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Numerical simulation of sine-Gordon solitori dynamics in the presence of perturbations*
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We have developed a computer simulation program to study the dynamical behavior of soliton solutions of
the sine-Gordon equation in the presence of external perturbations. Our work extends numerical and formal
m'athematical analysis on the sine-Gordon system in four directions. First, we demonstrate that loss.ess
soliton propagation on a lattice is complicated by a lattice pinning effect and the generation of "harmonic
excitations" as "radiation. " We define regimes according to the coefficient 0),' of the nonlinear potential term
in which propagation can (eo & 1) or cannot (coo & 1) occur. Second, we study two examples of perturbation
which are of particular importance in condensed matter: (i) a model impurity binds low-velocity solitons but
merely space shifts those with high velocities, and (ii) spatial inhomogeneities in the coefFicient of the
nonlinear term coo cause the soliton to adjust its velocity and shape in the regions of imperfection. We find
that the results of Fogel et al. , who treat these types of perturbation in a linear perturbation theory, are
accurate tp better than 25% as long as the small parameter does not exceed 0.1. Third we demonstrate that
their conclusion that solitons can be treated as classical q particles obeying Newton's laws is in excellent
agreement with the simulation results. Finally we indicate several applications of our simulation results for
the propagation of a quantum of flux along a Josephson-junction transmission line.

I. INTRODUCTION

The sine-Gordon partial differential wave equa-
tion has been widely studied by mathematicians and
physicists due to not only its complete integrability
and accompanying remarkable "soliton" properties
but also its ubiquity as a model of nonlinear phys-
ical phenomena. ' Its kinklike solitary wave solu-
tion has been used to describe excitations in many
areas of condensed matter physics, to name a few,
domain walls in ferromagnets, ' dislocations in
crystals, ' charge carriers in one-dimensional
Frohlich charge-dens ity-wave condensates4 and
flux quanta on Josephson-junction transmission
lines. ' In order to understand soliton dynamics in
systems of practical interest, it is necessary to
know how the soliton interacts with spatial inhomo-
geneities (e.g. , due to impurities or defects) and
with external forces. Moreover, for networks and
systems in which there are natural minimum dis-
tance scales such as an underlying crystal lattice,
discreteness effects may significantly modify the
continuum dynamics described by the sine-Gordon
equation.

Recently it has become possible to treat pertur-
bations and discrete chain problems analytically.
Fogel, Trullinger, Bishop, and Krumhansl' (here-
after I) starting from certain initial conditions used
a linear perturbation scheme to investigate, first,
model spatial inhomogeneities in the coefficient of
the nonlinear term in the sine-Gordon equation,
and second, two external forces: a two-point im-
pulsive force, and an external driving force (static
or time dependent) with damping. They found that .
in many respects the soliton-behaved in the pre-

sence of weak perturbations as a deformable ex-
tended particle governed by Newton's laws. Al-
though their method has the advantage of applying
naturally to a general class of solitary-wave-bear-
ing equations, it is impractical for perturbation
with respect to multisoliton solutions. Kaup and
Newell7 have extended the inverse scattering trans-
form, to treat deviations from fully integrable sys-
tems. In the present context they have confirmed'
the (in fact "relativistic" ) particle behavior re-
ported in I and also treated' the effects of an ex-
ternal driving force with damping on a "breather"
or "doublet" solution (soliton-antisoliton bound
state). Keener and McLaughlin" have also de-
veloped a perturbation formalism which employs a
Green's-function technique and, as with the latter
approach, can in principle be used to treat general
multisoliton solutions. All of the above methods
are only practical, however, for small. numbers of
solitons. The external static driving force with
damping has also been treated using numerical so-
lutions by Scott, Chu, and Heible. " For few soli-
tons they use the inverse scattering formalism
while for many solitons they use Whitham's aver-
aged I.agrangian analysis" in order. to calculate
numerically the evolution of the multisoliton solu-
tion for arbitrary forces and dampings. Nakajima
et al. have performed simulations of soliton propa-
gation and collisions, both mechanically" and nu-
merically~i4, is again for static driving forces and
damping. Simulation of sine-Gordon soliton colli-
sions by Ablowitz et al." seems to be the first re-
port of "radiation" due to discreteness effects in
the sine-Gordon problem.

Some experimental work" ' has been possible
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regarding the propagation of fluxons along Joseph-
son-junction transmission lines. These studies are
difficult to conduct and control. Numerical simula-
tions on tPe other hand offer a realistic and inex-
pensive means of examining propagation relatively
easily.

Although of very general mathematical and phys-
ical interes t, much of the work to date has been
motivated by the possibility of applying flux propa-
gation along a Josephson-junction transmission line
to the development of high-speed, high-density,
and low-power memory and logic devices. " Qn the
basis of the above work, logic device designs have
been proposed. "'" For technical reasons junction
logic devices appear likely to be constructed as
arrays of discrete junctions so that the discrete-
ness effects on solutions of the sine-Gordon equa-
tion are particularly relevant. There are many
different ways in which to generate a spatially dis-
cretized partial difference equation for the sine-
Gordon equation and at present there are no known
exact solutions corresponding to any of these.
Each discretization corresponds to a different
model by which the series of discrete junctions on
the transmission line interact. Once a particular
discretization is assumed, the corresponding par-
tial difference equation must be solved numerical-
ly. Particular discretizations for some nonlinear
partial differential equations other than the sine-
Gordon equation are known which can be solved ex-
actly by the inverse scattering transform (see Ref. 21
and references therein). Recently, Ablowitz and
Ladik have explained how to find and solve a class
of nonlinear partial difference equations which con-
verge to an exactly solvable nonlinear equation in
the continuum limit using the "inverse-scattering"
technique. " Moreover, they have discovered im-
portant features that their solutions have in com-
mon and can thus characterize the discretizations
which admit such exact solutions.

The purpose of this paper is fourfold. First, we
examine the effects of discreteness on the ability
of the chain to support propagating soliton solu-
tions. Second, we complement the numerical work
already done" "on the perturbed sine-Gordon sys-
tem by verifying the qualitative behavior of the
two-point impulsive force and model spatial impu-
rity perturbations and by establishing limits of va-
lidity of the linear perturbation theory described in

Third we demonstrate the wave and particle as-
pects of the nonlinear soliton solution. Fourth, we
suggest applications of the above two types of per-
turbation to the propagation of a quantum of flux
along a Josephson-junction transmission line.

Briefly the results for single-soliton propagation
we have found are as follows: on the discrete
transmission line soliton modes can couple strong-

II. COMPUTER SIMULATION DETAILS

Mathematically the genera) problem may be sta-
ted as follows: we seek the behavior of N-soliton
solutions of the nonlinear partial differential equa-
tion

82$ Q2$
, —C,'—;+&u', (x) sing+ A f(x) = 0,

Bt .Bx
(2.1)

where C, is the limiting speed of propagation (taken
to be unity for convenience) and where ro, (x) and
f(x) are arbitrary functions of x. The work report-
ed in this paper has been primarily concerned with
the single-soliton solutions of (2.1) with e, and f
taking the two simple forms considered in I:

ly to the continuum excitations. This means that
there is a damping and pinning mechanism which
resists the free propagation of solitons possible on
the continuous line. Moreover, as a function of the
coefficient of the nonlinear term, it is possible to
distinguish a coherent regime (small coefficient)
in which weakly damped traveling single-soliton
solutions are possible and an incoherent regime
(large coefficient) in which such solutions are no

longer possible. Turning to the analysis of the two
impurity perturbations of I, the numerical simula-
tion is of course able to go beyond the bounds of
linear perturbation theory. The simulation which
was conducted in the coherent or nearly continuous
regime agrees quantitatively quite well with the
continuous linear perturbation theory and it is pos-
sible to estimate limits for the size of the pertur-
bation expansiori parameter. Our results support
the view that it is mostly possible to regard the
single soliton as though it, were a deformable ex-
tended classical particle obeying Newton's Laws of
Motiori. Our findings have application to the Jo-
sephson-junction transmission line in that they
predict a pinning and loss mechanism for flux
propagation on a discrete line and they model the
effect on the propagation of a flux quantum of ap-
plying external transverse electric currents at
points across the Josephson junction. It is impor-
tant to understand the latter effect in order to
manipulate quanta of flux, i.e., the "bits" of in-
formation in memory and logic devices.

The structure of the paper is as follows. In Sec.
II we describe details of the computer simulation.
Section III deals with spatial discreteness effects
on the propagation of single-soliton solutions. Sec-
tions IV and V analyze the external applied force
(or model impurity potential) problem and the non-
linear coefficient spatial defect simulation of Ref.
6, respectively. Section VI contains our conclu-
sions.
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~o(x) = &uo+a8(x); f(x) =0, ia «(d2, (2.2)

(d'(x) = (u'

where 8(x) is the Heaviside unit step function or

where a dot denotes a time derivative.
The interval [O, L] was discretized into L inter-

vals of unit length and Eq. (2.1) was recast as
a system of 21. ordinary nonlinear differential
equations

f(e) =— Iexp —
( )

X —g—exp 0' Pe o'«1. (2 8)

Solutions of (2.1) were found numerically on a finite
interval of length I. with boundary conditions either

(t)(0, t) =4(L, t)+2vn =2))m; n), n (={0,1}
(2.4)

j(o, t)= j(L, t)=o,

where

$(l, t)

e(1, t)

(t)(2, t)

(2.6)

(2.7)

or

y(O, t) =y(L, t)+2vn; nc{0,1}
~ ~

i(0, t) =i(L, t),
(2.5)

y(L, t)

For the particular choice of boundary conditions
(2.5), F takes the form

F(t) =

i(1)

P(2) —2$(1) +(t)(L) — '((d1) sing(1) — „, exp
A(t)(1) 1 —q —ta '

i(2)

—exp

(2.8)

(t)(1) —2$(L) +4(L —1) —aro2(L) sin(())(L) — „, exp — —expAP(L) L —q —zo ' L —q
'

I

y(, ,)=4 tan '{exp-[+y(u, (x —q- pt)]}, (2 8)

A partial difference equation models an actual
crystal lattice more realistically than does the
original continuum equation. The particular dis-
cretization (2.8) corresponds to a chain of parti-
cles, each connected to its nearest neighbors only
by springs with a uniform linear restoring force.
Details of discretization in nonlinear problems
may be more important to the physics than they
are in linear problems. "'" Ours is certainly not
a discretization which has the characteristics of
Ref. 22, and thus it does not appear to be solvable
analytically.

Equation (2.6), with boundary conditions (2.4) or
(2.5) and specified initial conditions Y(t,), was
solved using the continuing Hamming predictor-
corrector (HPC) technique. '~ " As initial condi-
tions we can specify a one soliton, two soliton,
breather solution, etc."'" To test the ideas of I
we concentrate on the first two excitations, name-

ly, single-soliton solut. ions given by

I

where s and s refer to solitons and antisolitons,
respectively, P is the velocity a,t which the soliton
moves, y=—(1 —P') 't', and q is the center (the point
where (t)=v) of the soliton at time t =0, or the two-
soliton solution given by

=4 tan '[sinhy(d, pt/p coshy&u, (x —q)]. (2.10)

In order to clarify the concept of the nonlinear
soliton solution as a particle consider the con-
tinuum solutions (2.9) and (2.10). Strictly these are
nonlinear wave solutions defined on the interval
[-~,+~]. They are specified by parameters ()8, q)
and (P„P„q„q,) = (P, -P, q, q) which for a = A = 0
will be. constant for all times. If one chooses to
describe that part of the solution which rapidly
changes by 2v as a "/particle" then these parame-
ters may be interpreted as the velocities and posi-
tions of the Q particles at time t= 0. This pre-
scription succeeds for single solitons but for the
two-soliton solution these P's and q's lose their
speed and position interpretation (see Fig. 1).
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the soliton kinetic energy is depleted and it adopts
a stationary configuration. Strictly these proper-
ties invalidate the conventional terminology "soli-
ton" for our particlelike solutions'. We shall con-
tinue to use the terms however since no numerical
simulation can completely eliminate the continuum-
violating errors. Independent of the phonons, the
discrete soliton is narrower than the continuum
soliton propagating at the same velocity. For ex-
ample, a, soliton launched at P = 0.50 with &u, = —, will
within four time steps relax into a soliton traveling
at P =0.49 (y = 1.15) with an effective contraction
factor y = 1.23.

These remarks are conveniently summarized by
Fig. 2 which shows an antisoliton launched with an
initial velocity considerably below P„., and with &u,

=1. Hence the periodic potential is strong and dis-
creteness effects are very pronounced. The soliton
can be seen to oscillate with its center between two

adjacent "particles" on the chain. During oscilla-
tion it changes shape and excites harmonic distor-
tion about 0 and 2m. As the soliton excites more
phonons the excursion of its center from the line
(x =8.5, f, Q =w), which constitutes the stable sta-
tionary-configuration trajectory, diminishes and it
becomes quiescent.

In a lattice the translation symmetry becomes
discrete and displacements of the soliton by dis-
tances which are not integral multiples of the- lat-
tice constant yields solutions propagating at dif-
ferent velocities and with different shapes. The
total energy of the system, regardless of discrete
or continuous symmetry must remain constant

X
70-

50

X

50

since the Hamiltonian (discrete or continuous) cor-
responding to (2.1) has no explicit time, dependence.
In the lattice, particles must overcome the period-
ic onsite potential barrier V(P) =a&,'(1 —cosP) if the
soliton is to propagate along the chain. The lowest
soliton potential configuration corresponds to par-
ticles being symmetrically placed about P
= v mod(2n} with no particle at &f& = v, while the high-
est soliton potential configuration is again symme-
tric but with one particle at P = v.

These configurations correspond to highest and
lowest propagation kinetic energies, respectively,
since the total energy is conserved. This discrete
lattice "pinning effect" is found to modulate the
velocity of propagation and soliton position sinu-
soidally with frequency v, and amplitude nearly
proportional to v, over the range of v, for which
propagating solutions are possible (see below). It
is this oscillatory motion of the soliton which
steadily creates phonons. The frequency co = co, is
the lowest frequency of the phonon spectrum in the
continuum theory (i.e., k =0 phonon}. Clearly, the
static soliton configurations to which all travelling
solitons eventually decay will be those of lowest
potential energy —those whose wall center (P=g)
is to be found midway between two particles of the
lattice.

These pinning and oscillatory effects are illus
trated by simulation results in Fig. 3 which shows
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FIG. 2. Simulation of an antisolitbn which can not

propagate due to the discrete lattice pinning effect.

FIG. 3. Plots of the position and velocity of the center
of a soliton vs time which illustrate the effect of the
lattice on soliton propagation as the magnitude of, the
nonlinear term coo is increased: (a) ~0= 0.25, coherent
regime, pinning is negligible; (b) Q)0= 0 50, coherent
regime; (c) &0-—1.0, in zone of transition between coher-
ent and incoherent regimes, pinning effects important;
{d) ~o=2.0 incoherent regime: soliton pinned.
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so that

P„,= (o,«/(». )"'
(3.1)

Two regimes of the discrete solutions to (2.1)
may be defined by the relative strength of the elas-
tic strain term O'4/Bx' and 'the on-site force term
(t&o'sing. Let ao and C, be the lattice constant and
the limiting speed of propagation for the Q parti-

the position and velocity of the soliton center as a
function of time using four successively larger val-
ues of ur, after the soliton is launched with a speed
P =0.5. In all figures there is an apparent "relaxa-
tion period" T~ during which the position and ve-
locity behave erratically just after the launch (f
=0). This corresponds to the time during which the
continuum traveling wave initial conditions relax
into the traveling solution appropriate to the dis-
crete problem. Roughly, T„ is one period 2v/a&o

of the low-energy phonon mode. In fact an estimate
of the relaxation time for the static continuum so-
lution to the stable static discrete solution using a
linear stability theory (details at end of this sec-
tion) shows that this time is far longer than the ob-
served time T~. The relaxa. tion is due to buildup
of oscillatory motion over the whole soliton rather
than to a change in shape of the entire soliton.

At times later than T~ a nearly sinusoidal modu-
lation of the soliton commences having a frequency
close to e,. The time-averaged velocity

0+1I'/ 4)0

(t) J s(t ') dt
t-e /co

suffers an exponential decay that is barely percep-
tible in the weak on-site potential case, Fig. 3(a)
(&so =0.25), but which is very pronounced in the ex-
ample of Fig. 3(c) ((oo=1.0). Above (t&o=1.0, P =0.5,
pinning can easily occur and hence in Fig. 3(d) ((oo
=2.0) the soliton center oscillates harmonically be-
tween two la, ttice sites with frequency of nearly ()op.

A simple estimate for the pinning velocity g„„
may be found as follows for uro&1, where the soli-
ton width spans many lattice sites: consider a
traveling soliton whose center moves in an effec-
tive periodic potential U with an assumed form
U(x) =&@,'«(I+cos2vx). Fo'r small variations inx
about the middle of lattice cell U(x) is nearly har-
monic so that v', «, as a function of co„may be de-
termined from a linear stability analysis about the
static soliton solution [Eq. (2.9), with P =0]. For
small o&„we expect P„„«I so that y may be taken
to be 1 and nonrelativistic mechanics apply. Thus

P„, is the niinimum velocity at which the wall can
overcome the effective potential barrier of height

f f Using the continuum res t mas s of the soli-
ton" M = 8(o„P„,satisfies

1
2 M&p&n = 2o&ent

cles, respectively (which we have assumed to have
values of unity). When the strains dominate and (t&o

«C,ja„one is in the "coherent" or "nearly con-
tinuous" limit where the discrete solutions propa-
gate coherently a,s much as the continuum solutions
[for example, Eq. (2.9)]. When o&o»Co/ao the on-
site potential completely domina, tes and one is in
the "incoherent" or "discrete" limit where propa-
gating coherent solutions do not occur since the
particles are effectively decoupled. Incoherent
static solutions consist of Q particles distributed
randomly a.long the chain at/ =Qmod(2v); as we
shall see the pinning barrier becomes infinite so
that there are no moving solitons ~ Also, we can
note from Eq. (2.9) that as (t&o-~, the continuum
soliton width X=—2Co/&uo becomes far smaller than
the lattice constant a, and the concept of a smooth
localized traveling wave solution (soliton) breaks
down. The simulations which are reported here
are restricted to the coherent region and a, ll satis-
fy X 2a.

In order to test the stability of using the continu-
um result Eq. (2.9) as an initial condition for the
discrete simulation and to measure the e,«of the
effective resisting potential U(x) the following lin-
ear perturbation analysis was performed (cf. I).
Let the solution to the pure discrete sine-Gordon
equation (A =a =0) be

y (o) (3.2)

where 4",o& is either the discretized version of (2.9)
or the true minimum-energy static solution of the
sine-Gordon equation (obtained numerically), and
where f, is a small . discrete-valued function whose
time dependence is given by sin((t&t). Substituting
Eq. (3.1) in the discretized sine-Gordon equa, tion
results in the following linearized equation for the
f;:

(3.3)

where

(3.4)

Solving for the eigenvalues o&' of (3.3) requires
finding the eigenvalues of the dynamical matrix D.
This was done numerically and the results are
plotted in Fig. 4. Qnly the lowest two frequencies
are plotted as a, function of ~, since the remainder
are above v = co„corresponding to the phonon con-
tinuum, and differ little from orie another. Note
that for the continuum 0(o&, (o' is negative for &o'o

& 1.1 reaching a minimum value of m'=-0. 015 for
(d)00 1 This indicates that the continuum initial
condition relaxes to the discrete configuration with
an approximate characteristic time of more than 8
time units. Since the adjustment observed between
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5.0

2.0
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ap, series inductance per unit length I, a shunt
capacitance per unit length C, and a maximum Jo-
sephson current per unit length J,. Then in terms
of these constants and the flux quantum 4, =h/2e,
the constants in Eq. (2.1) correspond to"

&u', =2m J',/4, C and Co=i/LC. (3.5)

Hence X=2C,/v, =(24,/vI, J,)'~'. The ideal situa-
tion for flux propagation with weak damping is X

ap However, high-dens ity requirements force
to be close to a, . Note that this discreteness
damping occurs in addition to resistive loss me-
chanisms and must be considered in power re-
quirements for moving fluxons and in noise (or lin-
ear oscillation) generation. The effect of applying
an external current transverse to the Josephson
junction on propagating flux quanta will be de-
scribed in See. IV.

IV. MODEL IMPURITY POTENTIAL SIMULATION

l.o 2.0 4.0 5.0

FIG. 4. Plot of the lowest eigenvalue &2 of the dy-
namical matrix Eq. (3.4) vs wo for the two cases: (i)
ft) is the static discrete solution and (ii) ft) is the static
continuum solution. Note for the latter that the lowest
eigenvalue is negative for uo~ 1.1. Also shown is the
phonon continuum corresponding to both cases.

continuum and discrete solutions is very small, the
continuum initial condition is completely adequate
for an accurate simulation. For cop& & the frequen-
cy e rises rapidly to vp'because as vp becomes
larger than 1, the soliton width X=2C,/ar, becomes
smaller than the lattice constant a, and the soliton
approaches the function/'0'(x) =2v8 (x —q). Long-
wavelength linear oscillations about this function
will be exactly those of frequency vp.

Consider now the curve for the static P"'. It is
always positive indicating that the static solution is
stable. The frequency co =co,« is the frequency of
low-amplitude oscillations of the soliton about its
static configuration. ~,« increases to a value
equal to ~p. The rapid increase appears to begin
near u&, =C,/a„ i.e., when X = 2a, .

In the continuum theory the lowest eigenfrequency
m is identically zero corresponding to a free-trans-
lation mode. ' Results similar to ours but for the
nonlinear Klein-Gordon equation with P' potential
have been obtained by Aubry. "

These results have significant consequences for
the design of Josephson-junction memory and logic
devices. Consider a discrete lossless transmis-
sion line whose equivalent circuit has unit spacing

p —(A/(u, P y) tan 'exp( —,'so(u, )

1 —(A/&u, y) tan 'exp(-;~~, )
' (4.3)

(4.4)

Results such as Eqs. (4.2) and (4.4) are given in

terms of the variables and parameters of Eq. (2.1)
rather than in the dimensionless quantities intro-
duced in I. For convenience, Table I compares the

variable and parameter systems.
The actual precision of results (4.2) and (4.4) is

difficult to establish since the perturbation calcula-
tion was not carried to higher orders in E. Any er-
rors quoted below for (4.2) and (4.4) will refer only
to the uncertainty due to empirically established
parameters in the numerical simulation.

Reference 6 also displays the perturbation theory
results for the deviation of the soliton from the as-
ymptotic soliton shape. This deviation was calcu-
lated to first order in & using unrelaxed initial con-
ditions (contour deformations); even in the absence
of the soliton, the initial distortion of Fig. 3(a) of

In this section we consider the effect of an im-
purity (or external) force of the form of Eq. (2.3)
when the characteristic frequency ep is constant
(a=O). In I a perturbation theory in the small pa-
rameter e —= A/~, P' is used to calculate (to first
order in &) expressions for the delay distance b

and the speed P, of the soliton when its center is
located in the middle of the impurity region. As-
suming that the collision takes place at t =0, and

using the same sign conventions for A as in I, the
results are

(4.1)

(4.2)
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TABLE I. Dictionary of variables and parameters
used in this paper and in Ref. 6.

0.14

Reference 6 This paper

0;10
Q(x)

0.06-
TIME =40

7

o. Sec, III of Ref. 6

Zp

q =n/P2
o.'Sec. V of Ref. 6

X= ZCp/COp

g = QCOp

pp= 28p/ca)p

c=Q/co P
~= QCc72

0

h L

V "~
-0.02-

-0.06-

-0.10 I 4k I I

0 8 16 24 '3'2 40 48 56
X

A, . (ou
P, =11— 1+2 tan ' sinh

2(dp 2 )
(4.6)

Ref. 33 would relax to Fig. 4 of Ref. 33. What one
sees in the sequence [Figs. 3(a)—3(g) of Ref. 33j is
this particular choice of initial conditions undergo-
ing a, complicated collision and relaxation process.
As the impurity approaches the soliton it is trying
to relax from its initial shape to the stable shape
of Fig. 4 of Ref. 33. Before the soliton completes
this relaxation, it collides and distorts in the im-
mediate vicinity of the impurity. Asymptotically
after the collision with the impurity, it should
emerge with the same shape if a fully relaxed ini-
tial. shape was used. Figure 5 shows the difference
Q(x) (solid line) between the simulated solution and
the continuum free soliton solution for the same
choice of parameters as Fig. 3 of Ref. 33 at three
times which correspond to Figs. 3(a), 3(f), and 3(g)
of Ref. 33. We indeed observe no significant
change in the structure of the solution before and
after the collision. When the soliton is inside the
impurity, however, this s truc ture disappears into
the very low amplitude radiation traveling away
from the impurity site.

The dotted line in Fig. 5 represents the linear
perturbation continuum solution in the absence of a
soliton. Its amplitude is 0.11 rad while the simu-
lation solution has an amplitude of 0.0V rad. The
difference in amplitude is of order n' (o. =0.2), so
that the perturbation-shape prediction and the sim-
ulation result agree. As we shall see below, the
perturbation theory of I also provides adequate
agreement for the three other major particle char-
acteristics: space shifts, velocities, and critical
velocities.

Treating the soliton as though it were a classical
/particle and using simply the ideas of energy
conservation (see also Refs. 13-16) it was shown
that a soliton can be trapped if its speed P is less
than

0.09-

TIME =80
Q(x)

0.05.

0.03.

O.OI g
-o.oi- LJ

-0.03
0

0.I 4-

. 4A I I I

8 16 24 32 40 48 56 x

Q(x)
TIME = l40

0.06

~ A
-o.o2. V &

-0.06-

-0.10
0

I

8 16 24

I

tlI

32 40 48. 56

FIG. 5. Plot of the difference Q(x) (solid lines)
between the simulated solution and the continuum solu-
tion for pirameters identical to Fig. 3 of Ref. 33. The
dotted line represents the perturbation continuum solu-
tion in the absence of a soliton. Asterisks show the lo-
cation of the center of the soliton while arrows locate
the impurity boundaries.

(4.6}

as in I (see also Ref. 8).
The oscillatory motion can be easily studied in

detail in two different regimes. First if the spatial
extent of the soliton is small with respect to the
impurity width se, zu» X, the soliton should oscillate
harmonically for x sufficiently small and elliptical-
ly for slightly larger excursions. The power-se-
ries expansion of (4.6) isA, , 8(cr,'x'

V(x) =-, M—tan-'S+ —,

If a particle is trapped, it oscillates in an effective
potential. Approxima, ting this potential V(x} at a
distance x from the center of the impurity by the
energy of a static undeformed free soliton dis-
placed a distance x from the center gives

$(IO() 120 56
720 C2 C4 C2 (4. 'f)
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where

M = 8A (u, (C, = 1),
C = cosh(2(Vow),

S = s inh( —,
'

ar, w) .

(4.8)

(4.9)

(4.10)

0» ix(t) i» (I/(g )(—[C /(C2 6)]]'/@ (4.11)

The center of the wall is then expected to move ac-
cording to

x(t) =x, sin((ot),

where

x =— h' S
&»» lt»»'s —2(»* —W~, /i x i I) '

(4.12)

+4 —(1 P42)-1/2

)3'-=e( =0),
(u=(uo(AS/2(uoC')' '.
In the quartic domain, for all times

(4.14a)

(4.14b)

(4.15)

1 3C2(6 C2)
(4.16)

x(t) =x, sn((ut), (4.17)

1 ~ 6C2 0 6. g2 1 2 j. 2 1 2

(4.18)

In the second regime, the soliton's extent is much
larger than the width of the impurity potential.
This suggests that the simple harmonic approxima-
tion to the potential V is inadequate and, as veri-
fied by simulation, that the potential is distinctly
anharmonic. As long as the excursion x does not
exceed a maximum (estimated below), the poten-
tial t/' may be truncated after the quartic term and
the oscillation will be strongly elliptic. The im-
plicit general result following from Eq. (4.6) can
be found in Ref. 33.

Taking as a criterion that the next-higher-order
term contributes a correction of &10/g, we can de-
fine harmonic and quartic domains for the potential
(4.7). In the harmonic domain, for all times

(iAi~ $ ~
(g (6 C2)

=iI, 4C'' " '
3i A iS

(4.19)

where sn(mt) is the Jacobi elliptic function. " Note
that in the harmonic domain x, and m are indepen-
dent while they are related in the quartic domain. -

For small enough x, the quartic solution reduces to
the harmonic one, but for sufficiently large xo the
oscillation is strongly nonlinear.

In these simulatibns the "impurity" force was in-
troduced suddenly at points which were at equal
distances from the center of a free traveling soli-
ton. After a relaxation time T~, the soliton cen-
ter's oscillation had a nearly constant frequency
&u and amplitude x,. We observed that Ts, = 2ir/(o
The frequency and amplitude were observed to de-
crease very slowly due to the generation of phonons
(see Sec. IV). We find that this slow decrease is
consistent with the discrete lattice effects accom-
panying the choice of model parameters.

Tables II-IV summarize the results for the mod-
el impurity simulation, and compare them to the
predictions of I. In Table IV, the velocity P* could
only be found indirectly due to the relaxation from
the initial conditions. We present two methods of
solution, one assuming harmonic motion and the
other assuming quartic motion. In the former P*

xp co where x," ' and L»lt»)

" ' are leas t-
squares fits to the observed amplitude and frequen-
cy, respectively, while in the latter P* is found by
solving Eq. (4.19).

In the trapping problem we consider two eases:
X/w»1 and X/w«1. As we have said, for X/w
«1 the soliton is very narrow compared to the im-
purity and so should behave as a pointlike particle,
i.e., deformation of the soliton from its free shape
should have little effect on the motion of the center
of the soliton. In the opposite limit X/w» 1 the
soliton is very wide compared to the impurity, and
deformations from the free state should be highly
localized. On the scale of the soliton extent the po-
tential's nonharmonic components become impor-
tant. For sufficiently low velocities we assume
that the quartic component is the dominant non-
harmonic part of the potential. This assumption is
supported by the results reported in Table EV.

TABLE Q. Comparison of perturbation predictions and simulation observation for space shift and intermediate vel-
ocity.

Model parameter s

0.723 + 0.004 15.02+ 0.7. 5 9.27 + 0.54 0.856+ 0.005 0.694+ 0.004 0.588 + 0.001 50.0

0.130+0.001 2.16+ 0.11 1.67 + 0.08 0.648 + 0.003 0.614+0.004 0.588 + 0.001 40.0 0.0225 1



CURRIE, TRU LLINGER, BISHOP, AND KRUMHANS L

TABLE III. Critical velocity determination.

Parameters
A. ZU

0.500 0.489+ 0.002
0.530 0.521+ 0.002

1
2
j.

0.1527
0.1527

5.0
5.0

1.0
1.0

The qualitative aspects of the simulation are
summarized by Figs. 6-8. Figure 6 shows the
space-shift effect of a collision of an antisoliton
with the second model impurity of Table V. Here
the amplitude A of the impurity is so small that
shape change due to the impurity is imperceptible.
Most of the velocity and soliton shape change oc-
curs when the center of the soliton coincides with
the centers of the 6 impurities. Figure 7 demon-
st;rates the trapping of a freely moving soliton at
the time t =0 by a strong model impurity turned on
at that. instant. One sees the deformation of the
free soliton by the 6-function forces and the tran-
sients that are generated by their sudden introduc-
tion. Examining the displacements of the soliton
center ( ~ ) from the center of the impurity, the os-
cillating behavior is evident. This flexural be-
havior is what is meant by the deformability of the

Q particle. While the actual shape of the soliton is
not that of the continuum equation (2.9), due to the
presence of the external forces or impurity, the
potential experienced by the g particle is evidently
remarkably close to the V(x) calculated using Eq.
(2.9).

Figure 8 gives the position of the center of the
soliton as a function of time for the two cases re-
ported in Table IV. Figure 8(a) corresponds to the
soliton being very narrow compared to the impurity
width, and the position (solid line) is nearly a har-
monic function of time. The dotted line gives a
sine curve with the computed amplitude and fre-
quency. During the first half-period the P particle
may experience a larger excursion since the effect
of the 5-function potential is not fully felt until the
chain relaxes to a stable distortion after the ex-
ternal force is turned on. Figure 8(b) shows the
position when the soliton width is larger than the
impurity width. Initially the amplitude is large
again due to the fact that the external force is in-
troduced suddenly. Ultimately it settles down to an
almost elliptic oscillation in time since its maxi-
mum amplitude does not exceed the excursion for
which x' corrections to V(x) are important [see Eq.
(4.16)].

These simulations contribute to an understanding
of flux manipulation along a continuous Josephson-
junction transmission line. The external force
modeled by (2.3) corresponds to a pair of applied
infinitely narrow current pulses in opposite direc-

Q
Q

Cd
Q

~~
Q

C)

0
V

CO

3

0

3 g'

88
PH

~

0
~~

Q
Cd

U

Cd
Q

~H

0
8
Cd

Q

Cd

S

0

~~
Cd

Q

0

~~
S

CIO

CD

C)
+I

Cb

CO

CO

C0
+I
CD

CO

CD

C)
+I

CQ

CD

CD

CD

+I
EQ
CD

C)

Cg
C)
CD

+I

C)

00

CQ
CO

CO

+I

Cg

CO

C)
C)
+I
Cb

CD

a
+I

CQ
CO

CO

+I

CD

C)

CO

+I

CO

LQ

CO

+I
lQ

CD

CO
CO

CO

+I
Cg
CD

CO

CD

CO

+I
lA
CO

LQ

CD

LQ

CL)
~~
Q

0
~ fe4

Cd

8
~~
04
Cd

8

8

A
Q

CQ 0
0 CG

Q S
~~ Q

Cd
Cd

Q'



N UMERICA L SIMULATION OF SIOF SINE-GORDON SOLITON. . .

2' ~

ION

L
TY

flux quanta can oscillate ener, generate noise, and cou-
e wi ambient alternating current fields.

0 IO 20 30 40 50 60 70 x [lattice constants]

FIG. 6. Simulation of a c 11 b
n an e model impurity of Eq. (2.3). The cent

the soliton is indicated b d ' a' a e y a dot while a
'on o e applied force.

tions, applied a distance m a
@ ~A

feet of s eedin
Qpp02m. Applying pulsessingl h ty as he ef-

tum de
peeding up or slowing down th fln e ux quan-

cident on a repulsive ulseep sive pulse will be reflected unless
e ux is travelin' g above a critical velocity. A-

plying currents in equal and
tra

an opposite pairs ma
rap flux. Turning off one of th

fo th
o e currents would

orce e soliton to move in
The conse uen

e in a preferred direction.
e consequences for manipulation of "b*ts,"usin

—oss ines theriguing. ' ' ' With respect to low-los 1'

present study allows one to establish a li
rent re uirem

o es a ish applied cur-
q irements and the extent to wh' h tw ic rapped

V. CHARACTERISTIC FREQUENCY DEFECT

This section is concerned with the eharact
frequency spatial d fia e ect of Eq. (2.2) in the absen

i e characteristic

of external forces (A =0 . ro-The results are a ro-
priate to physical situations of sol

ppro-

m one m y (d, to anotherm one medium characterized b
medium characterized by co'+a. A
tub t' th
finds that the ' ' ee o

ion eory in the small parameter a 8 f
e asymptotic soliton speed ' lo g ft

e ec is related to the incident v

ity P [as long as P&P, =—,=—a (1+a)] by
inci ent veloc-

p =p. '(ll-p p)- (5.1)

gy-conservation argumentsUsing classical ener
' is given by

P"= P'(1 alP'—+ a), (5.2)

agreeing with E . 5.1q. . to first order in a. Not onl
will the speed change to P' b t l p eu a so the shape of the
soliton should adjust to reflect the new

e perturbation theon theory also predicts

saliton s
a ere will be a transient contributi t th'on o e

h hth lt
th

n e soliton is asymptotically far from
e step defect. Finall y, classical energy conser-

vation arguments dictate that there should be a
critical velocit by ~, elow which a soliton will be
reflected by the step

FIG. 7. Simulation
showing an antisoliton
trapped by an impurity.
Dots show the center of
the antisoliton and the two
arrows show the. location
of the two edges of the
impurity at time t= 0 when
the impurity is suddenly
introduced. The line
shows the center of the
impurity as the collision
evolves.

20 40 80
X

[lattice constants]



o that discussed in Sec I~
sented in Table yI show thata P~~dictions of Eqs

(5.4) compare well with the
lation observations

wi e simu-

That the computed velocit chi y c ange is larger than
e pre icted change is due largel to th

(o d' tiora ia ion are created by collision with the
step and since energy must be conserved the veloc-
i y o the transmitted soliton is 1

ed. Discrete 1

n is ower than predict-
e . iscrete lattice effects also add to the slowin

e so iton, as described in

Quantitative observation hns s own in graphs of
Q(x, t) at the left of Fig. 9 illustrate the

t lt th

graph
' F' 9

n wi a small ste . h
s in Fig. 9 de i

p. T e right-hand

ence x t

F' . 9 p'ct the time-dependent d'ff

Q(, ) between the simulated soliton
er-

so Fig. 9 shows that as the soliton a ro
, a ime =20, large-amplitude lin-

soliton.
r isturbances are generat d te a the tail of the
i on. After the collision, at time=40 a

the la g -a 1'tud d' esi e is turbances
an egin to separate into two broadening pul-

ses: one a large transmitted pulse ro
alln o e soliton, and the other a sm

ve ing in the opposite direc-

time-dependent linea d' t
ion. Reference 6 predicts th ta relatively lar eg

f
r is urbance ener

e so iton over the ste iep is localized at
e an moreover is onl a re an y ppreciable in size

n e soliton is in the imm ' '
en 1 immediate vicinity of the

From the point of view of 1Fro ' o a ossless transmiss'
line, material defects which var v' s

p' '
g mechanisms (see alsoossi e new pinnin m

.e . , modify propagational rop p g
in of de-noise in the circuit. Again this k' d

m
'

e e ect o inter-n interesting model for th ff
e.g. , grain boundaries) on ma net'r '

n magnetic wall

l.Q

0&

-i.Q
10 20 50 40 50 60

t
'X

20 30 40 I

-05-

FIG. 8. Plots of the position of th'e center of
o ime in two limits. ~a The s

is narrow compared to th
t d dt th

re o e impurity width
myare to the impurity width.

(5.3)

If the ste inep in mo has finite widths the in ' '
zo enitis pre-

a soliton will be phase shifted by

b, =asv/4P'y'co 0 0

or, if a has the ccorrect sign, the step is hi h

enough and the inciden, eni ent velocity low enough, then
the soliton can become tripped

'e in a manner analo-

(5.4)

CURRIE TRULLINGER BISHOP, ANI) KRUMHA

TABLE V. Choice of model arao e parameters for simula-

Parameter

Cdp

Value

200

0.001

Comments

Discrete lattice effects
negligible {see Sec. III)

Spatial period of system

Maximum truncation
error allowed Quantity Prediction of Ref. 6 Observed value

TABLE VIVI. Comparison of values of uq p

a= —,and ~ = —'
o ose observed 'in a simulation with

&0=.z Except for the critical velocit
surement, the freee ini ia speed P.= —.

' 'c ve ocityP, mea-

smi e velocity and 6 is the
corresponding to go= 20 0~ ~

0.25

0.5 + 0.1%

Maximum time step size

Launch and asymptotic
velocity

Pg-Pz
~c

0.073 + 0.003
0.200
3.56 + 0,17

0.091+ 0.004
0.197+ 0.002
3.71 + 0.20
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FIG. 9. Collision of a soliton with a step model
characteristic frequency defect located at arrow.

VI. CONCLUSIONS

In the preceding sections we have presented the
results of a general, accurate, and flexible numer-
ical simulation program. These results provide
valuable insights, both quantitative and qualitative,
to the problem of lossless soliton propagation on a
discrete or continuous chain governed by the sine-
Gordon equation with spatially varying coefficients
or an external forcing term. Numerical simula-
tions in general can provide a "controlled experi-
ment" in which multisoliton, "breather, " and other
initial conditions can be observed to interact with
arbitrarily specified forces or with each other.
Specifically, numerical simulations are extremely
valuable in verifying the results of perturbation
schemes, in establishing limits to their range of

validity, and in providing models for experimental
phenomena. An example of the latter kind of appli-
cation is afforded by the propagation of magnetic
flux along a Josephson-junction transmission line.

The study of discreteness effects reveals that un-
like the situation for continuous transmission
lines, soliton, and linear (or 'phonon') modes can
be coupled quite strongly. For (d, small compared
to C,/a„ this leads to a weak damping for soliton
propagation and the possibility of a traveling soli-
ton becoming pinned if its speed falls below a "pin-
ning speed. " When v, WCO/ao, coherently propa-
gating solitons are no longer possible.

Simulations of the effects of perturbations of the
form (2.2) and (2.3) (as treated in I) on single soli-
tons indicated that so long as the perturbation pa-
rameter & did not exceed about 0.1, the predictions
in I for space shifts and velocities were accurate
to better than 25%. The ansatz of I in which soli-
tons are treated as classical /particles obeying
Newton's laws and subsequent predictions based on
this idea were found to be in excellent agreement
with the simulation. However the predictions con-
cerning the form of the linearly perturbed solution
shape, radiation, etc. , did not agree adequately
with observations. This is due to the fact that the
perturbation-shape calculations were performed
with unphysical initial conditions.

One of the many contexts in which Eq. (2.1) ap-
pears is in the flux propagation along an ideal Jo-
sephson-junction transmission line and this exam-
ple has been used to illustrate some of the possible
applications of the work in I and this simulation.
%e have shown that even on lossless lines there
ean be damping, pinning, and noise generation due
to discreteness effects. Model forces such as (2.3)
can accelerate flux quanta and space shift or trap
them just as conducting filaments transverse to the
Josephson-junction may be used to manipulate bits
of information. The present study also demon-
strates that spatial changes or defects in trans-
mission line properties can provide another barri-
er to free flux propagation and a further source of
noise generation. Corresponding applications to
other physical contexts (e.g. , model magnetic do-
main walls' and P particles in certain linear-chain
conductors') will be described in detail elsewhere.
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