Ising model with antiferromagnetic next-nearest-neighbor coupling. V. Mean-field model and disorder points*

John Stephenson

Physics Department, Imperial College of Science and Technology, London SW7, England[†] (Received 12 January 1976)

A detailed account is given of the calculation of disorder points within the mean-field model on a variety of one-, two-, and three-dimensional Ising lattices. Comparison with exact solutions is made when feasible, and the limitations of the approximate method discussed.

I. INTRODUCTION

When a competing antiferromagnetic next-nearestneighbor interaction is present in an Ising model, the pair correlation function may become oscillatory at high temperatures, above a precisely located temperature T_D , the disorder point. For soluble models in one and two dimensions,¹⁻³ the dependence of the disorder point on the relative strengths of the nearest-neighbor (nn) and nextnearest-neighbor (nnn) interactions may be determined explicitly. In three dimensions, where no exact solutions are available, we may resort to models, such as the mean-field model and the Bethe model which approximate the Ising model at high temperatures. The "mean-field" approximation has been used by Enting⁴ to estimate disorder points for the spin-phonon interaction model of a compressible Ising magnet, as developed by Bolton and Lee.⁵ Previously, as reported briefly elsewhere, the same approximate method has been used by the present author to estimate disorder points on Ising lattices.⁶

It is the purpose of the present paper to give details of the calculation of disorder points for the mean-field model on a variety of lattices in one, two, and three dimensions. We begin with the definition of a disorder point, and outline its calculation from the poles of the Fourier transform of the pair correlation function with special reference to the mean-field model. In the main body of the paper, we give details of the calculation (and methods) for a variety of Ising lattices, Secs. IV-VIII. A summary of our results is contained essentially in Table I.

II. DEFINITION AND CALCULATION OF THE DISORDER POINT

In the situation where the nn interaction determines the ground state, but a competing antiferromagnetic nnn interaction is present, pair correlations along a nnn axis will be antiferromagnetic at sufficiently high temperatures, and ferromagnetic at sufficiently low temperatures. Let $T_0(\bar{r})$ be the lowest temperature at which the pair correlation $\Gamma(\bar{r})$ vanishes. Then the disorder point is the large spin separation limit of $T_0(\bar{r})$. Explicitly,

$$T_{D} = \liminf_{|\vec{\mathbf{r}}| \to \infty} \{ T_{0}(\vec{\mathbf{r}}) \}.$$
(2.1)

To locate T_D , we observe that in the disordered phase the decay of pair correlations with increasing spin separation is dominated by an exponential factor $e^{-\kappa r}$, where κ is the reciprocal range of order. Following Fisher and Burford,⁷ we may determine κ in a direction $\tilde{\mathbf{e}}$ (unit vector) by

$$\kappa = |\operatorname{Im} q(\mathbf{\bar{e}}, T)|, \qquad (2.2)$$

where $q \mathbf{\bar{e}}$ is the solution of

$$1/\chi(\bar{q},T) = 0$$
, (2.3)

which lies closest to the real axis. That is, q is located via the poles of the relative magnetic scattering intensity χ , which, in turn, is equal to the Fourier transform of the pair correlation function $\Gamma(\mathbf{\dot{r}})$. When q is pure imaginary, the pair correlation decays monotonically, as in normal Ornstein-Zernike theory. But if q has a nonzero real part, an oscillatory factor modifies the exponential decay. The disorder point is located by the temperature at which q leaves the imaginary axis and acquires a nonzero real part. At higher temperatures q is complex, and the correlation decay is oscillatory exponential in appropriate directions $\mathbf{\ddot{e}}$.

For any fixed direction \overline{e} , the lowest temperature at which q acquires a nonzero real part will be denoted by T_1 . The lowest value of T_1 over all directions, is equal to T_p .

III. MEAN-FIELD MODEL

The mean-field model can be derived as an approximation to the spin- $\frac{1}{2}$ Ising model, or to the Heisenberg model, or can be considered as a model with "weak long-range" interactions in its own right. The relevant scattering intensity, calcu-

15

5453

lated via the Fourier transform of the pair correlation function,⁴ is given by

$$1/\chi(\bar{q}, T) = 1 - \hat{K}(\bar{q}),$$
 (3.1)

where $\hat{K}(\mathbf{\bar{q}})$ is the lattice Fourier transform of

$$K(\bar{\mathbf{r}}) = J(\bar{\mathbf{r}})/k_B T , \qquad (3.2)$$

 $J(\bar{\mathbf{r}})$ being the interaction energy between spins separated by a lattice vector $\bar{\mathbf{r}}$. To first order in 1/T, this is in exact agreement with the Ising model expression for $\chi(\bar{\mathbf{q}}, T)$. It is straightforward to calculate $\hat{K}(\bar{\mathbf{q}})$ for various lattices, and the required formulas have already been listed in Table III of the preceding paper.⁸ By solving the equation $1/\chi = 0$ for specific lattice directions $\bar{\mathbf{e}}$, we can derive mean-field values for T_1 and hence for T_D .

We note here that it is convenient to use the variable

$$\rho \equiv q_2 J_2 / q_1 |J_1| , \qquad (3.3)$$

 q_1, q_2 being coordination numbers for nn and nnn bonds, and that the mean-field value of the critical temperature is given by

$$k_{B}T/q_{1}|J_{1}| = 1 + \rho.$$
(3.4)

Throughout our discussion, ρ is negative, and J_2 is antiferromagnetic:

$$\rho_c < \rho < 0, \tag{3.5}$$

where ρ_c is the critical ratio above which the nn interaction determines the ground state. For cubic lattices the critical value of ρ is $-\frac{1}{2}$.⁹

IV. SIMPLE CUBIC LATTICE, sc(1,2)

A. [100] direction

Along a cube axis, we may set $\vec{e} = \vec{i}$ (x axis) with projection factor f equal to unity.⁷ The nearestneighbor distance a_1 is equal to the cube side a. The reciprocal scattering intensity is then

$$1/\chi = 1 - [4(K_1 + K_2) + 2(K_1 + 4K_2)\cos fqa] \quad (4.1)$$

and vanishes when

$$\cos f q a = \left[\left(\frac{3}{q_1 K_1} - 2 - \rho \right] / (1 + 2\rho) \right]. \tag{4.2}$$

At the critical temperature T_c , the cosine is unity, and at high temperatures remains real, and is greater than unity, so q is pure imaginary. In this direction $T_1 = \infty$. Clearly ρ must be restricted to the range $\rho > -\frac{1}{2}$, which it must in any case if the nn interaction is to determine the ground state.

B. [110] direction

Next, along a cube face diagonal $\overline{e} = (i+j)/\sqrt{2}$, which is a nnn axis (in the x-y plane), we expect

the pair correlation to oscillate in sign at sufficiently high temperatures. Also $f^2 = \frac{1}{2}$. Now

$$\frac{1}{\chi} = 1 - [2(K_1 + K_2) + 4(K_1 + 2K_2)\cos fqa + 2K_2\cos 2fqa]$$
(4.3)

and vanishes when

$$\cos f q a = \left[-(1+\rho) \pm |\Delta| \right] / \rho , \qquad (4.4)$$

with the discriminant Δ given by

$$\Delta^2 = 1 + \rho + \rho^2 + (3\rho/q_1K_1). \tag{4.5}$$

The + sign is needed here. The cosine is unity at T_c and increases with temperature until the discriminant becomes negative. This occurs at a temperature

$$k_{B}T_{1}/J_{1} = (-2/\rho) (1 + \rho + \rho^{2})$$

~-2/\rho at small \rho. (4.6)

It is trivial to verify that $T_1 > T_c$, since

$$k_B(T_1 - T_c)/J_1 = (-2/\rho)(1 + 2\rho)^2 > 0.$$
 (4.7)

Also, at T_1 , $\cos fqa = -(1+\rho)/\rho$, which is ≥ 1 when $-\frac{1}{2} \le \rho < 0$. T_1 equals T_c when $\rho = -\frac{1}{2}$, and increases with ρ in the range $-\frac{1}{2} \le \rho < 0$. Pair correlations in the [110] direction above T_1 will be oscillatory. The dependence of T_1 on the interaction ratio is graphed in Fig. 1.

C. [111] direction

Now along a cube body diagonal, connecting third-nearest-neighbor lattice sites, $\vec{e} = (\vec{i} + \vec{j} + \vec{k})/\sqrt{3}$, and $f^2 = \frac{1}{3}$:

$$1/\chi = 1 - [6K_2 + 6K_1 \cos fqa + 6K_2 \cos 2fqa], \quad (4.8)$$

which vanishes when

$$\cos f q a = (-1\pm |\Delta|)/2\rho , \qquad (4.9)$$

with

$$\Delta^2 = 1 + (4\rho/q_1 K_1), \qquad (4.10)$$

and again the "+" sign is needed. At T_c the cosine is unity, and increases with temperature until the discriminant becomes negative. This occurs at a temperature which will be our best candidate for the disorder point T_D :

$$k_B T_D / J_1 = -3/2\rho . (4.11)$$

It is trivial to verify that $T_1 > T_D > T_c$:

$$k_B (T_1 - T_D) / J_1 = (-1/2\rho) (1 + 2\rho)^2 > 0,$$

$$k_B (T_D - T_c) / J_1 = (-3/2\rho) (1 + 2\rho)^2 > 0.$$
(4.12)

 T_1 , T_D , and T_c are all equal when $\rho = -\frac{1}{2}$, and increase with ρ in the range $-\frac{1}{2} \le \rho < 0$. At T_D , $\cos fqa = -1/2\rho$ which is ≥ 1 when $-\frac{1}{2} \le \rho < 0$.

We should mention here that on all the other

5454

FIG. 1. Graphs of disorder-point estimates for the [111], [110], and [210] directions of the simple cubic lattice sc(1, 2), against interaction ratio ρ .

lattices considered, the most likely candidate for the disorder point comes from analysis of χ along the nnn axis. The simple cubic lattice is an exception, in that a better candidate comes from the third-nearest-neighbor axis. Spins in the [111] direction can be connected by a chain of alternate J_1 and J_2 bonds, and the leading term in the pair correlation contains a factor $(J_1J_2)^n$, so the correlation oscillates at sufficiently high temperatures. (Here $n = |\vec{\mathbf{r}}| / \sqrt{3}a$.) We should investigate all other lattice directions in order to find out which one yields the lowest temperature T_1 . This general problem will not be tackled here. Instead we consider just one more direction in order to illustrate techniques applicable to equations of cubic and higher degree.

D. [210] direction

In the [210] direction, the leading term in the pair correlation function again contains an oscillatory factor $(J_1J_2)^n$. Now $\overline{e} = (2\overline{1}+\overline{j})/\sqrt{5}$ and $f^2 = \frac{1}{5}$:

$$1/\chi = 1 - [2K_1(1 + \cos qa + \cos 2fqa)]$$

$$2K_2(3\cos fqa + 2\cos 2fqa + \cos 3fqa)].$$

The values of $\cos fqa$ at which $1/\chi$ vanishes satisfy a cubic equation. If we set

$$x = 2 \cos f q a$$
 and $\mu = 1/\rho$, (4.14)

the cubic for
$$x$$
 is

$$1/K_2 = x^3 + 2(1+\mu)x^2 + 2\mu x - 4. \qquad (4.15)$$

The condition for a double root, at which a pair of real roots coalesce in order to change over to a complex pair, can easily be extracted via the standard form for a cubic

$$y^3 + py + q = 0$$
, (4.16)

with discriminant

$$4p^3 + 27q^2. (4.17)$$

Equating this discriminant to zero yields the desired expression for T_1 :

$$k_B T_1 / J_1 = (2/27\mu) (4\mu^3 + 3\mu^2 + 3\mu - 23 - |\Delta|),$$

(4.18)

with

ther

$$\Delta^2 = 2(2\mu^2 + \mu + 2)^3. \tag{4.19}$$

This expression for T_1 is plotted in Fig. 1 as a function of ρ . When $\rho = -\frac{1}{2}$, T_1 and T_c are equal.

For small ρ , T_1 has a quadratic dependence on $1/\rho$,

$$k_B T_1 / J_1 \sim 16/27 \rho^2. \tag{4.20}$$

This result may be obtained from an approximate treatment of the cubic equation, using a technique which is also applicable to higher-degree equations. To find the dependence of T_1 on the interaction ratio ρ , when ρ is very small, we seek the large-x solution of the equation which determines the condition for a double root. Differentiating the right-hand side of (4.15), equating the result to zero, and retaining leading terms of order x^2 and μx , one gets $x \sim (-\frac{4}{3}\mu)$. Resubstitution in (4.15), again keeping only leading terms, yields (4.20).

E. Results for simple cubic lattice

The temperatures above which pair correlations in the [110], [111], and [210] directions become oscillatory are plotted against ρ in Fig. 1, with the [111] direction yielding the estimate for T_D . At small nnn interaction strengths, T_D is large, and we surmise that the asymptotic form

$$k_{\rm p} T_{\rm p} / J_1 \sim -3/2\rho \tag{4.21}$$

V. SOME OTHER THREE-DIMENSIONAL LATTICES

We shall limit our discussion of other three-(and also two-) dimensional lattices to points of interest pertinent to the specific lattice and directions under consideration. The relevant formulas for $1/\chi$ can easily be obtained via (3.1), taking $\hat{K}(\bar{q})$ from Table III of the preceding paper.⁸ A summary of disorder point estimates is presented in Table I.

A. Body-centered-cubic lattice, bcc(1,2)

The disorder-point estimate comes from the [100] nnn direction. Equating to zero the discriminant of the quadratic equation for $\cos fqa_1$, we obtain

$$k_B T_D / J_1 = (-3/\rho) \left(1 - \frac{8}{9}\rho^2\right).$$
 (5.1)

Pair correlations in the [110] and [111] directions are ferromagnetic for all $T > T_c$. In the [110] direction the leading terms in the pair correlation function are like K_1^{2n} and K_2^{2n} , which are always positive. In the [111] direction the discriminant of the relevant cubic for $\cos fqa_1$ can vanish, but does so at a temperature which lies below T_c when ρ is in the physical range $-\frac{1}{2} \le \rho < 0$. In the [311] direction the leading term in the pair correlation contains a factor $(J_1J_2)^n$, and there will be an estimate T_1 for the disorder point. Analysis of the relevant sextic shows that $T_1 \gg T_p$.

B. Face-centered-cubic lattice, fcc(1,2)

The disorder-point estimate comes from the [100] nnn direction, and is

$$k_B T_D / J_1 = (-2/\rho) \left(1 - 2\rho - 2\rho^2 \right).$$
(5.2)

There are no disorder-point estimates from the [110] and [111] directions. In the [310] direction the high-temperature form of the pair correlation function contains an oscillatory factor $(J_1J_2)^n$. The disorder-point estimate, obtained by treating the sextic for $\cos fqa_1$ by the approximate method of Sec. IV D, is

$$k_B T_1 / J_1 \sim 1/27 \rho^2 \tag{5.3}$$

for small ρ , which is larger than T_D .

C. Face-centered-cubic lattice as body-centered-cubic lattice plus simple quadratic layers

This lattice is of interest in connection with the problem of antiferromagnetism in the fcc lattice.⁹ A bcc lattice with interaction J_1 is augmented by

simple quadratic layers of nnn bonds with interaction J_2 . The extra bonds are those sides of the basic cubic lattice which lie parallel to the x-yplane. This lattice can be expanded parallel to the z axis to become a regular fcc lattice, without altering the disorder point estimate. We treat the bcc lattice as regular and periodic with cube side a. The nn bond has length $a_1 = (\frac{1}{2}\sqrt{3})a$, and the nnn quadratic layer bonds have length a. The coordination numbers are $q_1 = 8$ and $q_2 = 4$. The disorder-point estimate comes from the [100] nnn direction, in which the discriminant of the quadratic for $\cos fqa_1$ vanishes when

$$k_B T_D / J_1 = -2/\rho \,. \tag{5.4}$$

A higher estimate is obtained from the [210] direction, with $T_1 \sim -1/\rho^3 \gg T_D$ for small ρ .

VI. SOME TWO-DIMENSIONAL LATTICES

A. Simple quadratic lattice, sq(1,2)

The disorder-point estimate for this unsolved two-dimensional lattice comes from the [11] nnn direction, and is

$$k_B T_D / J_1 = -1/\rho . (6.1)$$

Another estimate from the [21] direction comes from solving a cubic for $\cos f q a_1$ (Table I). Graphs of these T_D estimates are presented in Fig. 2.

B. Triangular lattice, t(1,2)

We orient the lattice relative to Cartesian axes as in Fig. 4(d) of the preceding paper.⁸ From the nnn axis, $\vec{e} = \vec{j}$ (y axis) we obtain the disorder-point estimate

$$k_{B}T_{D}/J_{1} = (-1/\rho) (1+3\rho^{2}).$$
(6.2)

When $\rho = -\frac{1}{3}$, T_c and T_D are equal, and this expression for T_D is valid only for $-\frac{1}{3} < \rho < 0$, even though $\rho_c = -\frac{1}{2}$ for the Ising model. Along the nn axis, $\vec{\mathbf{e}} = \vec{\mathbf{i}}$ (x axis) the discriminant of the cubic for $\cos\frac{1}{2}qa_1$ vanishes at a temperature T_1 which satisfies $T_1 > T_D > T_c$ in the range $-\frac{1}{3} < \rho < 0$, with equality holding when $\rho = -\frac{1}{3}$.

C. Union-jack lattice

Now we turn to some soluble one- and twodimensional models, for which the disorder point may be located exactly. This will serve as a test for the validity of the mean-field-theory results when J_2 is small and T_D is at a high temperature.

By inspection of the lattice, Fig. 4(e) of the preceding paper, we see that nnn bonds spread out only from alternate lattice sites. Accordingly we take the mean-field calculation for sq (1, 2) and replace J_2 by $\frac{1}{2}J_2$ everywhere to obtain the cor-

Lattice	Direction	$1/K_1$ at T_D or T_1	Comments
lc(1, 2)	Along chain	$(-1/4\rho)(1+8\rho^2)$	Asymptotically equal to exact T_D for small ρ
lca(1,2)	Along chain	$(-1/4\rho)(1+8\rho^2)$	Disagrees with exact T_D for small ρ
sq(1,2)	nn axis, sq edge [10]	8	Ferromagnetic short-range order
	nnn axis, sq diagonal [11]	-1/p .	T_D
	[21] direction	$\begin{cases} (2\mu^3 - 9\mu^2 - 36\mu - 2 \Delta)/27\mu, \\ \Delta^2 = (\mu^2 - 3\mu + 6)^3, \ \mu = 1/\rho \end{cases}$	$k_g T_1/J_1 \sim 4/27\rho^2$, ρ small
h(1, 2)	nn direction	8	Ferromagnetic short-range order
	nnn direction	$(1/2\rho)(1+3\rho^2)$	T_D
t(1, 2)	nn axis nnn axis	$1/27\rho^2 - 2/3\rho + 1 - 2\rho$ $(-1/\rho)(1 + 3\rho^2)$	$m{T}_1$ $m{T}_D$
$\operatorname{sc}(1,2)$	nn axis, cube edge [100]	8	Ferromagnetic short-range order
	nnn axis, face diagonal [110]	$(-2/\rho)(1+ ho+ ho^2)$	T_1
	third-nn axis, body diagonal [111]	-3/2p	T_D
•	[210] direction	$\begin{cases} 2(4\mu^3 + 3\mu^2 + 3\mu - 23 - \Delta)/27\mu \\ \Delta^2 = 2(2\mu^3 + \mu + 2)^3, \ \mu = 1/\mu \end{cases}$	$k_{\rm B}T_1/J_1 \sim 16/27 \rho^2$, $ ho$ small
bcc(1, 2) fcc(1, 2)	nnn axis, cube edge [100] nnn axis, cube edge [100]	$(-3/\rho)(1-\frac{8}{9}\rho^2)$ $(-2/\rho)(1-2\rho-2\rho^2)$	$\begin{cases} T_{D}, [110] \text{ and } [111] \text{ ferromagnetic} \\ \text{ short-range order} \end{cases}$
d(1,2)	nnn axis, cube edge [100]	$(-3/4\rho)(1+\frac{16}{9}\rho^2)$	T_D
Triangular lattice or sq plus one set of mm bonds	nnn axis, sq diagonal	$(-1/2\rho)(1+8\rho^2)$	$\left\{\begin{array}{l} \text{Asymptotically equal to exact } T_D \text{ for small } \rho.\\ & \underline{\text{Sq} \text{ edge and diagonal: ferromagnetic}} \\ \text{ short-range order} \end{array}\right.$
union-jack	nnn axis, sq diagonal	$-1/\rho$, same as $sq(1,2)$	Asymptotically equal to exact T_D for small ρ
fcc as bcc plus sq layers	nnn axis, sq edges [100]	-2/ρ	T_D

TABLE I. Mean-field values of T_D and T_1 .^a

*

<u>15</u>

ISING MODEL WITH ANTIFERROMAGNETIC...V...

5457

,

have been entered in the table.

responding result for the union-jack lattice.

$$k_B T_D / J_1 = -1/\rho , \qquad (6.3)$$

with $q_1 = 4$ and $q_2 = 2$ (average coordination number). This can be compared with the exact result³

$$\tanh 2K_2 + (\tanh 2K_1)^2 = 0,$$
 (6.4)

which at high temperatures, for small J_2 , takes the form

$$2K_2 + 4K_1^2 \sim 0, (6.5)$$

whence the validity of (6.3) for small J_2 is confirmed.

D. Triangular lattice

The exactly soluble Ising triangular lattice may be regarded as a nn square lattice with interaction J_1 , plus a single set of diagonal bonds J_2 . Figures 4(d) and 4(f) of the preceding paper illustrate the triangular lattice in its regular triangular form and in the distorted square lattice form. The form of χ depends on the shape of the lattice. The disorder-point estimate is the same for both forms

FIG. 2. Graphs of disorder-point estimates for the [11] and [21] directions of the simple quadratic (square) lattice sq(1, 2), against interaction ratio ρ .

of the triangular lattice, since it depends only on the connectivity of the lattice and not on its geometrical shape. In the nnn directions we obtain (different) quadratic equations for $\cos fqa_1$ (and different f values), but the condition that the discriminants vanish yields the same estimate for the disorder point:

$$k_B T_D / J_1 = (-1/2\rho) (1 + 8\rho^2) .$$
(6.6)

Along nn directions, correlations are ferromagnetic.

For the general triangular lattice (in triangular shape) with three interactions J_1 , J_2 , and J_3 along the three lattice axes, one readily obtains, parallel to the J_3 direction,

$$1/\chi = 1 - [2(K_1 + K_2)\cos qa_1 + 2K_3\cos 2qa_1],$$
(6.7)

which reduces correctly on equating appropriate pairs of interactions to J_1 , and calling the remaining interaction J_2 . In general, if J_3 is the antiferromagnetic interaction, then the disorder point is given by the vanishing of the discriminant, so that

$$(K_1 + K_2)^2 + 4K_3(1 + 2K_3) = 0.$$
(6.8)

When J_3 is small, (6.8) becomes

$$-K_3^{-\frac{1}{4}}(K_1+K_2)^2.$$
(6.9)

This should be compared with the exact result^{2,3}

$$\tanh K_1 \tanh K_2 + \tanh K_3 = 0, \qquad (6.10)$$

which for small J_3 at high temperatures takes the form

$$-K_3 \sim K_1 K_2$$
, (6.11)

which differs from the mean-field result (6.9). This is an unsatisfactory property of the meanfield model.

VII. ONE-DIMENSIONAL LATTICES

A. lc(1,2), mean-field formula for χ

For the linear chain with all nnn interactions, lc(1,2), Fig. 4(a), Ref. 8,

$$1/\chi = 1 - [2K_1 \cos qa + 2K_2 \cos 2qa], \qquad (7.1)$$

with $\vec{e} = \vec{i}$, parallel to the chain along the x axis. The disorder point is at

$$k_B T_D / J_1 = (-1/4\rho) \left(1 + 8\rho^2\right), \qquad (7.2)$$

with $\rho > -\frac{1}{4}$ so $T_p > T_c$. For small ρ ,

$$k_B T_D / J_1 \sim -1/4\rho , \qquad (7.3)$$

in agreement with the high-temperature small- ρ form of the exact formula locating T_D , ^{3,10}

$$\tanh K_2 + (\tanh \frac{1}{2}K_1)^2 = 0.$$
 (7.4)

ĸ

It is of interest to note that the mean-field model is also an approximation to the Heisenberg model. In one dimension, the classical spin (Heisenberg) model undergoes a change in the nature of its ground state at precisely the ratio $\rho_c = -\frac{1}{4}$. For $\rho_c < \rho < 0$, spin correlations show a "spiral" structure.¹¹ A similar behavior occurs for the Heisenberg chain with antiferromagnetic nnn interactions, with apparently the same critical value for ρ_c .^{11,12}

B. lca(1,2), mean-field formula for χ

For the linear chain with alternate nnn interactions, Fig. 4(b), Ref. 8, we replace J_2 by $\frac{1}{2}J_2$ in all the formulas for lc (1, 2), and use an average coordination number $q_2 = 1$, so for small ρ ,

$$k_B T_D / J_1 \sim -1/4\rho . (7.5)$$

This is now in disagreement with the high-temperature small- ρ form of the exact formula for T_D

$$\tanh K_2 + (\tanh K_1)^2 = 0.$$
 (7.6)

The cause of this discrepancy is discussed below.

C. Exact and approximate formulas for χ

The exact expression for the Fourier transform of the pair correlation function for these one-dimensional models takes the form^{8,13}

$$\chi = N/D . \tag{7.7}$$

In the case of the lca (1, 2), the numerator contains terms in 1/T, whereas for lc (1, 2) the first temperature-dependent term is of order $(1/T)^2$. The reciprocal range of order and the disorder point can be extracted *correctly* from the requirement that the denominator vanish, to give χ a simple pole. But, in the mean-field model, all terms in 1/T are collected together in the denominator, so setting $1/\chi = 0$ gives a wrong result for the lca (1, 2). Of course, to order 1/T, there is agreement between the expansions of χ from the mean-field and the exact formulas.

D. lca(1,2), exact formula for χ

Reference to the preceding paper⁸ shows that the exact denominator for χ is, putting a = 1,

$$D = 1 - 2x \cos 2q + x^2, \tag{7.8}$$

where

$$x = \frac{\cosh 2K_1 - e^{-2K_2}}{\cosh 2K_1 + e^{-2K_2}},$$
(7.9)

so the solution of $1/\chi = 0$ is

$$\cos 2q = \frac{1}{2}(x + x^{-1})$$
 or $x = e^{2iq}$. (7.10)

The reciprocal range of order is now

$$= -iq = -\frac{1}{2}\ln|x|, \qquad (7.11)$$

as derived previously from direct inspection of the correlation decay.¹⁰ Expansion of the numerator to order 1/T yields

$$N^{-1} + 2K_1 \cos q - K_2 \cos 2q , \qquad (7.12)$$

On the other hand, expansion of χ to order 1/T yields

$$\chi \sim 1 + 2K_1 \cos q + K_2 \cos 2q + \cdots,$$
 (7.13)

which is the same as one obtains from the meanfield expression.

E. lc(1,2), exact formula for χ

Again, reference to the preceding paper⁸ shows that the exact denominator for χ is

$$D = (1 - 2x\cos q + x^2) (1 - 2y\cos q + y^2), \qquad (7.14)$$

with x and y defined as in (5.7), and (5.8) of Ref. 8:

$$x = \mu_{+} / \lambda_{+}, \quad y = \mu_{-} / \lambda_{+}.$$
 (7.15)

Now χ has simple poles when

$$e^{iq} = x, \quad 1/x, \quad y, \quad \text{or} \quad 1/y.$$
 (7.16)

The solution for q with the smallest imaginary part is then

$$q = i \ln(1/x)$$
, (7.17)

so the reciprocal range of order below T_D is¹⁰

$$\kappa = \ln(1/x) \tag{7.18}$$

as expected. Above T_D , x and y become complex, and |x| = |y|. We may set $\mu_{\pm} = \mu e^{\pm i\theta}$ so

$$q = i \ln(\lambda_{+}/\mu) + \theta. \qquad (7.19)$$

q acquires a real part at T_D . In previously introduced notation,^{8,10} we have

$$\tan\theta = \left| \Delta' \right| / (a - b), \qquad (7.20)$$

with θ (and Δ') vanishing at T_D .

The expansion of the numerator N in powers of 1/T contains no terms of first order, 1/T. Therefore the denominator D and the mean-field expression for χ are in agreement to first order in 1/T. Consequently, the mean-field disorder-point estimate is in agreement with the high-temperature small- ρ form of the exact result, as discussed earlier.

VIII. EFFECTS OF CHANGING THE SHAPE OF A LATTICE

The lattices discussed in this paper can be drawn in a variety of different shapes. For example, consider the triangular lattice of Sec. VID. Any reasonable formula for the disorder point must of course be unaltered by a change in the

5459

shape of a lattice, since disorder points, and critical points too, depend only on the connectivity and interactions within a lattice structure. On the other hand, χ can undergo changes in form when a lattice is distorted. The question arises as to how the poles of χ move, and how, nevertheless, the disorder-point estimates remain the same, under lattice distortion.

In general,

$$\chi(\mathbf{\bar{q}},T) = \sum_{\mathbf{\bar{r}}} e^{i \mathbf{\bar{q}} \cdot \mathbf{\bar{r}}} \Gamma(\mathbf{\bar{r}}) .$$
(8.1)

Now $\Gamma(\bar{T})$ can be expressed in such a way that the actual vector \bar{T} is no longer explicitly involved, but only the connectivity of the lattice points is important. Suppose for a given wave vector $\bar{q} = q\bar{e}$ we alter all the lattice vectors \bar{T} in such a way that

$$\mathbf{\dot{r}} - \mathbf{\ddot{r}} + \lambda(\mathbf{\ddot{r}}) \mathbf{\ddot{e}}_{\perp}, \qquad (8.2)$$

where $\lambda(\mathbf{\bar{r}})$ depends on $\mathbf{\bar{r}}$, but $\mathbf{\bar{e}}_{\perp}$ is perpendicular to $\mathbf{\bar{e}}$, so all the lattice displacements are perpendicular to the wave vector. Then $\mathbf{\bar{q}} \cdot \mathbf{\bar{e}}_{\perp} = 0$ and χ is unaltered by the lattice distortion for the particular wave vector $\mathbf{\bar{q}}$ under consideration. In particular, estimates of T_D from the condition $1/\chi = 0$ in the direction $\mathbf{\bar{e}}$ will be unchanged.

A. Linear chain, lc(1,2)

Referring to Fig. 4(a) of the preceding paper, we take $\overline{e} = \overline{i}$ parallel to the chain, and distort the chain in a perpendicular direction (\overline{j}) . The projections of nn and nnn lattice vectors \overline{a}_1 and \overline{a}_2 onto \overline{e} are unaltered, and χ is unchanged.

B. Triangular lattice

As discussed in Sec. VID, we wish to consider a distorted form of triangular lattice which is square in shape, as in Figs. 4(d) and 4(f) of the preceding paper. When \bar{q} is parallel to a nnn diagonal axis with interaction J_2 , we obtain the disorder point estimate of Sec. VID, (6.6). The distortion may be achieved by (relative) movement of all lattice sites in a direction perpendicular to \bar{e} , thereby altering the nn distances a_1 but keeping a_2 unchanged. χ is unaltered by this process (Table III, Ref. 8, entries under t, triangular lattice, in nnn directions). Similarly if \overline{e} is perpendicular to a nnn lattice axis, then a distortion can again be made from square to triangular form. On the other hand, when \overline{e} is parallel to the x axis, the expressions for χ differ (Table III, Ref. 8, entries under t, in nn directions with $\overline{e} = \overline{i}$).

C. Face-centered cubic

The face-centered-cubic lattice as a body-centered-cubic lattice plus simple quadratic (square) lattice layers has been discussed in Sec. VII. If the nn bcc distance is a_1 , then the nnn sq lattice side is $a_2 = (2/\sqrt{3})a_1$. A distortion parallel to the z axis, k direction, converts the lattice to a regular fcc lattice with all bond lengths equal. All the bcc bonds of length a_1 are stretched by the same amount. The disorder-point estimates from directions of the wave vector lying in the x-y plane are unaffected by this lattice distortion.

IX. CONCLUSION

A summary of our disorder-point calculations is presented in Table I. The disorder point has been obtained by locating the temperature at which the reciprocal range of order becomes complex. For the mean-field model, the range of order is given by the zeros of $1/\chi$ in (3.1). Even though the meanfield-model expression for $1/\chi$ is in exact agreement with the Ising-model to order 1/T, it does not necessarily follow that the zeros of $1/\chi$ are in such agreement. Therefore, the mean-field values of the disorder point are not necessarily in exact agreement with the Ising-model values when ρ has small negative values. However, fortuitous agreement is obtained for some exactly soluble Ising lattices, triangular, union-jack, and lc(1,2), but not for the lca(1,2), for reasons given in Sec. VII. It is to be hoped, therefore, that a more reliable way of estimating the small- ρ high-temperature behavior of T_p can be devised, possibly via a direct analysis of power series expansions for the correlation functions themselves.

- [†]On leave from Physics Department, University of Alberta, Edmonton, Alberta, Canada.
- *Work supported in part by the National Research Council of Canada, Grant No. A6595, and in part by the Science Research Council (UK).
- ¹M. F. Thorpe and M. Blume, Phys. Rev. B <u>5</u>, 1961 (1972).
- ²J. Stephenson, J. Math. Phys. <u>11</u>, 420.

- ³J. Stephenson, Phys. Rev. B <u>1</u>, 4405 (1970), I of this series.
- ⁴I. G. Enting, J. Phys. A <u>6</u>, 170 (1973); J. Phys. C <u>6</u>, 3457 (1973).
- ⁵H. C. Bolton and B. S. Lee, J. Phys. C <u>3</u>, 1433 (1970);
 B. S. Lee and H. C. Bolton, *ibid*. 4, 1178 (1971).
- ⁶J. Stephenson, AIP Conf. Proc. <u>5</u>, 357 (1971).
- ⁷M. E. Fisher and R. J. Burford, Phys. Rev. <u>156</u>, 583

(1967).

- ^{(1307).} ⁸J. Stephenson, preceding paper, IV of this series, Phys. Rev. B <u>15</u>, 5442 (1977). ⁹J. Stephenson and D. D. Betts, Phys. Rev. B <u>2</u>, 2702
- (1970).

¹⁰J. Stephenson, Can. J. Phys. <u>48</u>, 1724 (1970).
¹¹Th. Niemeijer, J. Math. Phys. <u>12</u>, 1487 (1971).
¹²I. Ono, Phys. Lett. A <u>38</u>, 327 (1972).
¹³J. Stephenson, J. Appl. Phys. <u>42</u>, 1278 (1971).