Comments and Addenda

The section Comments and Addenda is for short communications which are not appropriate for regular articles. It includes only the following types of communications: (1) Comments on papers previously published in The Physical Review or Physical Review Letters. (2) Addenda to papers previously published in The Physical Review or Physical Review Letters, in which the additional information can be presented without the need for writing a complete article. Manuscripts intended for t abstract for information-retrieval purposes. Accepted manuscripts follow the same publication schedule as articles in this journal, and page proofs are sent to authors.

Universal defect behavior in $Nb-X$ superconductors: The lattice-parameter correlation

J. Noolandi

Xerox Research Center of Canada, Mississauga, Ontario, Canada, L5L)J9

L. R. Testardi

Bell Laboratories, Murray Hill, New Jersey 07974 (Received 12 July 1976; revised manuscript received 28 February 1977)

A correlation between the reduction in T_c and the increase in lattice parameter is shown for a wide variety of chemically diverse, stoichiornetric and nonstoichiometric, bulk and film, as-grown, and radiation-damaged niobium-based $A-15$ superconductors. The correlation is discussed in terms of generalized defects. The T_c of nearly defect-free $Nb₃Si$ is also predicted.

From improved bulk preparation methods, versatile film-deposition techniques, and instructive radiation-damage studies there is now emerging a common characteristic in the family of high- T_c , A-15-structure superconductors. This behavior, which has been previously noted in the μ and μ is the mass been previously noted in the literature,¹⁻³ indicates the existence of a generic structural "fault" which is related to some longoutstanding anomalies of these materials, and the elimination of which is crucial to achieving a high superconducting transition temperature. In this note we point out one of the universal features of this behavior by showing the correlation of the reduction in T_c with the increase in lattice parameter which occurs in a wide variety of $Nb - X - A - 15$ superconductors with different chemical composition and physical properties. The data, which have come from numerous laboratories, has all been
published.¹⁻¹³ The existence of the correlation published.¹⁻¹³ The existence of the correlation is not new; it has been previously observed by some workers in individual compounds. Here we demonstrate its generality, and discuss on this basis the shortcomings of existing ideas, and finally use it to predict the T_c that may be ultimately achieved for Nb₃Si.

In Fig. 1 we have reduced numerous data for the superconducting temperature T_c and the lattice parameter a of a wide variety of $A-15$ Nb- X samples to a common plot¹⁴ (see Table I for a description and references). For data where a range of T_c and lattice parameters are available we have plotted the reduction in T_c versus the increase in

the lattice parameter both relative to the best (highest T_n) sample of that investigation or, in a couple of cases, to the best sample reported elsewhere. The dashed line indicates the average behavior only. The negative curvature for small $\Delta a/a_0$ cannot be justified from the scatter in the plot, but appears to be present in several of the more detailed measurements from which the data has been obtained.

Note that in all cases a reduction in T_c is accompanied by an increase in the A-15 phase lattice parameter. Furthermore, within the admittedly parameter. Furthermore, within the admittedly
large scatter of the plot,¹⁵ one finds that the correlation is maintained no matter what the source of the data. From Table I it is seen that the correlation includes bulk samples in various forms, CVD, and a wide variety of sputtered films. For Nb-Ge, where large intentional chemical variations were made, the same behavior is obtained either by changes in stoichimetry or at fixed chemical composition. The existence of the correlation for radiation-damaged samples where the composition is held fixed shows that composition is not the intrinsic parameter which determines the reduction in T_c . The different nature of the X atom in the Nb-X compounds also highlights the "universality" of the behavior. We would like to point out that there are exceptions to the correlation, even among binary Nb-X systems (Nb₃Sn, for example); however the large number of diverse cases where the correlation is satisfied leads us to believe that this is more than just an accident.

15

FIG. 1. Reduction in T_c vs lattice-parameter expansion for the $A-15$ structure Nb-X materials of Table I. See Table I for references to data symbols. Not all data points in the original references have been plotted; however, the points shown are representative of the original results.

Thus, neither stoichiometry (on a macroscopic scale) nor any other identifying characteristic from Table I per se is the underlying cause of the correlation. In view of the radiation-damage experiments it appears that the correlation results

from a generalized defect which is common to the entire family. This explanation has been preentific rainty. This explanation has been pre-
viously advanced,¹⁻³ in a more limited sense, to explain the radiation-damage studies of A-15 superconductors and the resistance ratio versus T_c

TABLE I. Alloys, compositions, and preparation methods for data of Fig. 1.

Symbol	System	Composition	Preparation	References
Δ	NbGe	\sim 3/1	Sputtered films	Gavaler et al. (Ref. 12)
ł	NbGe	$2.6 - 5.5$	Sputtered films	Testardi et al. (Ref. 2)
▲	NbGe	\sim 4/1	Bulk	Carpenter and Searcy (Ref. 4), Poate et al. (Ref. 3)
\circ	NbGe	$\sim3/1$	Sputtered films plus ⁴ He damage	Poate et al. (Ref. 3)
н	NbGe	$2.3 - 5.7$	Sputtered films	Chencinski and Cadieu (Ref. 5)
\Box	NbGe	\sim 3/1	CVD	Newkirk et al. (Ref. 6)
⊠	NbGe	$\sim3/1$	Sputtered films	Ghosh et al. $(Ref. 7)$
\triangledown	Nb ₃ SnH _r	$x \sim 0 - 0.6$	Hydrogenated bulk	Vieland et al. (Ref. 13)
●	NbSn	$\sim 3/1$	Bulk tape plus neutron damage	Bett $(Ref. 8)$
⊗	NbGa	$\sim3/1$	Bulk	Johnson and Douglas (Ref. 9)
$\ddot{}$	NbGa	$\sim 3/1$	Quenched and annealed, CVD, arc melted and annealed, I_2 transport	Webb and Englehardt (Ref. 10)
v	$Nb3Al0.75Ge0.25$		High-rate sputtered film	Dahlgren (Ref. 11)
\times	NbAl	\sim 3/1	Bulk plus neutron damage	Sweedler and Cox (Ref. 1)

5463

correlation of Nb-Ge films.

Qne type of defect in these materials, which has been studied by a number of workers, is the antistructure defect in which A atoms occupy B sites and vice versa, while retaining the original A_3B structure. Sweedler and Cox' have recently used this model to account, with qualitative success, for the lattice-parameter expansion of neutronirradiated Nb₃Al. Although we believe that such defects will accompany a general type of lattice imperfection, an explanation based on antistructure defects alone is not consistent with all of the imperfection, an explanation based on antistructure defects alone is not consistent with all of the existing data.^{2,3} In particular T_c does not change with the Nb/Ge ratio in the way expected if the integrity of the Nb atom chains is important for high T_{c} ² and x-ray studies of Nb-Ge films subjected to ⁴He radiation damage show that the intensity of the high-angle reflection lines become very weak,³ contrary to the expected result for a perfect lattice with only antistructure defects.

The physical nature of the defect may be, as The physical nature of the defect may be, as
has been suggested from other evidence, $3,16$ the loss of the lattice symmetry as a result of microscopic strains on the scale of the unit cell. The exact microscopic nature of the defect thus may be of secondary importance and perhaps, not even identical for all the samples studied.

The correlation shown in Fig. 1 also shows that the use of the Geller radii to predict the lattice parameters of A-15 compounds entails an assumption about the perfection of the structure which cannot be related to nonstoichiometry alone. For example, "good" (high T_o) Nb₃Sn (bulk) and Nb₃Ge

(film) have lattice parameters $a_0 \approx 5.29$ Å and \simeq 5.14 Å, respectively, (see Table I for references). When bulk "Nb₂Ge" was found to have a_0 \simeq 5.17 Å the expansion $\Delta a \simeq 0.03$ Å was assumed to be the result of nonstoichiometry. However, Fig. 1 shows that stoichiometric but "bad" (low T_c) $Nb_{3}Sn$ and $Nb_{3}Ge$ both have lattice-parameter expansions of about 0.02-0.03 A. Thus, deviations from the predicted Geller lattice parameters may result as readily from defects, even at fixed chemical composition, as from nonstoichiometry.

One application of Fig. 1 is to predict the T_e of nearly-defect-free Nb, Si. This can be done by assuming the correlation to hold for this compound, and by noting that the Geller'" (and Johnson and Douglass¹⁸) estimates of the lattice parameters (in the low-defect state) are sufficiently accurate for intercomparisons. For Nb₂Si the predicted a_0 is \approx 5.08 Å, while Hammond and Hazra¹⁹ find a_0 \simeq 5.17 Å in a sample having $T_c \simeq 9$ K. Thus, with $\Delta a/a_0 \simeq 1.8\%$, Fig. 1 predicts that nearly-defectfree Nb₃Si will have a T_c about 22 K higher than that observed in the data-point sample. This prethat observed in the data-point sample. This pre-
diction of a $T_c \approx 30$ K,²⁰ based on the lattice param eter versus ΔT_c correlation, may be compared with other predictions $(T_c \sim 25-38 \text{ K})$ obtained by with other predictions $(T_c \sim 25-38 \text{ K})$ obtained b
different arguments,²¹ and a recent experiment
report by Pan *et al.*²² who obtained $T_c \approx 19 \text{ K}$. report by Pan et al.²² who obtained $T_c \simeq 19$ K.

ACKNOWLEDGMENTS

We wish to thank C. M. Varma and A. R. Sweedler for discussions.

- 1 A. R. Sweedler and D. E. Cox, Phys. Rev. B 12, 147 (1975).
- 2L. B. Testardi, R. L. Meek, J. M. Poate, W. A. Boyer, A. R. Storm, J. H. Wernick, Phys. Rev. B 11, 4304 (1975).
- 3J. M. Poate, L. B. Testardi, A. R. Storm, W. H. Augustyniak, Phys. Rev. Lett. 35, 1290 (1975).
- 4J. H. Carpenter and A. W. Searcy, J. Am. Chem. Soc.
- 78, 2079 (1956).
⁵N. Chencinski and F. J. Cadieu, J. Low Temp. Phys. . 16, 507 (1974).
- $6L$. R. Newkirk, F. A. Valencia, A. L. Giorgi, E. G. Szklarz, T. C. Wallace, IEEE Trans. Magn. MAO-11, 221 (1975).
- YA. K. Ghosh, L. Pendrys, D. H. Douglass, IEEE Trans. Magn. MAG-ll, 225 (1975).
- ⁸R. Bett, Cryogenics 14, 361 (1974).
- ${}^{9}G$. R. Johnson, D. H. Douglass, J. Low Temp. Phys. 14, 575 (1974).
- 10 G. W. Webb and J. J. Engelhardt, IEEE Trans. Magn. MAG-11, 208 (1975).
- ¹¹S. Dahlgren, IEEE Trans. Magn. MAG-11, 217 (1975).
- '2J. B. Gavaler, M. A. Janocko, C. K. Jones, J. Appl. Phys. 45, 3009 (1974).
- ¹³L. J. Vieland, A. W. Wicklund, and J. G. White, Phys. Bev. 8 ll, 3311 (1975).
- 14 The correlation is mainly derived for binary Nb-X systems, although we have included data pojnts for two ternary compositions. In general, however, addition of a third element can lead to large changes in the lattice parameter due to chemical effects (Vegard's law), which will alter the correlation shown in Fig. 1.
- 15 Errors in T_c for this plot are usually dominated by the width of the transition, typically 1—² K. Errors in $\Delta a/a_0$ have a much greater spread, depending on experiments, and are relatively larger. On the average they are very roughly comparable to the scatter in the plot.
- 16 L. R. Testardi, Solid State Commun. 17, 871 (1975).
- 17 S. Geller, Acta. Crystallogr. $9, 885$ (1956).
- 18 G. R. Johnson and D. H. Douglass, J. Low Temp. Phys. 14, 565 (1974).
- $^{19}R.$ H. Hammond and S. Hazra, in Low Temperature Physics-LT13, edited by K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel (Plenum, New York, 1974), p. 465.
- ²⁰Although it is difficult to make an accurate extrapolation of the correlation to Nb₃Si, Fig. 1 clearly shows

that $-\Delta T_c$ will be greater than ~16 K, giving $T_c \ge 25$ K. 21 D. Dew-Hughes and V. G. Rivlin, Nature 250, 723

(1974); S. Geller, Appl. Phys. 7, 322 (1975); B. H. Hammond, IEEE Trans. Magn. MAG-11, 201 (1975).

 $^{22}V.$ M. Pan, V. P. Alekseevskii, A. G. Popov, Yu. I. Beletskii, L. M. Yupko, and V. V. Yarosh, Zh. Eksp. Teor. Fix. Pis'ma Red. 21, 494 (1975) |JETP Lett. 21, 228 (1975)]. These authors report $a_0 \sim 5.03$ Å for their sample of Nb₃Si, however the difficulty of sample preparation led to poor quality x-ray patterns, and considerable uncertainty in the value for a_0 .