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The reduction of electron inelastic-scattering data to a form which can be compared to results of optical
experiments and to band calculations is discussed. An improved and efficient method of calculating plural
scattering is described and. applied to a measured spectrum. Various aspects of surface scattering are
discussed, especially as they pertain to the analysis procedure. Results, including dielectric constants, for Cu
are shown @gd are compared to band calculations.

I. INTRODUCTION

Certain features of electron inelastic-scattering
(energy-loss) experiments performed in transmis-
sion geometry can be interpreted with little, if
any, processing of the data. In general, however,
it is necessary to process the data considerably
before comparing to optical data or band-structure
calculations. Among the reasons for this are the
following:

(i) Electron scattering experiments essentially
measure the quantity g, (E) = Im[-I/e(E)], where e

=&,+ie, is the co~plex dielectric constant, Even
when (for small wave vector) e is taken to be the
same quantity as determined optically, the rela-
tion between structure in Im(-I/e) and that in
either ey or E'2 is not straightforward, except in
special cases. One example where it i.s straight-
forward is structure due to excitation of core elec-
trons. ' ' Here e, = 1 and c, is small, so that
Im(-I/c) = e,/(e', +e',) = e, (but see Refs. 3 and 8).
Another simple case involves well-defined plas-
mons. '" Here the energy-loss peak arises from
the conditions e, =0 and e,«1 and often dominates
the spectrum.

(ii) The high scattering probabil)lty for electrons
results in non-negligible plural scattering for mod-
erate electron energies, even for relatively thin
films. This necessitates a correction before
Im(-I/e) can be determined.

(iii) Scattering from the film surfaces can be
surprisingly large, even for relatively thick films.
In materials which have free-electron-like bands
(e.g., Al), such scattering is well defined (as ex-
citation of surface plasmons) and fairly localized
in energy. In other cases, perhaps most, struc-
ture from surface scattering i.s closely mixed with
that from the bulk, necessitating a correction.

In this paper we describe a method, based on
Kramers-Kronig (KK) analysis (Sec. II) for the re-
duction of energy-loss data to a form which can be
compared easily to calculations and other experi-
ments. The principal difference between our meth-

od and those which have been presented before' "
lies in a more precise and efficient treatment of
plural scattering (Sec. III). As an example, we ap-
ply this treatment to a measured Cu spectrum in
Sec. IV. In Sec. V we consider various effects not
included in the simplest formulation of surface
scattering. Finally, in Sec. VI, we present results
of our KK analysis for Cu.

II. KRAMERS-KRONIG ANALYSIS

The KK ana, lysis which we use is similar to that
discussed in detail in Ref. 10; hence we will con-
fine ourselves largely to listing the relevant ex-
pressions.

We deal with the complex quantity g(E) defined
by

g(E) =g, (E) + zg, (E) = 1 —I/e(E), (2.1)

where E = 8((). The real part of g(E) is related to
the imaginary part through

g, (E) = 1-Re[I/~ (E)]

(2/ )~ "g,(E')E'dE'
(E)2 E z)

Letting E =0, we obtain a sum rule on g, (E):

(2 2)

1 —Re[I/e (0)] = (2/v)(i'
" g.(E')dE'

gt (2.3)

For metals Re[1/e(0)] =0. Once (2.2) has been
used to infer g, (E) from gz(E), we may obtain e (E)
from (2.1). We also compute the quantities

n, (z) = (m/2w*e*NR ) J z (!,(E )dE'''
0

(2.4)

a,nd

zz, (E}= (zzz/2z)'e'Xzz ') E l~ (E )) dE I (2.5)

where N is the atom density. These may nonrigor-
ously" be regarded as the effective number of
electrons contributing to the excitation spectrum
up to energy E. The integrand of (2.5), viz. ,
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f(E) = (m/2m'e'prS')Ee, (Z), (2.6) S(x,Z, 8) = xS,(Z, 8)e-'~"

X=n+~a = ~'~2

the absorption coefficient

p, = (2(u/c)k= (2E/&)k,

(2 7)

(2.8)

and the reflection coefficient (normal incidence)

is proportional to the real part of the optical con-
ductivity and may be identified as the density of
oscillator strength per unit energy interval. In the
limit E ~, both quantities n approach the atomic
number, and (2.5) is seen to be a restatement of
the f-sum rule. " It may be shown that any smooth
function g, (z) which tends to 0 as E goes to both 0
and ~ and which is normalized according to (2.3)(with
He[1/e (0)] = 0] will produce quantities n defined by
(2.4) and (2.5) which tend toward each other as E

Hence we may check the numerical accuracy
of the computa, tion by insuring that n~ and n, , tend
to the same value at high energy.

For comparison with optical data, one may com-
pute such quantities as the refractive index

s(x', z', e')s, (z -z', 8")

where 8" is given by

8" =cos '(Q ~ 0')

x e-'«"-"'~ dxI dg

(3.2)

(3.3)

and we have used the notation 0 = (sine cosQ,
sine sing, cose). The first term of (3.2) describes
electrons which, in traveling the distance x, scat-
ter exactly once with the specified E and 6 and
avoid all other processes. The second term sums
over all plural scatterings in which an electron
scatters at lea, st once with accumulated energy
loss E' and deflection 6' in arriving at x', scat-
ters once more with energy loss E -E' and deflec-
tion 0" in dx' about x', and then travels the dis-
tance x —x' with no further interactions. We can
eliminate the. attenuation factors from (3.2) by de-
fining

R = [(n —1)'+0']/[(n+ 1)'+k'] . (2.9) s(x,z, e)=e'~"s(x, z, e) . (3.4)

III. MULTIPLE SCATTERING Thus

The calculation of multiple (single plus plural)
scattering of electrons has been the subject of
much work. ' ' Some treatments' ' emphasize
double scattering, while others, primarily those" "
which restrict themselves to elastic sca,ttering,
treat all orders of scattering. The present method
resembles the latter, but has been extended to ap-
ply to inelastic scattering.

We begin by defining S,(E, 8) as the probability
of single scattering per unit film thickness, ener-
gy interval, and solid angle. For the moment we
include only volume scattering and assume that S,
can be represented by the factored form'

s,(z, e) = ( ~2'~~, z)-'g, ()z/(8'+ 8,'), (3.1)

where E, is the incident electron energy, E is the
energy lost by the scattered electron, a, is the
Bohr radius, and es=E/2E, . Note that we neglect
the wave-vector variation of c over the arigular re-
gion in which S, is used in the calculation. We also
define a total interaction probability per unit thick-
ness, S„suchthat the probability of not interact-
ing in thickness t is given by e ~&'.

We may then write down an integral equation for
the quantity S(x,z, 8), which we define as the pro-
bability per unit solid angle and unit energy trans-
fer that an electron will scatter at least once with
total deflection 8 and energy loss E in traveling a
distance x into the film:

S (x,E, 8) = xS,(z, 8)

S(x,Z, e )S,(Z -Z, 8")

xdx'dn'dpi . (3.5)

S(x,z, e) = P si(x, z)P~(cose)

We have regarded the paths of the electrons of in-
terest (those which we ultimately detect), as suf-
ficiently close to the forward direction that the
path length is adequately represented by the dis-
tance x. We have also used the property that,
apart from th'e very-low-energy region corres-
ponding to annihilation of phonons, S,(E, 8) =0 for
E &0. Finally, we have assumed, as usual, that
the scatterings of a given electron occur indepen-
dently.

If the left-hand side of (3.5) is repeatedly sub-
stituted into the right-hand side, a series expan-
sion results. If this series is truncated at two
terms, one recovers essentially the method dis-
cussed by Daniels et a/. ' Rather than employ such
an expansion, we solve (3.5) as an integral equa-
tion. The number of integra1. s involved makes di-
rect integration of (3.5) unwieldy. Consequently
we take advantage of the axial symmetry implicit
in the scattering described by (3.1) and expand in
Legendre polynomials.

We write
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S,(E, B) = g a~(E)P~(cosB) . (3.7)

In order to determine the coefficients a~(E), we
recognize that 8'+Bs in (3.1) is actually an approx-
imation to Bz+2(1 —cosB) (see Ref. 9). We then
utilize the expansion"

Inserting these in (3.5) and applying the addition
theorem, "we get

s (x,E) = xa (E)
x

+ (fx' dE' a~ (E E') [-4m /(21, + 1)]
0 0

[2(1+Bs/2 —cos8)]

= g E (2L, + 1)P,(cosB)Q, (l+-.'8,'),

(3.11)
xsi(x', E') .

It is convenient to define s~(x, E) by

s~(x, E) = xa~(E)+s~~(x, E),
which, when substituted into (3.8), gives

(3.8)

(3.9)

where the Q~ are I egendre functions of the second
kind. "'" In this way we obtain

a~(E) = (2v'a, E,) 'g, (E)E(2I. +1)Q~(1+EBs') .
(3.12)

( Eaa) =x[4 l(2Ex)a]-,(' fxdE a(E -'E')a (E')
0

a[4 /(2 aE)] af(dE'a (E E )-'
0

x si g', Z' dx'.
0

(3.10)

The integral equation (3.10) may be solved nu-
merically by dividing the range of energy, E
into I intervals and the thickness t into J intervals.
We write (3.10) in discrete form for successive
values of j, using the trapezoidal rule in the x in-
tegration. We then subtract the resulting expres-
sions and utilize (3.12), thus obtaining a form con-
venient for calculation:

s~(x~, E[)=s~(x, „E;)+m[(2I,+1)/2][(j —(j —1) )/I J' ]
&-1

&& [E,„/(2m'aoE )'] Q t'g (E(;,)g, (E;)Qg(1+Bs, , /2) Qg(1+Bs. /2)
iy=l

+ [v/Ij][Emax/2m'aoEE] Q tg, (E; ),)QL, (l+Bs. , /2) [s (~)x, )E)+s~(x~ „E),)],
kg= 1

(3.13)

hwreeE, =iE „/Iand x, =jt/J. With the assump-
tion that plural scattering is negligible at the low-
est energy, (3.13) may be used recursively to ob-
tain sf(x, ,E,) for alii, j andi, . Note that s~(x, ,
E;) depends on s~(x&,E& ) previously computed.
The angular distribution of the plural scattering
may be expressed as

S~(t,E, B) = g s~(t, E)PE(cos8) . (3.14)

Since, in the present application, we wish to de-
termine detected intensities of single and plural
scattering, we define a resolution function. We
assume the latter to be factorable in angle and en-
ergy, and take the energy part to be narrow in
comparison with structure in s~(x,E). We then
expand the angular resolution function, assumed
axially symmetric, as follows:

of a target if the system were set to detect elec-
trons which had neither changed direction nor
transferred energy. The coefficients ~~ are simp-
ly computed by recursion for Gaussian or Lorentz-
ian shapes (see Appendix A). If the resolution is
not axially symmetri. c, (3.15) can still be used but
the r~ themselves depend on the angular setting of
the spectrometer and are somewhat tedious to
compute. Applying expansions (3.6), (3.7), (3.15),
and the addition theorem to integrals of the form

4

I,(E, B) =I,e EE' t S,(E, B')R[cos '(0 Il')]dQ',
n'

we may express the single and plural scattering
intensities as

I,(E, B) =I,R,e EE' t g 2 a~(E)rzP~(cos8)

(3.16a)

R(8) = R, g r~P~(cosB) . (3.15) =I R 8 (2']l a E ) tg (Z)F(B E)

Ap represents the fraction of the incident beam in-
tensity I, which would be collected in the absence

(3.16b)
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1~(E, 8)=I,R,e ~~' g )
s~~(t, E)r~Pz(cos8).

(3.17)

The quantity F(E, 8) = 2mB~ r~P~(cos8) Q~(1+—,8s)
expresses the combined effect of the aI gular dis-
tribution of the scattering function [cf. (3.1)] and
the angular resolution function. To the extent that

g, (E) varies slowly with angle, F(E, 8) predicts
the measured angular distribution of single scat-
tering. At fixed angle of measurement, it largely
controls the shape of the observed spectrum rela-
tive to g, (E); this aspect has been discussed in
Ref. 10.

Some remarks of a practical nature are in order
here. The number J of intervals used in the x in-
tegration is analogous (though not equivalent) to the
number of terms kept in a series expansion of
(3.5). The required J depends on the target thick-
ness„ the spectrometer angle, and the nature of

g, (E). For the data processed here, J = 10 was
more than adequate. Because of the generally
smooth nature of plural scattering, it is often ac-
ceptable to use a fairly coarse energy mesh and
to interpolate the plural scattering in between.

The expansion (3.6) implies tha. t we must evalu-
ate the left-hand side of (3.13) for all values of L.
Inspection of (3.11) and the fact that 8s for typical
Eo and F- may be in the range 0.00001-0.01 re-
veals that convergen. ce will occur only at rather
large L (perhaps several thousand). This might
seem to pose an insurmountable practical prob-
lem, but since a~, s~, Q~, and r~ all vary slowly
with L, we may simply divide the required L
range into a moderate number of intervals (10 to
20) and use a representative L from each. It is
expedient to allow the intervals to increase in size
with increasing L. The presence of the xz in
(3.17) has a beneficial effect on the convergence of
the computation of I~(E, 8).

The method just discussed may be compared to
those described in detail by Daniels et al. ' and
Wehenkel. " We account for all orders of scatter-
ing„rather than stopping at double or triple scat-
tering. The properties of the Legendre polynomi-
als allow us to avoid much of the labor involved in
handling the angular variables correctly, rather
than, for example, approximating the double sca,t-
tering as a simple convolution in energy of the
single scattering intensities [cf. Eq. (11) of Ref.

S(x,E, 8) = xS,(E, 8) +S',(E, 8)

+ S(x',E', 8')S,(E E', 8")-
o A' o

x dx' dA' dE'. (3.19)

At t', beyond the film, we have

S(t+,E, 8) =S(t,E, 8)+S',(E, 8)

+ S t, E', 8' $~ E -E' 8" dQ'~'.
o 0'

(3.20)

If we expand S',(E, 8) as in (3.7) with coefficients
given by

1

b~(E) =-, (2L+ 1) S',(E, 8)P~(cos8)d cos8
-1

(3.21)

and redefine s~(x, E) by

sz(x, E) = xa~(E)+b~(E)+s~~(x, E), 0&x ~t

(3.22)

we may generalize (3.10) to

12j. Since we in effect calculate the angular dis-
tribution of the plural scattering and then apply
the resolution function to determine what part is
collected, our method lends itself to realistic
treatment of spectrometer resolution; the work of
dealing with possibly complicated angular resolu-
tion is concentrated in a single calculation of the
rz, which can then be stored.

We may generalize the foregoing method to in-
clude surface scattering if we use the Hitchie"
form

S',(E, 8) = (2m'a, koE,)
' », Im (3.18)

8 (1 f)
6 +eg E Q+1

as the probability of scattering from one surface
per unit energy interval and solid angle. Equation
(3.18) assumes normal beam incidence on the tar-
get and neglects retardation as well as interaction
of the film surfaces; we discuss these effects in
Sec. V.

Considering surface scattering to take place pre-
cisely at the surface, we may generalize (3.5).
For 0&x ~t

4)= (2L+I) '" dE' a~(E —E')a~(E')

dE'b~(E')a~(E -E')+ 2, dE'az(E —E') sz(x', E')dx'.
0

(3.23)
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Using the orthogonality of the Legendre polynomi-
als to perform the angular integration implied in
(3.20), we get

s (t', z)=s, (),z)+f dE s~'(tz ,))z'(z —8')
0

(3.24)

tering. The sum of calculated bulk single scatter-
ing, surface single scattering, and plural scatter-
ing is then compared with the observed spectrum
and new estimates of g, (E) and «(E) are obtained.
From these the plural and surface scattering com-
ponents are recalculated and the procedure is re-
peated until the observed spectrum is closely

si(f', E) = ta~(E) + 2bi (E) + si(t', E) . (3.25)

enough reproduced by the sum of its components.
In Fig. 1 we show such a decomposition for data

from a relatively thick, nearly-single-crystal Cu

IV. EXTRACTION OF SINGLE SCATTERING

In Sec. III we described how to calculate plural
scattering, given knowledge of g, (E) [and «(E) if
surface scattering is to be included]. In practice
we have, instead, an observed spectrum from
which we desire the extract the bulk single scat-
tering, in order to determine g, (E). If we ignore
surface scattering, we may take advantage of the
fact that solving (3.13) at energy E; involves g,
only at lower energy, so tha, t knowledge of g, (E;)
for i =1 is sufficient to start a recursive process.
At each higher energy, (3.17) is used to determine
I~(E, 8) which is subtracted from the observed in-
tensity to yield l,(E, 8). Equation (3.16b) is then
applied to extract g, (E). The difficulty is that both

. the thickness t and the quantity I=IpAp+ must
be known. Lacking accurate knowledge of I, we

may proceed by noting that tg, (E) occurs in (3.13)
and (3.16b) always as a product. We estimate a
value of I and carry out the recursive process,
extracting tg, (E) at each value of energy. When

finished, we apply sum rule (2.3) in the form

film. The primary energy Ep was 20 keV and the
scattering angle 8 was 0. We extrapolated the data
to E = 0 using optically mea, sured"'" dielectric
constants to estimate g, (E) in the low-E region.
Plural-scattering processes which involve a sur-
face scattering were ignored. Observe that in this
spectrum plural scattering accounts for most of
the scattering at the higher energies; hence de-
rived quantities in this region will be subject to
systematic error, though peaks and shapes should
be fairly reliable since the plural-scattering cor-
rection is smooth. We used the requirement that
n, be near 19 to determine the effective thickness
for the film, 980 A. We found it necessary to use
a different effective thickness to characterize sur-
face scattering. This is not unreasonable if the
film is not uniform in thickness, since differently
weighted averages are operative in the two cases
(see Sec. V). Here surface scattering is included
as if the film were 500-A thick, an estimate based
on keeping g, (E) at the low-energy threshold
(-2.1 eV) comparable to that inferred from other
data we have taken in which the surface scattering
is not so prominent. We are well aware of the ar-

(4.1)

to determine t. If t thus inferred is not the known

thickness, a new value of I must be chosen and the
process repeated. A check is provided by extra-
polating g, (E) to E -~ and calculating n, according
to (2.4). In Cu, for example, we presume that the
data and its smooth tail (1jE' used here) encom-
pass excitation of all electrons from 3s through
4s, so that n, (E -~) should be 19. In the present
case, n~ is -10 atE =150 eV, the extrapolation
accounting for the remaining nine electrons.

Inclusion of surface scattering complicates the
procedure, since itdepends on «(E) which in turn
depends (see Sec. II) on g, (E) at all E, and neces-
sitates an iterative procedure, Similar to that de-
scribed by Wehenkel. " We first regard all scat-
tering as due to the bulk and carry out a removal
of plural scattering as described above. Together
with a KK analysis, this produces a first estimate
of «(E), from which, with the Ritchie formula, we
calculate an estimate of the surface single scat-

0 20 40 60 80 100 120 140 160
E (eY)

FIG. 1. Decomposition of raw energy-loss data (top
curve) for a [100] nearly-single-crystal Cu target into
single (I~), plural (Ip), and surface (I &) scattering com-
ponents. E&=20 keV, 8 = 0. The surface scattering com-
ponent is on the same scale, but has been plotted se-
parately for clarity. The spectrometer energy resolu-
tion full width at half maximum (F%HM) is - 0.1 eV;
the angular resolution is approximately Gaussian with
FWHM= 200= 0.15'. The data were taken at 0.16 eV in-
tervals. The peak at 19.2 eV corresponds to 2.19@105
counts; the total counting time (sum of 2048 scans) per
data point was 20.5 sec. The very-llaw-energy region, in-
cluding the elastic peak, is not shown.
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bitrariness involved; use of a thinner but more
continuous film would improve the situation. Cu
is a particularly difficult material for analysis,
since its flat d bands -2 eV below the Fermi level
cause the surface scattering to be strongly peaked
in the same region where the bulk scattering is in-
creasing rapidly. Our experience with several
spectra from both single crystal and polycrystal-
line films has been that it is difficult to reconcile
the apparent levels of surface and plural scatter-
ing. In particular, our spectra from polycrystal-
line specimens generally exhibit much less appar-
ent surface scattering than we would exyect, even
from continuous films.

M
2'.
4lI-
K

V: FURTHER CONSIDERATIONS ON SURFACE

SCATTERING

The simple Ritchie form (3.18) contains the es-
sence of the surface contribution and is quite con-
venient for calculation, since the surface contri-
bution is given as a separate entity from the vol-
ume contribution and the dependences on angle and
dielectric constant are expressed in factored form
The practical importance of the latter is that
(3.18) must be integrated over solid angle, and the
factored form allows this integration to be done
independently of e(E). More importantly, the fac-
tored form is required for the plural scattering
formulation of Sec. III to apply.

Under certain conditions, more elaborate form-
ulations of the surface scattering are necessary.
In each case, the desirable properties mentioned
above are eliminated. For nonnormal incidence,
one must modify (3.18) by a factor" which involves
the angle of incidence and depends explicitly on the
azimuthal angle as well as the polar angle 8.
Since this factor diverges in the limit of grazing
incidence, the surface contribution may be en-
hanced greatly if the beam passes at a glancing
angle through any region of the specimen. Figure
2 shows the spectrum of a specimen which con-
tained a large number of holes. The details of
such spectra depend crucially on the exact position
of the beam relative to the target. Nate the simi-
larity of this spectrum to the calculated surface
spectrum in Fig. 1. It is clear that the surface
scattering shown in Fig. 2 overwhelms that due to
the bulk. The importance of using continuous
films is obvious.

The effects of retardation may be understood
qualitatively with reference to a dispersion rela-
tion for surface plasmons in a simple metal, such
a Fig. 1 of Ref. 24. Inclusion of retardation in the
dispersion relation has the effect of forcing the
small-wave-vector portion of the ~ vs k curve to
be asymptotic to the light line, e =ck. Only if con-

0
I

10
I I

20
E (ev)

I

30

FIG. 2. Example of raw data from a [100] t u target
observed to contain numerous pinboles.

tributions from this region are a sufficiently great
fraction of the total surface scattering will the in-
clusion of retardation be important in the scatter-
ing problem; this tends to be the case for rela-
tively low energies, even when (as in Cu) the dis-
persion relation is more complicated or ill de-
fined. The effects of the interaction of the film
surfaces are important in. the same energy region
and may be understood in the same way. Kroger"
has derived a formula which includes both of these
effects. In his formula the volume and surface
contributions are often heavily intertwined, e.g. ,
the individual contributions may have large nega-
tive excursions. As we see from Fig. 3, the dif-
ference between the spectra calculated for Cu from
the Kroger and Ritchie formulas is appreciable
only at low energy. We feel that, in this case, the
difference is smaller than other uncertainties as-
sociated with calculation of surface scattering.

Because of their exposure to air, our Cu films
are expected to be covered by thin oxide layers,
probably CuOp 67 A reasonable estimate for the
thickness is 25 A." In.order to assess the possi-
ble effect of such a layer on each side of the film,
we have performed the straightforward but tedious
extension of the Ritchie procedure (neglecting re-
tardation) to derive the scattering probability for
a composite three-region specimen. The results
are given in Appendix B. As a test of this formu-
lation, we applied it to aluminum. It is well known
that the presence of an oxide layer shifts the sur-
face plasmon in a free-electron metal to a lower
frequency; in Al the shift is from S&u/v 2 = 10 eV
to -7 eV. In Fig. 4 we compare a portion of an
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E (ev)

H
(A2!
La!

x

FIG. 5. Function g& (E) =Im[ —1/e(E)] for Cu deter-
mined from the data of Fig. l. Beyond - 30 eV the
points have been grouped to reduce scatter.

2 4 8 8 10 12
E (ev)

FIG. 2. Single (bulk plus surface) scattering profiles
for 500-A Cu based on the dielectric constants of Fig.
6: (a) Ritchie formula for surface scattering; (b) effect
of interaction of surfaces included, retardation neg-
lected; (c) Kroger formula; (d) effect of 25-A CuOp

layers using 60 derived from Ref. 26; no retardation.
Successive curves have been displaced for clarity.

I-

X
UlI-
X.—

H

~ ~ ~ ~
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~ ~

~ ~
~ ~
~ ~L

~ I ~ I ~ ~

5,0 i5
E (eV)

20

FIG. 4. Comparison of observed and calculated sur-
face and volume plasmons in Al: (a) Experimental data,
Eo= j.8 keV; (b) calculated with Drude form (values from
Ref. 28: E), = 14.9 eV; E„=0.52 eV) for 500-A thick Al
with 25-A layers of so= 4.1 oxide on each side; (c) same
as (b), but oxide taken as infinitely thick.

experimental Al spectrum (a) with results of cal-
culations based on a simple Drude model. " The
dielectric constant of the oxide was taken as 4.1."
Note that the broadened nature of the experimental
surface plasmon is reproduced by the calculation
which treats the oxide as finite (b), while taking
the oxide to be thick (c), as usually is implicitly
assumed, results in too sharp a peak.

In Fig. 3 we show a calculation of the total single
scattering for oxide-coated Cu over the energy
range for which Wieder and Czanderna" have given
optical constants for CuOp 67 We see that the
oxide has caused the edge to be enhanced, though
the fractional increase in overall intensity is less
than 2(P/q.

VI. RESULTS AND DISCUSSION

In Fig. 5 we show g, (E) for Cu as inferred from
the single scattering spectrum shown in Fig. 1.
The structure in g, is generally similar to that
determined by other workers, "'"'"though the de-
tailed shape is sensitive to the method of correc-
tions for surface and plural scattering. Plots of

s, (E) and e,(E) as determined by KK analysis are .

shown in Fig. 6; these are the values we used to
compute the surface scattering. The density of os-
cillator strength f(E), expressed in units of elec-
trons/atom/eV, is shown in Fig. 7.

Before discussing these results, we wish to
point ou':. the features we feel are most vulnerable
to inaccuracies in the data processing. The height
of the low-E threshold in g, (E) depends on how

much surface -scattering is subtracted, although
normalization through (2.3) reduces the sensitiv-
ity. Our value (-0.145) is only slightly larger than
that of Daniels et al. ,

"but considerably less than
that of Wehenkel, "whose data seem to contain
more surface scattering than he has subtracted.
The value of e, at its minimum just below 2 eV
depends on the low-E extrapolation (see Sec. IV)
and consequently is somewhat arbitrary. The val-
ue here is slightly lower than that determined
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FIG. 6. ~,(E) and ~2(E) for Cu derived from g, (E) of
Fig. 5.

optically. As mentioned above, the value at high
energy of g, (E) and, to a greater degree, those of
f(Z) and the absorption coefficient p, depend sen-
sitively on the amount of plural scattering which
is subtracted. The absorption coefficient for Cu
has been measured by Haensel, Kunz, and Sonntag"
(HKS) and by Hagemann, Gudat, and Kunz (HGK)."
At the representative energies 80 and 150 eV,
HKS measure p =6.0 and 4.5X10' cm ', respec-
tively, while HGK obtained 7.7 and 4.5&& 10' cm '.
Our corresponding values are 6.9 and 5.6& 10'
cm ', almost within the stated error limits (15%)
of the HKS experiment.

From Figs. 5-7 we see that there is no well-
defined plasmon (e, is large where e, =0). The
nature of the peaks in g, (E) between about 10 and
50 eV is complicated, arising from relatively
small changes in e, and e,. As noted by Wehenkel, "
peaks in f(Z) in this range occur near minima of
g, (Z), though the correspondence is by no means
exact. Beyond -50 eV, e, = 1 and structure in

g, (Z) is also visible in f(E).
The inferred e,(Z) and e,(E) are reasonably close

to optical measurements of these quantities. ""'"
Our good energy resolution allows the low-energy
region of g, (E) to be determined with greater cer-
tainty than in previous energy-loss experiments;
indeed, because of the nature of the KK analysis,
this region has considerable effect on the values
of e, and e, at higher energies.

In Table I we list the principal features in the
curve of oscillator strength density. The general
shape of f(E) and the positions of the various peaks
are not very sensitive to errors in the data proces-
sing. Within the stated uncertainties, the ener-

I

& 0.10

0-
~~ 0 ~ 08
M
X
IJJ~0.06
Z

0 ~ 04
OCI-
(h

0 ~ 02

O

0 20 40 60 80 100 120 140 160
E (ev)

FIG. 7. Plot of the density of oscillator strength f(E)
for Cu.

gies quoted in Table I apply whether the surface
scattering has been subtracted or not and are the
same for a similar analysis of data from a poly-
crystalline film. Lacking a calculation of f(Z) or
e,(E) over a large energy range, based upon the
band structure, we here simply attempt to relate
observed features to transitions expected on the
basis of band structures calculated by Chen and
Segall" (parametrized using results of various

Feature
Meas. E

(eV)

Calc. E
(ev)

b Assignment

Threshold 2.1

Peak 5.2

2.i
2.i
5.0
5.3
5 4

&s &&( F)
Q, —Q (EF)

4 ' «

5.3 Q, (L,')- Q"(E„)

Minimum 7.1
Peak 8.4

Peak 9.6

8.4
8.9
9.7
9.5-9.8

8.4
8.6
9.4

Z4 —Z& (near K)
TV(. W3

W) W3

Z& —Z3 (near E)
Minimum i 1.0
Maximum 45.0

Minimum
Peak

22.6 + 0.5
25.9 ~ 0.2

Weak bump 35
Broad edge 74 + 1

i4.0 i35 tV, ,—e
f55 X-X,.

'

i5 4 Xg —Xg,

I (2- I')5
26.8 I"25.—I'2.
26.8 L (

—L2.
277 L,-I,
24.9 L3 —L2,
25.9 L3—L3.
23.5
245 L3 L2.
26.3 L2.
33.5 I'( I'(5

~sr, xrr(3P

aFrom. Ref 33
"From Ref 34.

TABLE I. List of features in the oscillator strength
density. Unless otherwise specified, positions are be-
lieved correct to 0.1 eV, based on consistency with other
sets of data.
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APPENDIX A

We wish to compute the coefficients ~~, where

rz, =- (1/Ao) 2 (2L + 1) A(8)Pt, (cose)d cose. (Al)

For Lorentzian resolution,

experiments) and Burdick. " The low-energy edge
in f(E) (a peak in e,) may be identified with the en-
ergy from the d bands to the Fermi level in the
[100] direction. Most of the observed peaks result
from transitions from the 3d levels to P-like
states above the Fermi level. Energies and pro-
posed assignments, consistent with dipole selec-
tion rules, for the various transitions are listed
in Table I. Though the observed structure agrees
fairly well with transition energies based on band
calculations, a calculation of e,(E) [or f(E)] would
be of great interest, as would a calculation of

g.(E).
The Mrr rrr e ge a, 7 eV s pr e t " 'g

7, even though it hardly shows up on the scale in
which the raw data is plotted in Fig. 1. As has
been noted previously, "the edge is not well de-
fined. The finite lifetime of the core hole, which
decays by super-Coster-Kronig (Auger) proces-
ses,"can account for 2 eV of the width of the edge.
The remainder is probably due to the nature" of
the wave functions above the Fermi level. The
Q, Z„anda„bands are strongly P-like just
above E~, implying small matrix elements for
dipole transitions from SP states. Transitions to
the s-like states in bands such as Z„Q„andA,
should be larger. Hence the shape of the edge will
be influenced by the relative densities of P-like
and s-like states.

ll(e) =ii,e,'/(8'+ e,') .
Using

8'+ 80 = 2(1+8,'/2 —cose)

and"

t 1

(z —x) 'Pi(x)dx=2Qi(z),
-1

we get

r~ = [(2L+ 1)/2]8,'Q~(1+28', ) .

(A2)

(AS)

(A4)

(A5)

= R, exp(-A. ) exp(A. cose),

where A. =21n2/8,'. Then

(A8)

1

r~ = —,'- (2L + 1) exp(-A) exp(A, cose)Pz (cose)d cose
-1

=——,'(2L+ 1)Mz . (A7)

The coefficients M~ may be determined by recur-
sion. " For A. large,

M =X-'
p

M, =A. '(1 —A. '),
M~, = —[(2L+1)/X]M~+M~ „L&1.

(A8)

APPEND&X B

We give here an expression for the scattering
probability, neglecting retardation, for a three-
region film of thickness 2b in vacuum. The center
section, of thickness 2a, has dielectric constant
e(E). The outer regions are each taken to be of
thickness (b-a) and to have dielectric constant
e, (E). The method we used was the same as that
employed by Hitchie and Kroger. '

We obtain

The Q~ may be.computed using the same recursion
relation which applies to the Legendre polynomi-
als P~."

For Gaussian resolution,

A (8) =R, exp [-(ln2/8, ')8']

S,(E, 8) = (e'/v'b 'v')(k,'/Q')

x Re(-i[2eo '(b —a)+ 2& 'a]

+ As '(-b, exp(isb)/u, —b, exp(-isb)/u, + b, (-2i/&p') (A. sinsa —s tan&a cossa)

+c,(2/P')(X tanhhz cossa+ s sinsa) + (b, +b,)(f„+f~)
+ (b, + c, tanh hg) (f~ —f„)+(e/so) [c,(f~ +f~) + b, tanh hz (f~ -f~)])),

where kp is the wave vector and v the velocity cor-
responding to an electron of energy Ep. Other
quantities which appear in the above are defined
as follows:

A, = kpg,

s =(u/v,

f'= s'+ A.
'
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u~= is+ A

u2= Ss —A. ,

d, = cosh'(b —a)+e, sinhA(b -a),
d, = sinhA(b —a)+e, cosh'(b —a),
h, = (eo' —c ') cossa,

h, =i(~, ' —e. ') sinsa,

b, = [(e, ' —1) cossb —d,h, ]/[d, + (e/e, )d, tsnh &a],

c,= [i(c, ' —1) sinsb —d,h, ]/[d, tanhhz+ (c/e, )d, ],
b, =k, —h, +b, —c, t3nh4z,

54=h, +h2+5, +c, te,nhha,

c, = (e/e, )(c, b,—te.nh Za),

c,= (c/c, )(c,+b, tanhW),

b, =e, [—b, sinhX(b -a)+c, cosh'(b —a)],
b, = c,[-b, sinh A. (b -a) —c,cosh A. (b -a)],
f,.= [exp(Xa)/2u, ][exp(-au, ) —exp(-bu, )]

a [exp(-hz)/2u, ][exp(-au, ) —exp(-bu, )],
f& c = [exp(-Aa)/2u, ]'[exp(bu, ) —exp(au, )]

z [exp(M)/2u, ] [exp(bu, ) —exp(au, )] .
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