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Dingle temperatures for the scattering of conduction electrons at vacancies quenched into gold have been
measured for 10 cyclotron orbits. The effect of dislocations produced during the quench has been separated
from the contribution of the vacancies. Local values of the scattering rates are calculated from the data. The
anisotropy of the scattering turns out to be very small. Vacancies in Au are characterized by a strong
relaxation of the surrounding lattice. Calculations of Dingle temperatures for a vacancy model without lattice
relaxation give a neck Dingle temperature which is only 50% of those for the belly orbits, whereas the
measured value is smaller only by 10%. This discrepancy is due to the lattice distortion which increases
preferentially the neck scattering and is therefore responsible for the weak anisotropy of the measured data.
The scattering theories available at present time are not applicable to vacancies in Au. They must be extended

to include the lattice distortion.

1. INTRODUCTION

" The de Haas-van Alphen (dHvA) effect has been
used extensively in the last years to investigate
the scattering of conduction electrons from impur-
ity atoms in dilute alloys. Most effort has been
towards noble-metal alloys with substitutional®™*
and interstitial® impurities. Among the structural
defects studied by dHvVA effect are edge disloca-
tions® and dislocation loops producedby neutron ir-
radiation” in Cu. In this paper a detailed analysis
of scattering of conduction electrons from vacan-
cies in Au will be presented. A new technique has
been applied to quench-in the lattice vacancies
present in thermal equilibrium at high tempera-
tures.® Mainly single vacancies distributed ran-
domly in the sample are quenched-in by this pro-
cedure. In addition, some 8X 10° dislocations/cm?
are created by the quick cooling of the samples.
Dingle temperatures were measured for ten orbits
in 11 samples containing up to 274 ppm of vacan-
cies.

The paper is organized as follows. Section II
describes briefly how the dHVA effect is used to
determine scattering rates of the conduction elec-
trons. The preparation of the samples with con-
trolled vacancy concentrations is described in
some length. The experimental results are given
in Sec. III. It is described how the contributions
of vacancies and dislocations to the scattering
rates are separated. In Sec. IV local values of the
scattering rates are deduced from the experimen-
tal data. A vacancy in Au is characterized by an
especially strong distortion of the lattice around
it. It is shown that any reasonable analysis of the
data has to take into account this strong relaxa-
tion. The importance of the lattice relaxation is
obvious from the calculation of Dingle tempera-
tures using a simple model for a vacancy in Au.

IL. EXPERIMENTAL

A. dHvA amplitude measurements

In a previous paper® we have described in some
detail how the dHvVA effect is used to determine the
k dependence of the scattering rates 1/7*(k) of con-
duction electrons from defects. Under suitable
conditions the oscillatory magnetization varies in
the following way with the temperature 7" and the
magnetic field H,

_ T exp(=bmxX*/myH) . [2nF

M=Mo 75 = Sink G maT my H) Sm(T +"’>' (1)
The constant b has the value 146.925 kG/K. M,
and y are independent of T and H. The magnetiza
ation varies sinusoidally in 1/H with the dHVA
frequency F. The Landau-level broadening de-
scribed by the Dingle temperature X* and caused
by the scattering of the conduction electrons from
defects produces an exponential damping of the
dHVA amplitudes. The Dingle temperature X*
given by

X*=(1/2nkg) (1/7*(K)) (2)

is an orbital average (--+) of the local scattering
rates 1/7*(K) of the electrons around an extremal
cross section. From measurements of the dHVA
amplitudes A(T,H) as a function of field H at fixed
temperature T and a plot In[A VH sinh(bm}T /m H)]
vs H™ ' one obtains the Dingle temperature X*. The
cyclotron masses m* used in the analysis were
taken from Ref. 9. The Dingle temperatures and
the cyclotron masses determined by dHvA effect
are renormalized by electron-phonon interaction,
and so are the local scattering rates 1/7*(K).>°
This is the meaning of the asterisk on X*, m,
and 7* in Egs. (1) and (2).

The dHVA measurements were made by a field
modulation technique. Details of the apparatus
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and of the temperature, field, and amplitude mea~-
surements are given in Refs. 5 and 9.

B. Preparation of dHvA samples with controlled vacanéy
concentrations

The samples used in the experiment were cylin-
drical gold single crystals 1 mm indiameter and 5
mm in length with the axis of the cylinder in the
(110) crystallographic direction. The samples
were grown directly as cylinders 1 mm in diam by
the Czochralski technique and cut to length by an
electrolytic layer saw.'® No spark erosion was ap-
plied. The samples were annealedfor 3 h in air at
970°C. The crystals had dislocation densities as
low as 2000/cm? and a residual resistivity of 0.4
nQ cm. Typical Dingle temperatures of the pure
samples were 0.03 K for all orbits.

A new technique has been developed for quench-
ing these high quality and delicate single crystals.®
With this technique it has been possible for the
first time to quench into a single crystal all the
vacancies present at high temperatures in thermal
‘equilibrium. Vacancy losses during the quenching
procedure could be kept negligibly small. The
quenching bath used was a mixture of water and
hydrochloric acid cooled to ~70°C. It is necessary
to keep the bath temperature appreciably below
0°C since clustering of vacancies already starts at
-20°C. This has been shown by positron annihila-
tion measurements on Au quenched from 950°C
with-our technique and subsequently annealed iso-
chronally.’ The beginning of the vacancy cluster-
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FIG.1. Isochronal annealing of the residual electrical
resistivity of a Au single crystal quenched from 915 to
-70°C. After quenching the crystal contained 255 ppm
of vacancies. Big recovery stage centered at 50 °C is
due to the clustering of vacancies in stacking-fault tetra-
hedra. '

ing is hardly visible in the recovery of the residual
electrical resistivity produced by the quenched-in
vacancies. Figure 1 is an isochronal annealing
curve for quenched Au. After quenching the sam-
ple is annealed for 30 min at the temperatures in-
dicated by the circles in Fig. 1 and after each an-
nealing period the residual resistivity Ap is mea-
sured at 4.2 K. The large recovery stage centered
at 50°C is correlated with the clustering of vacan-
cies in stacking-fault tetrahedra.!? In view of the
high quality of the crystals used and in view of the
high quenching rate (3X10%°C/sec) and of the low
bath temperature, it can be assumed that the
quenched-in vacancies were mainly single vacan-
cies. To avoid any clustering of the vacancies dur-
ing the handling following the quench the samples
were built into the sample holder and into the cryo-
stat under liquid nitrogen at 77 K. The residual
resistivity of vacancies in Au was found to be p,
=(1.69+0.20) u cm/at.%. The vacancy concentra-
tion in the samples investigated was determined
from residual resistivity measurements using the
above-quoted conversion factor p,.

IIL. RESULTS

Dingle temperatures have been measured in 11
different Au single crystals for ten extremal cross
sections in the plane {110}. The vacancy concen-
trations ranged from 0 to 274 ppm. Figure 2
shows some typical Dingle plots for a Au sample
containing 255 ppm of vacancies. Great care was
paid to the amplitude measurements. Systematic
errors due to magnetic interaction and to incom-
plete penetration of the modulation field (30 Hz)
into the sample were eliminated. B, N, D, and R
stand for belly, neck, dogsbone, and four-cor-
nered rosette. Numbers without brackets behind
the orbit symbol give the angle by which the mag-
netic field is tilted against the crystallographic
direction [001] in the plane {110}.

Figure 3 shows the Dingle temperatures X* as a
function of the vacancy concentration for four typi-
cal orbits. In addition to the contribution of X*
linear in the vacancy concentration there is a
strong background scattering manifesting itself in
an intercept at'c,=0. The data points at ¢,= 0 have
been obtained from a sample quenched from 505 °C.
At that temperature the concentration of vacancies
in thermal equilibrium is as small as 1.7 ppm.?
This sample showed only very little increase of the
residual resistivity after quenching. We attribute
the intercept at ¢, =0 to the scattering of conduction
electrons at dislocations produced by the quench.

It is well known that the differential thermal con-
traction during the rapid cooling of a crystal cre-
ates lattice strain.’®* The exact amount of disloca-
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FIG.2. Dingle plots for four extremal cross sections in
Au containing 255 ppm of vacancies. Lower abscissa
holds for the B 23, B({111), and D{110) orbits, the upper
for the N(111) orbit. Errors quoted for the Dingle temp-
eratures are rms errors of the least-squares fits.

tions generated by the quench in our samples is
not known. A rough estimate can be obtained in the
following way. Chang and Higgins® observed in Cu
Dingle temperatures of 0.43 K for the neck and
0.08 K for the belly {(111) orbit per 107 disloca-
tions/cm?®. If this value is used for Au as well,
the intercept at ¢, =0 in Fig. 3 would be due to 8

X 10° dislocations/cm?® created during the quench.
Figure 3 clearly demonstrates that it is necessary
to measure the Dingle temperatures as a function
of the vacancy concentration ¢, for separating the
contribution of the vacancies and of the disloca-

tions in X*. Table I givesalistof the Dingle tem-
J
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a
2

a

k, cos 2
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The sums are over cyclic permutations of x, v,
and z. « is the lattice parameter of Au (a=4.0652
A). By means of the nonlinear least-squares fitting
program VAOS5SAD from the Harwell Subroutine Li-
brary the coefficients T,,,, were fitted to the ten
Dingle temperatures in Table I according to Eq.
(3). A five-coefficient representation was chosen
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FIG. 3. Dingle temperatures X* for four extremal
cross sections in Au as a function of the vacancy concen-
tration c¢,. Intercept at c,=0 is attributed to the scatter-
ing of the conduction electrons at dislocations produced
during the quenching process.

peratures per at.% vacancies in Au for the ten or-
bits investigated. The data analyzed include our
preliminary results which were published in an
earlier paper.* The cyclotron masses m/m,
used in the analysis are included in the table.®

IV. DISCUSSION
A. Scattering anisotropy

The measured Dingle temperatures X* are re-
lated to the local values of the scattering rates

1/7*(&) by*

X*m*:-ﬁ—z f__ki_ 1 da (3)
T @m)Pk, S Tk, 7R :

a specifies the position of a representative boint
K, on the cyclotron orbit. The weight factor %2/
(v*+k,) depends on the geometry of the Fermi sur-
face and on the Fermi velocities ¥*. For the for-
mer we have used the five-coefficient symmetrized
Fourier series representation for Au by Halse,®
for the latter we have used our own data 5+ repre-
sentation deduced from cyclotron-mass measure-
ments.® Another Fourier-series representation
with five coefficients was chosen for 1/7*(k),

a
m_)=Tooo+Tuoz cos3 ks cos 2 Ry +T200 Z cosaks

B, +Ts00 Z cosak, cosak, . 4)

¥

in Eq. (4) for 1/7* because it gave the best fit with
the smallest number of coefficients. The values of
the coefficients obtained are given in Table II. The
fitted Dingle temperatures are compared to the
measured data in Table I. Figure 4 is a plot of the
scattering rates 1/7*(K) along some high-symme-
try directions on the Fermi surface. The graph
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TABLE I. Dingle temperatures X* per at.% vacancies
in Au measured for ten extremal cross sections in the
plane {110}. B, R, N, and D stand for belly, four-cor-
nered rosette, neck, and dogsbone.. Numbers without
brackets give the angle in degrees by which the magnetic
field is tilted against the crystallographic direction
[001]. Cyclotron masses used in the analysis are taken
from Ref. 9. Dingle temperatures quoted under T';,,, are
calculated from the five coefficients Fourier-series fit
described in the text [Eq. 4)].

X* (K/at.%)

m¥/m Experiment T imn
B(100) 1.140° 38.3+2.5 38.5
B 10 1.084 37.2+1.,5 37.8
B 23 1.052 38.0+1.3 37.3
B(111) 1.066 38.7+1.1 38.9
B 60 1.071 37.7+2.0 38.7
R(100) 1.014 38.6 +1.0 374
N(111) 0.280 33.8+24 34.2
N 60 0.286 34.0+2.0 34.2
D 85 1.003 38.9+2.5 37.5
D(110) 0.983 37.0+2.2 37.6

confirms what could be seen from the Dingle tem-
peratures in Table I. There is only very little an-
isotropy in 1/7* over the Fermi surface. We will
come back to this point later.

B. Phase-shift analysis

In a recent series of papers,’®~!® Coleridge,
Holzwarth, and Lee have elaborated on a general-
ized phase-shift analysis for the scattering of
Bloch waves at defects in the noble metals. The
scattering is parametrized in terms of Friedel
phase shifts ¢, which depend on the scattering po-
tential of the defect and on backscattering by the
host lattice. L =1, T labels the angular momenta !
and the irreducible representations I" on the cubic
group to the different I (for a defect with cubic en-
vironment). In a nonrelativistic analysis it is

tang = ImXL/(gx - ReXL) ) (5)
where £, is defined by
&= (cotn} - cotny) ™ , (6)

7% and 1} being the phase shifts for the host and the
defect atoms, respectively, in muffin-tin approxi-
mation. The Brillouin-zone intergrals X, describe
how the scattered wave emerging from the defect
is backscattered by the host lattice thereby modify-
ing the amplitude of the Bloch wave in magnitude
and phase inside the defect muffin-tin sphere. The
xz and 7% have been calculated for Au by Holzwarth
and Lee."

The Dingle temperatures are expressed in terms

TABLE II, Values of the coefficients T;,,, for the five
coefficients Fourier-series fit [Eq. (4)]. Quality factor
@ of the fit is smaller than the uncertainty of the experi-
mental data (Table I).

Tlmn
(108 sec™lat. %)
000 17.841717
110 - 41.,220267
200 7.099074
211 5.017729
220 3.055403

1/2
Q= <.;. Z(X;"_XJ{)2> =1.1K/at.%

of the ¢, and &, as'’

X *mpx €, [a,\? w
27 _ . €9 (G Ve in2
"y Cv ka(“) ; Imy, Sy - @

a, is the Bohr radius and €,=¢€%/2a,. c, is the
atomic fraction of vacancies. The W are orbital
averages of the scattering anisotropy of the Lth
lattice harmonics wave. The weight with which the
different L contribute to the total anisotropy (as
measured in the Dingle temperatures) depends on
the host lattice and on the scattering strength of
the defect through the factor sin®¢,/Imy ;. The
host orbital parameters W, have been tabulated in
Ref. 17 for the six stationary orbits (3F/86 =0) in
the plane {110}.

Using our Dingle temperatures for these six or-
bits we have fitted the 1! according to Egs. (5)=(7)
by means of a nonlinear least-squares fitting pro-
gram (VAO5AD Harwell Subroutine Library).
Since the ¢, and n} enter quadratically into the
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FIG. 4. Local values of the scattering rates 1/7* (k)
along some high-symmetry directions on the Fermi sur-
face for the Au-vanancy system. Data are calculated
from Eq. (4) and the coefficients of Table II. Anisotropy
is only very weak.
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TABLE III. Result of the phase shifts fit according to Holzwarth and Lee. Vacancy phase
shifts 7)‘; are fitted to six Dingle temperatures using Eqgs. (5)—(7) in the text. Gold host lattice
is treated nonrelativistically and relativistically. Although the fit is good, it is questionable
if it is very significant because the phase-shift analysis does not take into account the strong
lattice relaxat:on around the vacancy. It is significant that the Friedel sum F is not able to
decide which one of the different combinations of the 'r)’; (which are all compatible with the

Dingle temperatures fit) is the correct one.
plane {110} .)

(BT P denotes the turning point belly in the

Nonrelativistic
n% ny nh F

Relativistic
n% ni n} F

—-0.3813 -1.284
-0.3813 -0.859
-0.3813 -0.345
-0.0278 -0.078
. —=0.3813 +0.080
-0.0278 +0.343

(1) —0.4830 —0.3453
(2) +0.5892 —0.3453
(3) —0.4829 +0.5489
) -04748 —0.3459
(5) +0.5892 +0.5489
(6) +0.5872 —0.3459

—-0.5093 —0.3478 -0.3759 -1.265
+0.6072 -0.3478 -0.3759 -0.821
—0.5317 +0.5448 -0.3715 -0.316
—-0.3542 -0.3440 -0.0219 -0.013
+0.6122 +0.5448 -0.3715 +0.138
+0.5695 —0.3440 -0.0219 +0.362

(7) -0.4748 +0.5497 -0.0278 +0.861 -0.3872 +0.5397 -0.0325 +0.877
(8) +0,5872 +0.5497 -0.0278 +1.282 +0.5780 +0.5397 -0.0325 +1.267
X * Fit

(K/at.%) Experiment Nonrelativistic Relativistic

B(100) 38.3+2.5 38.3 38.3

BTP 38.0+1,3 38.0 38.0

B(111) 38.7+1.1 38.9 38.9

R(100) 38.6 1.0 384 38.4

N(111) 33.8+24 34.2 34.3

D(110) 37.0+2.2 37.0 37.1

Dingle temperatures [Eq. (7)], the fit of the phase
shifts is not unique. The possible combinations
are given in Table III. In many cases it is possible
to decide from the Friedel sum F which one is the
correct combination of phase shifts. This does not
work here, as will be shown later. Indeed, the ap-
plication of the phase-shift analysis [Egs. (5)—(7)]
to the vacancy data presented here is rather prob-
lematic because this theory does not take into ac-
count the relaxation around the scattering center.
But this is especially large for vacancies in Au.

Hertz et al.*® found, from lattice-parameter
changes, a volume change AV/V by vacancies of
AV/V==2.93X10%,/Q cm. Using p,=1.69 uQ cm/
at.%,® and y=1.255, the local volume change for a
vacancy in Au is

AV/V)y, = (1/)(AV/V) = =0.40 . (8)

This means that the effective volume of a vacancy
in Au is not 1 but 0.6 atomic volume. The Friedel
sum

FEZ 2gL¢L (92)

T T
must be equal to

AZ=-1-(aV/V),, =-0.60 . (9b)

g1 is the degeneracy of the representation ,T". It
is obvious from AZ = —0.60 and from the values in
Table III that the Friedel sum is inadequate to de-
cide which one of the combinations for 7} is the
correct one. A relativistic treatment of the gold
host in the phase-shift analysis does not remove
the ambiguity as is shown in Table III. The follow-
ing model calculations of Dingle temperatures for
vacancies in Au and Cu may help to clarify the in-
fluence of the lattice distortion on the scattering
rates.

C. Model potential for vacancies in Au and Cu

We assume a gold lattice of touching muffin-tin
spheres. The radius of the muffin-tin spheres is

Ty =aV 2/4=2.7160q, . (10)

If an Au atom is removed from the lattice and the
relaxation around the vacancy is neglected, then
the potentials of the neighboring atoms superpose
to give a repulsive and rather flat potential in the
vacancy. We therefore assume a constant poten-
tial V,, above the muffin-tin zero V; as a potential
for the vacancy in the defect muffin-tin sphere.
The model is illustrated in Fig. 5 where the poten-
tial for an electron is sketched along an atom row
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FIG. 5. Schematic drawing of the potential energy of
an electron along a direction (100) in the Au lattice, il-
lustrating the model of a vacancy used in the text. Lat-
tice relaxation around the vacancy is not taken into ac-
count. V, is the potential energy in the vacancy above
the muffin-tin zero Vyyp. The Au muffin-tin radius 7y
is 2.7160q,.

(100). The real potential will surely fall off some-
what at the border of the muffin-tin sphere. But
we believe that this is a minor correction com-
pared to the neglection of any relaxation around
the vacancy. The model may therefore help to
show what the influence of the relaxation on the
Dingle temperatures is. The phase shifts 77§ can
be calculated analytically for this potential. Using
the standard expression of the phase shifts in

-10
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FIG. 6. Phase shifts n/ for vacancies in Au and Cu ac-
cording to the model illustrated in Fig. 5 as a function of
the repulsive potential V,. Phase shifts are predomin-
antly s-like.
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terms of the potential and the radial wave func-
tion®® the model gives

253Gy (9) =%y (%) 54 () (11)

i
N = (s 2(3) =% 73 (1)72(9)

y=[@my/T*(Er -V ,)] 1/Z”MT ’
x=[2my/T?) Ep| Y27 yr -

j; and n; are spherical Bessel functions of the
first and second kind.?* Figure 6 is a plot of n’} as
a function of V,, for Au (E;=0.53 Ry). The phase
shifts are predominantly s like, the p-phase shift
being a factor of about 3.5 and the d-phase shift a
factor of about 25 smaller than the s-phase shift.
Using these phase shifts and the relativistic host
parameters by Holzwarth and Lee,'” Dingle tem-
peratures were calculated for six orbits in gold.
The result is shown in Fig. 7. The Dingle temper-
atures X * per at.% vacancies are plotted vs V.
The calculated data are renormalized for electron-
phonon interaction. A nonrelativistic band struc-
ture for the Au lattice does not affect the data ap-
preciably. The following features of Fig. 7 should
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X
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FIG. 7. Dingle temperatures for vacancies in Au cal-
culated for the model shown in Fig. 5. Au lattice is
treated relativistically. The Dingle temperatures for the
belly orbits are about a factor 2 larger than the neck
Dingle temperatures. Nonrelativistic treatment of the Au
lattice does not affect the data appreciably.
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be emphasized. The Dingle temperatures for the
belly and rosette orbits are nearly equal to one
another in agreement with the experimental re-
sults. But they are about a factor of 2 larger than
the neck Dingle temperatures in contrast to the
experimental results. This behavior is nearly in-
dependent of the values of V. If the vacancy po-
tential used in this calculation is realistic, the
discfepancy between theory and experiment has to
be attributed to the lattice distortion around the
vacancy. Furthermore, for a reasonable range of
the values of V, (V,<E), the neck data are more
affected by the lattice relaxation than the belly
data are. Assuming even that only the necks are
affected by the relaxation, a value V,=0.40 Ry
would bring the three belly Dingle temperatures
in good agreement with the experimental results.
The neck value would be too small by a factor of
1.8. The dogsbone and rosette data would be only
somewhat smaller than the experimental results
in accordance with the fact that these orbits cover
both belly and neck parts of the Fermi surface.
The Friedel sum [Eq. (9a)] was calculated for
the model. It is shown in Fig. 8. At V,=0.40 Ry,
F=0.055. The only combination of negative phase
shifts in Table III with a small value for 7}, as
predicted by Fig. 6, is the combination (4). It
gives a Friedel sum of -0.078 in crude agreement
with the value 0.055. But it should be noted that
both values for F are in complete disagreement
with AZ = -0.60 [Eq. (9b)]. Our vacancy model, al-
though crude, gives therefore strong evidence that
the lattice distortion around a vacancy has to be
taken into account in any description of the scat-
tering rates. An empty lattice place creates rela-
tively little neck scattering. The relaxation around
it enhances preferentially the neck scattering, so
that the scattering rates measured in the Dingle
temperatures are rather isotropic. Phase shifts,
Dingle temperatures, and Friedel sums have been
calculated for the same type of vacancy model in
copper with 7y, =2.4072a, and E,=0.55 Ry. The
corresponding data are shown in Figs. 6, 9, and 8.
Although the phase shifts n'} are rather similar, the
Dingle temperatures show much less anisotropy
than in the case of gold. No reliable experimental
Dingle temperatures are available at present time
to be compared with the calculations.

V. CONCLUSIONS

Dingle temperatures for vacancies in Au have
been presented in this paper. It has been shown
how the influence of vacancies and dislocations
produced during the quenching process can be sep-
arated. The scattering rates vary only weakly
over the Fermi surface of gold. The crucial point
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FIG. 8. Friedel sum calculated for the vacancy model
illustrated in Fig. 5 for Au and Cu.
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FIG. 9. Dingle temperatures for vacancies in Cu cal-
culated for the model shown in Fig. 5.
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in the analysis of the data is the influence of lattice
distortion around the vacancy on the scattering
rates. The lattice relaxation will not only alter the
phase shifts n¢ of the defect, but also the back-
s'cattering and the anisotropy of the T matrix. A
general theory for the electron-impurity scattering
with lattice distortion has been given recently by
Lodder.?* Unfortunately, the theory has not yet

, been elaborated to such a degree that the data pre-
sented here could be analyzed in terms of it. An-
other approach to the influence of lattice distortion
around a vacancy on the scattering rates is the
measurement of Fermi surface changes due tc the
vacancies. It is believed that the phase shifts de-

rived from defect-induced Fermi-surface changes
are more accurate because they include a correc-
tion for the uniform expansion of the lattice and be-
cause the anisotropy of the Fermi surface is rela-
tively unaffected by the localized distortion.®*2
Further experimental investigation on vacancies in
gold can help to clarify this point.
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