D30)

After careful numerical analysis of the above ex-
pression in combination with Eqs. (D26), (D28),
(D34), and (D41), it becomes apparent that the
matrix element obtained in Eq. (D26) yields only a
small contribution for small R, which decreases
rapidly as R becomes larger; thus it can safely
be neglected in the numerical computation as we
have done throughout.

C. Evaluation of Q,, £%, A%, and 7§

FER 9

We now evaluate the quantities defined in Eqgs.
(4.16)—-(4.19) within the same approximations used
above. Thus

Vi = [1/(22280)Y2) (Vg2 VEp)

=[vz,/@+2a)Y2] (12 e k) | (D31)
where
7.= KIV(T, R)la,)
__ 1 ~iker 1 -ITR) 3
‘Wz_fe Ny e d’r
=4(m) V2R R/ (14 p2) | (D32)

Substitution of Eqs. (D31) and (D32) into Eq. (4.16)
yields

1 8n s, 2x2cosk-T
¥ 1o m [a% PREPACYSE

. 1672 sink,R\ p(0)
“1:ia (1* TR )12+k§ ’ (D33)

9*2

where p(0) is the density of states at the Fermi
level.
%, 2%, and y% have three components (a
=1,2, 3); but due to the cylindrical symmetry of
our system only two of them are different and we
denote them by L (longitudinal) and T (transverse).
Combination of Eqs. (4.17), (D29), and (D31)
yields .

L
1 WiV
Lo __ = .k
Ei— NI ; wW.—€p
N o W,.—€p

1
xf (e-ikRy - eikR“)H. du
-1

~ =27 ImWi(kF)V*(kp)jl(kFR)P(o) ) (D34)
where V (k) is defined in analogy to (D30) as
__ 4(m)? 1
V:t(k)'_ (2:{: ZA)l 2 1+k2 ° (D35)

As a consequence of cylindrical symmetry the
azimuthal integrals vanish and thus

£1=0, (D36)
L
1 Wz.V
L _ = kY £,k
AL= Nlm; o

271 fm dk B? W (R)V (k)
) Wy =€y
1 . . )
Xf (2= e™RH e REY g =0,
-1

(D37)
and a quite similar argument shows that

AT=0. (D38)
Now we turn our attention to
L
1 W %el?
L= ——— A REL
TEETN Imzk: W, =€

2 W ®)*

27 N
——Wlml dkk @ €

1
xf A (25 e FRE 3 gtkR Iy 2
-1 . 3 '

'_—‘.%ﬂlW, (kF)IZL*(kFR)P(O) s (D39)
where L.(z) is given by
Lai(e)=4{5£[(1/2)j,() -j,@)]} . (D40)

Analogously



o ) )
xf du (2:FeikR”:Fe—'kR")(1—H-2)
-1

X f” cos?g de¢
=37 |W.(kp) %L . (RsR)P(0) | (D41)
with _
L.(z)=%+45,)% 4[(1/2)j,(2) = j,(2)] . (D42)

D. Evaluation of =, AS, and I'}

Now the quantities appearing in the expression
for the center of mass friction coefficient are
evaluated. Using the definition given in Eq. (4.23)

N T Wi
=:1ﬂ dkkz Wi(k)Vt(k)
N 0 W, —€g

1
x [ (12 coskRmiau=0,  (D43)
-1

where we have used the relations given by Egs.
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(4.22) and (4.23). Similarly
Ei=0, (D44)

since the azimuthal integrals vanish.
Next we consider

L_ 1 wéxvi k
AL=- FImZ , (D45)

which can be Written

N zﬂzf dore W@V () (k)V W)V (k)

1
Xf ("R — e RH)udu,  (D46)
-1

and by comparison with (D34) we have

Vs (k) W, (kg)
AL=_ L= L D47
TV ) T T, (k) (D47)
By the same token

AT=0. (D48)

Finally, using the same type arguments, we ob-
tain

P€= [[Wt(kF)lz/IW;F (kF)Iz] 'YI&' s (D49)
and also
ri= [IWt(kF)'z/'W;(kp)lz] YT (D50)
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