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Ising model with antiferromagnetic next-nearest-neighbor coupling. V.
Mean-field model and disorder pointse

John Stephenson
Physics Department, Imperial College of Science arid Technology, London SW'7, England ~
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A detailed account is given of the calculation of disorder points within the mean-field model on a variety of
one-, two-, and three-dimensional Ising lattices. Comparison with exact solutions is made when feasible, and
the limitations of the approximate method discussed.

I. INTRODUCTION

'Qlhen a competing antiferromagnetic next-nearest-
neighbor interaction is present in an Ising model,
the pair correlation function may become oscil-
latory at high temperatures, above a precisely
located temperature TD, the disorder point. For
soluble models in one and two dimensions, ' ' the
dependence of the disorder point on the relative
strengths of the nearest-neighbor (nn) and next-
nearest-neighbor (nnn) interactions may be de-
termined explicitly. In three dimensions, where
no exact solutions are available, we may resort to
models, such as the mean-field model and the
Bethe model which approximate the Ising model
at high temperatures. The "mean-field" approxi-
mation has been used by Enting4 to estimate disor-
der points for the spin-phonon interaction model
of a compressible Ising magnet, as developed by
Bolton and Lee. ' Previously, as reported briefly
elsewhere, the same approximate method has been
used by the present author to estimate disorder
points on Ising lattices. '

It is the purpose of the present paper to give
details of the calculation of disorder points for
the mean-field model on a variety of lattices in
one, two, and three dimensions. We begin with
the definition of a disorder point, and outline its
calculation from the poles of the Fourier trans-
form of the pair correlation function with special
reference to the mean-field model. In the main
body of the paper, we give details of the calcula-
tion (and methods) for a variety of Ising lattices,
Secs. IV-VIII. A summary of our results is con-
tained essentially in Table I.

II. DEFINITION AND CALCULATION OF THE
DISORDER POINT

In the situation where the nn interaction de-
termines the ground state, but a competing anti-
ferromagnetic nnn interaction is present, pair
correlations along a nnn axis will be antiferro-
magnetic at sufficiently high temperatures, and

ferromagnetic at sufficiently low temperatures.
Let To(r) be the lowest temperature at which the
pair correlation I"(r) vanishes. Then the disorder
point is the large spin separation limit of T,(r).
Explicitly,

TD = lim inf(TO(r)) .
1 I I ~a)

(2.1)

To locate T~, we observe that in the disordered
phase the decay of pair correlations with increas-
ing spin separation is dominated by an exponential
factor e "", where ~ is the reciprocal range of
order. Following Fisher and Burford, ' we may
determine z in a direction e (unit vector) by

a =( Imq(e, T)~, (2.2)

where qe is the solution of

I/g(q, T) =0, (2.3)

which lies closest to the real axis. That is, q is
located via the poles of the relative magnetic scat-
tering intensity y, which, in turn, is equal to the
Fourier transform of the pair correlation function
I'(r). When q is pure imaginary, the pair corre-
lation decays monotonically, as in normal Orn-
stein-Zernike theory. But if q has a nonzero real
part, an oscillatory factor modifies the exponential
decay. The disorder point is located by the tem-
perature at which q leaves the imaginary axis and
acquires a nonzero real part. At higher tempera-
tures q is complex, and the correlation decay is
oscillatory exponential in appropriate directions e.

For any fixed direction e, the lowest tempera-
ture at which q acquires a nonzero real part will
be denoted by T,. The lowest value of T, over all
directions, is equal to TD.

III. . MEAN-FIELD MODEL

The mean-field model can be derived as an ap-
proximation to the spin--,' Ising model, or to the
Heisenberg model, or can be considered as a mod-
el with "weak long-range" interactions in its own
right. The relevant scattering intensity, calcu-
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lated via the Fourier transform of the pair corre-
lation function, 4 is given by

I/y(q, T) =1 —K(q), (3.1)

where K(q) is the lattice I'ourier transform of

K(r) =j(r)/k, T, (3.2)

p-=q.j./q, I j,l, (3.3)

q„q2 being coordination numbers for nn and nnn

bonds, and that the mean-field value of the criti-
cal temperature is given by

k, T/q, l j, l
=1+p. (3.4)

Throughout our discussion, p is negative, and J,
is antiferromagnetic:

j(r) being the interaction energy between spins
separated by a lattice vector r. To first order in

1/T, this is in exact agreement with the Ising mod-
el expression for }t(q, T). It is straightforward to
calculate K(q) for various lattices, and the re-
quired formulas have already been listed in Table
III of the preceding paper. ' By solving the equa-
tion 1/}t = 0 for specific lattice directions e, we
can derive mean-field valuesfor T, and hence for
TD ~

%e note here that it is convenient to use the
variable

the pair correlation to oscillate in sign at suffi-
ciently high temperatures. Also f'=-,'. Now

1/y =. 1 —[2(K,+K,)+4(K,+2K, ) cosfqa

+ 2K, cos2fqa]

and vanishes when

cosfqa =[-(I+p)+l zl]/p,
with the discriminant 6 given by

A'= I+p+p'+ (3p/q, K, ) .

(4.3)

(4.4)

(4.5)

The + sign is needed here. The cosine is unity
at T, and increases with temperature until the
discriminant becomes negative. This occurs at
a temperature

kBTl/jl=( 2/P-) (I+P+P')
--2/p at small p .

It is trivial to verify that T,& T„since
k~(T, —T,)/j, = (-2/p) (1+2p) &0.

(4.6)

(4.7)

Also, at T„cosfqa = —(1+p)/p, which is & 1 when
—

~ ~p &0. Ty equals T, when p = ——,', and increases
with p in the range ——, &p & 0. Pair correlations in the
[110]direction above T, will be oscillatory. The
dependence of T, on the interaction ratio is graphed
in Fig. 1.

pc &p&0~ (3.5)
C. [111]direction

where p, is the critical ratio above which the nn
interaction determines the ground state. For cubic
lattices the critical value of p is ——,'.'

IV. SIMPLE CUBIC LATTICE, sc(1,2)

A. [100] direction

Now along a cube body diagonal, connecting
third-nearest-neighbor lattice sites, e =(i+ j+k)/
v 3, andf'=

1/y = 1 —[6K,+ 6K, cosfqa + 6K, cos2fqa], (4.8)

which vanishes when

Along a cube axis, we may set e = i (x axis) with
projection factor f equal to unity. ' The nearest-
neighbor distance a, is equal to the cube side a.
The reciprocal scattering intensity is then

cosfqa =(-I+l n~)/2p,

with

a'= 1+ (4p/q, K, ),

(4.9)

(4.10)

cosfqa = [(3/q~K~) —2 —p] /(1+ 2p) . (4.2)

1/g =1 —[4(K,+K,)+2(K,+4K, ) cosfqa] (4.1)

and vanishes when

and again the "+"sign is needed. At T, the cosine
is unity, and increases with temperature until the
discriminant becomes negative. This occurs at a
temperature which will be our best candidate for
the disorder point TD:

At the critical temyerature T„ the cosine is unity,
and at high temperatures remains real, and is
greater than unity, so q is pure imaginary. In
this direction T, =~. Clearly p must be restricted
to the range p&- —,', which it must in any case if
the nn interaction is to determine the ground state.

keTD/j, = -3/2p.

It is trivial to verify that T,&TD & T, :

ks (T, —Tn) /j, = (-1/2p) (1+2p) ~
& 0,

k~ (Tz —T,)/jz ——(-3/2p) (1+2p)~& 0 .

(4.11)

(4.12)

B. [110]direction

Next, along a cube face diagonal e = (i+ j )/v 2,
which is a nnn axis (in the x-y plane), we expect

T„TD, and T, are all equal when p = ——,', and
increase with p in the range —

2 ~p&0. At TD,
cosfqa = -1/2p which is & 1 when —

~ ~p & 0.
%e should mention here that on all the other
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1/y = 1 —[2K,(1+cosfqa + cos2fqa)

+ 2K2(3 cosfqa + 2 cos2fqa + cos3fqa)] .

(4.13)
The values of cosfqa at which 1/}t vanishes satisfy
a cubic equation. If we set

x =2cosfqa and p, =1/p, (4.14)

then the cubic for x is

1/K2=x'+2(1+ p) x2+2px —4. (4.15)

The condition for a double root, - at which a pair
of real roots coalesce in order to change over to
a complex pair, can easily be extracted via the
standard form for a cubic

y +Py+q=0,

with discriminant

4p'+ 27q'.

(4.16)

(4.17)

-0.5 -0.4 -Q.3

Equating this discriminant to zero yields the de-
sired expression for T,:

ks Tj /Jg = (2/27p) (4p, + 3p, + 3p. —23 —
i 6 i ) q

(4.18)

with

b, '=2(2p. '+ p, +2)'. (4.19)

FIG. 1. Graphs of disorder-point estimates for the
[111], [110], and [210] directions of the simple cubic
lattice sc(1, 2), .against interaction ratio p.

,:,This expression for T, is plotted in Fig. 1 as a
function of p. When p = ——,', T, and T, are equal.

For small p, T, has a quadratic dependence on

1/p,

I,T, /J, -16/27p'. (4.20)

lattices considered, the most likely candidate
for the disorder point comes from analysis of X

along the nnn-axis. The simple cubic lattice is an
exception, in that a better candidate comes from
the third-nearest-neighbor axis. Spins in the [111]
direction can be connected by a chain of alternate
J, and J, bonds, and the leading term in the pair
correlation contains a factor (J',J', )", so the cor-
relation oscillates at sufficiently high tempera-
tures. (Here n =i ri/v 3a.) We should investigate
all other lattice directions in order to find out
which one yields the lowest temperature T,. This
general problem will not be tackled here. . Instead
we consider just one more direction in order to
illustrate techniques applicable to equations of
cubic and higher degree.

D. [210] direction

In the [210] direction, the leading term in the
pair correlation function again contains an oscil-
latory factor (J,J,)". Now e =(2i+j)/v 5 and f'=—', :

This result may be obtained from an approximate
treatment of the cubic equation, using a technique
which is alamo applicable to higher-degree equa-
tions. To find the dependence of T, on the inter-
action ratio p, when p is very small, we seek the
large-x solution of the equation which determines
the condition for a double root. Differentiating,
the right-hand side of (4.15), equating the result
to zero, and retaining leading terms of order x'
and px, one gets x-(-—, p, ). Resubstitution in

(4.15), again keeping only leading terms, yields
(4.20).

k~ TD/J, --3/2p (4.21)

E. Results for simple cubic lattice

The temperatures above which pair correlations
in the [110], [111],and [210] directions become
oscillatory are plotted against p in Fig. 1, with
the [ill] direction yielding the estimate for TD.
At small nnn interaction strengths, TD is large,
and we surmise that the asymptotic form
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will be in exact agreement with the (unknown)
Ising-model value. Similarly, for small p along
the [110]direction, k~T, /J;-2/p.

V. SOME OTHER THREE-DIMENSIONAL LATTICES

We shall limit our discussion of other three-
(and also two-) dimensional lattices to points of
interest pertinent to the specific lattice and di-
rections under consideration. The relevant
formulas for I/y can easily be obtained via (3.1),
taking K(q) from Table III of the preceding paper. '
A summary of disorder point estimates is pre-
sented in Table I.

B. Face-centered-cubic lattice, fcc(1,2)

The disorder-point estimate comes from the
[100] nnn direction, and is

T /J =( 2/P) (1 2P 2P ) ~ (5.2)

There are no disorder-point estimates from the
[110]and [111]directions. In the [310] direction
the high-temperature form of the pair correlation
function contains an oscillatory factor (J,J', )". The
disorder-point estimate, obtained by treating the
sextic for cosfqa, by the approximate method of
Sec. IVD, is

(5.3)

for small p, which is larger than T~.

C. Face-centered-cubic lattice as body-centered-cubic lattice
plus simple quadratic layers

This lattice is of interest in connection with the
problem of antiferromagnetism in the fcc lattice. '
A bcc lattice with interaction J, is augmented by

A. Body-centered-cubic lattice, bcc(1,2)

The disorder-point estimate comes from the
[100] nnn direction. Equating to zero the dis-
criminant of the quadratic equation for cosfqa„
we obtain

(5.1)

Pair correlations in the [110]and [111]directions
are ferromagnetic for all T&T, . In the [110]di-
rection the leading terms in the pair correlation
function are like K', " and K', ", which are always
positive. In the [111]direction the discriminant
of the relevant cubic for cosfqa, can vanish, but
does so at a temperature which lies below T, when

p is in the physical range —
2 ap&0. In the [311]

direction the leading term in the pair correlation
contains a factor (Z,J', )", and there will be an
estimate T, for the disorder point. Analysis of
the relevant sextic shows that T,»TD.

VI. SOME TWO-DIMENSIONAL LATTICES

A. Simple quadratic lattice, sq(1,2)

The disorder-point estimate for this unsolved
two-dimensional lattice comes from the [11]nnn

direction, and is

(6.1)

Another estimate from the [21] direction comes
from solving a cubic for cosfqa, (Table I). Graphs
of these TD estimates are presented in Fig. 2.

B. Triangular lattice, t(1,2)

We orient the lattice relative to Cartesian axes
as in Fig. 4(d) of the preceding paper. ' From the
nnn axis, e = j (y axis) we obtain the disorder-point
estimate

k~TD/J, = (-1/p) (1'+ 3p') . (6.2)

When p =--,', T, and T~ are equal, and this ex-
pression for TD is valid only for —3 & p&0, even
though p, = ——,

' for the Ising model. Along the nn
axis, e = i (x axis) the discriminant of the cubic
for cos-,'qa, vanishes at a temperature T, which
satisfies Tj&T~&T, in the range ——,

'
& p&0, with

equality holding when p = ——', .

C. Union-jack lattice

Now we turn to some soluble one- and two-
dimensional models, for which the disorder point
may be located exactly. This will serve as a test
for the validity of the mean-field-theory results
when J, is small and T~ is~at a high temperature.

By inspection of the lattice, Fig. 4(e) of the pre-
ceding paper, we see that nnn bonds spread out
only from alternate lattice sites. Accordingly
we take the mean-field calculation for sq (1, 2) and
replace J, by —', J2 everywhere to obtain the cor

simple quadratic layers of nnn bonds with inter-
action J,. The extra bonds are those sides of the
basic cubic lattice which lie parallel to the x-y
plane. This lattice can be expanded parallel to
the z axj.s to become a regular fcc lattice, with-
out altering the disorder point estimate. We
treat the bcc lattice as regular and periodic
with cube side a. The nn bond has length

a, = (-,' v 3) a, and the nnn quadratic layer bonds have
length a. The coordination numbers are q, =8 and

q, =4. The disorder-point estimate comes from
the [100] nnn direction, in which the discriminant
of the quadratic for cosfqa, vanishes when

(5.4)

A higher estimate is obtained from the [210] direc-
tion, with T, —1/-p'»TD for small p.
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responding result for the union-jack lattice.

a, T,/J, = 1-/p, (6.3)

with q, =4 and q, =2 (average coordination number).
This can be compared with the exact result'

tanh 2K, + (tanh 2K, )'= 0,
I

which at high temperatures, for small J2, takes
the form

(6 4)

2K + 4K'-0 (6.5)

whence the validity of (6.3) for small J', is con-
firmed.

D. Triangular lattice

The exactly soluble Ising triangular lattice may
be regarded as a nn square lattice with interaction
Ji plus a s ingle set of diagonal bonds J,. Figures
4(d) and 4(f) of the preceding paper illustrate the
triangular lattice in its regular triangular form
and in the distorted square lattice form. The form
of y depends on the shape of the lattice. The dis-
order-point estimate is the same for both forms

of the triangular lattice, since it depends only on
the connectivity of the lattice and not on its geo-
metrical shape. In the nnn directions we obtain
(different) quadratic equations for cosfqa, (and
different f values), but the condition that the dis-
criminants vanish yields the same estimate for
the disorder point:

k~ TD/J, = (-1/2p) (1+8p2) . (6.6)

Along nn directions, correlations are ferromag-
netic.

For the general triangular lattice (in triangular
shape) with three interactions J„J„andJ, along
the three lattice axes, one readily obtains, paral-
lel to the J, direction,

1/y = 1 —[2(K, +K2) cosqa, + 2K, cos2qa, ],
(6.7)

which reduces correctly on equating appropriate
pairs of interactions to J„and calling the remain-
ing interaction J,. In general, if J, is the anti-
ferromagnetic interaction, then the disorder point
is given by the vanishing of the discriminant, so that

(K, +K, )2+4K,(1+2K,) =0.

When J, is small, (6.8) becomes

—K-—'(K +K )

(6.8)

(6.9)

This should be compared with the exact result"

tanhKi tanh K2 + tanhK3 = 0
~ (6.10)

which for small J, at high temperatures takes the
form

-K-KK, (6.11)

which differs from the mean-field result (6.9).
This is an unsatisfactory property of the mean-
field model.

VII. ONE-DIMENSIONAL LATTICES

A. 1c(1,2), mean-field formula for X

For the linear chain with all nnn interactions,
lc (1, 2), Fig. 4(a), Ref. 8,

(7.1)1/it. = 1-[2K,cosqa+2K, cos2qa],

with e =i, parallel to the chain along the x axis.
The disorder point is at

A~TD/J, = (-1/4p) (1+8p'),
with p& ——,

' so T~&T,. For small p,

(7.2)

-0.5 -0.4 -0.5 -0.2 -O. I -0.0
p =q,&,/q, lJ, I

FIG. 2. Graphs of disorder-point estimates for the
[11] and [21] directions of the simple quadratic (square)
lattice sq(l, 2), against interaction ratio p.

k~ T~/J, 1/4p, -- (7.3)

tanhK, + (tanh —,'K, )'=0. (7.4)

in agreement with the high-temperature small-p
form of the exact formula locating TD, ""
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It is of interest to note that the mean-field model
is also an approximation to the Heisenberg model.
In one dimension, the classical spin (Heisenberg)
model undergoes a change in the nature of its
ground state at precisely the ratio p, = —~. For
p, & p&0, spin correlations show a "spiral" struc-
ture. " A similar behavior occurs for the Heisen-
berg chain with antiferromagnetic nnn interactions,
wi'th apparently the same critical value for p, ."'"

N-1+ 2K, cosq -K, cos2q, (7.12)

On the other hand, expansion of g to order 1/T
yields

(7.11)

as derived previously from direct inspection of the
correlation decay. ' Expansion of the numerator
to order 1/T yields

X-1+2K, cosq+K, cos2q+ ~ ~ ~, (7.13)
B. lca(1,2), mean-field formula for X

For the linear chain with alternate nnn interac-
tions, Fig. 4(b), Ref. 8, we replace J, by —,

' J, in
all the formulas for lc (1,2), and use an average
coordination number q, =1, so for small p,

ke TD/j, -- 1/4p . (V. 5)

This is now in disagreement with the high-tem-
perature small-p form of the exact formula for TD

tanhK, + (tanhK, )' = 0. (7.6)

The cause of this discrepancy is discussed below.

C. Exact and approximate formulas for X

The exact expression for the Fourier transform
of the pair correlation function for these one-
dimensional models takes the form' "

1t =N/D. (7.V)

D. lca(1,2), exact formula for X

Reference to the preceding payer' shows that
the exact denominator for X is, putting a =1,

D = 1-2x cos2q+x2,

where

(V.8)

In the case of the lca (1,2), the numerator con-
tains terms in 1/T, whereas for lc (1,2) the first
temperature-dependent term is of order (1/T)'
The reciprocal range of order and the disorder
point can be extracted correctly from the require-
ment that the denominator vanish, to give X a
simple pole. But, in the mean-field model, all
terms in 1/T are collected together in the de-
nominator, so setting 1/y =0 gives a wrong result
for the lca(1, 2). Of course, to order 1/T, there
is agreement between the expansions of g from the
mean-field and the exact formulas.

which is the same as one obtains from the mean-
field expression.

x = p,, /X, , y = p, /X, .
Now X has simple poles when

e" =x, 1/x, y, or 1/y .

(7.15}

(7.16)

The solution for q with the smallest imaginary
part is then

q = i ln(1/x), (7.1V)

so the reciprocal range of order below T~ is"
x = ln(1/x) (7.18)

as expected. Above T~, x and y become complex,
and [x[ =~y~. We may set p, , =pe

"e so

q =i ln(A. +/g) + e. (V. 19)

q acquires a real part at TD. In previously intro-
duced notation, "we have

(7.20)

with 8 (and 6') vanishing at T~.
The expansion of the numerator N in powers of

1/T contains no terms of first order, 1/T. There-
fore the denominator D and the mean-field expres-
sion for g are in agreement to first order in 1/T
Consequently, the mean-field disorder-point esti-
mate is in agreement with the high-temperature
small-p form of the exact result, as discussed
earlier.

E. lc(1,2), exact formula for X

Again, reference to the preceding paper' shows
that the exact denominator for y is

D = (1 - 2x cosq+x~) (1 —2y cosq+y~), (7.14)

with x and y defined as in (5.V}, and (5.8} of Ref. 8:

cosh2Ki —e
cosh2K, + e ~2

so the solution of 1/g = 0 is

cos2q= —,'(x+x ') or x=e"'.
The reciprocal range of order is now

i(7.9)

(V. 10)

VIH. EFFECTS OF CHANGING THE SHAPE OF A LATTICE

The lattices discussed in this paper can be'
drawn in a variety of different shapes. For ex-
ample, consider the triangular lattice of Sec. VID.
Any reasonable formula for the disorder point
must of course be unaltered by a change in the
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shape of a lattice, since disorder points, arid

critical points too, depend only on the connec-
tivity and interactions within a lattice structure.
On the other hand, y can undergo changes in form
when a lattice is distorted. The question arises
as to how the poles of X move, and how, neverthe-
less, the disorder-point estimates remain the
same, under lattice distortion.

In general,

(8.1)

Now I'( r) can be expressed in such a way that the
actual vector r is no longer explicitly involved,
but only the connectivity of the lattice points is
important. Suppose for a given wave vector q =qe
we alter all the lattice vectors r in such a way that

r-r+X(r) e~, (8.2)

where A(r) depends on r, but e is perpendicular
to e, so all the lattice displacements are perpen-
dicular to the wave vector. Then q e~ = 0 and X

is unaltered by the lattice distortion for the par-
ticular wave vector q under consideration. In

particular, estimates of TD from the condition
I/y = 0 in the direction e will be unchanged.

B. Triangular lattice

As discussed in Sec. VID, we wish to consider
a distorted form of triangular lattice which is
square in shape, as in Figs. 4(d) and 4(f) of the
preceding paper. %hen q is parallel to a nnn di-
agonal axis with interaction J„we obtain the dis-
order point estimate of Sec. VID, (6.6). The dis-
tortion may be achieved by (relative) movement
of all lattice sites in a direction perpendicular to
e, thereby altering the nn distances a, but keeping

A. Linear chain, lc(1,2)

Heferring to Fig. 4(a) of the preceding paper,
we take e = i parallel to the chain, and distort the
chain in a perpendicular direction (j). The pro-
jections of nn and nnn lattice vectors a, and a, onto
e are unaltered, and X is unchanged.

a, unchanged. X is unaltered by this process
(Table III, Hef. 8, entries under t, triangular
lattice, in nnn directions). Similarly if e is per-
pendicular to a nnn lattice axis, then a distortion
can again be made from square to triangular form.
Qn the other hand, when e is parallel to the x axis,
the expressions for y differ (Table III, Hef. 8,
entries under t, in nn directions with e = i).

C. Face-centered cubic

The face-centered-cubic lattice as a body-cen-
tered-cubic lattice plus simple quadratic (square)
lattice layers has been discussed in Sec. VII. If
the nn bcc distance is a„ then the nnn sq lattice
side is a2 = (2/W3) a,. A distortion parallel to the
z axis, k direction, converts the lattice to a regu-
lar fcc lattice with all bond lengths equal. All the
bcc bonds of length a, are stretched by the same
amount. The disorder-point estimates from direc-
tions of the wave vector lying in the x-y plane are
unaffected by this lattice distortion.

IX. CONCLUSION

A summary of our disorder-point calculations is
presented in Table I. The disorder point has been
obtained by locating the temperature at which the
reciprocal range of order becomes complex. For
the mean-field model, the range of order is given
by the zeros of 1/g in (3.1). Even though the mean-
field-model expression for I/y is in exact agree-
ment with the Ising-model to order 1/7, it does not
necessarily follow that the zeros of I/y are in such
agreement. Therefore, the mean-field values of
the disorder point are not necessarily in exact
agreement with the Ising-model values when p
has small negative values. However, fortuitous
agreement is obtained for some exactly soluble
Ising lattices, triangular, union-jack, and lc (1,2),
but not for the lca(1, 2), for reasons given in Sec.
VII. It is to be hoped, therefore, that a more
reliable way of estimating the small-p high-tem-
perature behavior of TD can be devised, possibly
via a direct analysis of power series expansions
for the correlation functions themselves.
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