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Ising model with antiferromagnetic next-nearest-neighbor coupling. IV.
Relative magnetic scattering intensity and anomalous scattering*
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When antiferromagnetic next-nearest-neighbor interactions are introduced into an Ising model, anomalous
scattering can occur on certain lattice systems, in thp sense that isotherms of the reciprocal scattering intensity
versus the square of the wave number can acquire {in theory) negative initial slopes at suNciently high
temperatures. Scattering from cubic' lattices has only normal Ornstein-Zernike form for small wave number.
The general dependence of the scattering on wave vector across the Brillouin zone is investigated' at high
temperatures, where it may be expressed as {direction-dependent) truncated Fourier series. The anomalous
scattering from two exactly soluble one-dimensional models is analyzed, and the possibility of actually
detecting anomalous scattering from one-dimensional magnetic systems is raised.

I. INTRODUCTION

The introduction of a. competing interaction into
a magnetic system gives rise to certain novel and
characteristic features. The spin pair correlation
function in the disordered phase of a ferromagnet
exhibits short-range order, and its decay with in-
creasing spin separation is dominated by an ex-
ponential function. When a competing interaction
is present the pair correlation function may be-
come oscillatory at high temperatures above a
precisely located temperature Tr„ the "disorder
point. " This feature of the pair correlation func-
tion can occur for a variety of model systems,
such as the one-dimensional system of interacting
classical quadrupoles solved by Thorpe and
Blume, ' and the spin-phonon interaction model of
a compressible Ising magnet of Bolton and Lee, '
discussed by Enting. ' The case of most interest
for ferromagnetism is that of the Ising model with
ferromagnetic nearest-neighbor (nn) interactions,
and competing antiferromagnetic next-nearest-
neighbor (nnn) interactions. ' It is understood that
the nn interaction is sufficiently strong to deter-
mine the ground state. For two- and three-di-
mensional lattices there will be an ordered phase
below the Curie point T~, and a disordered phase
above T~. In the presence of the antiferromagnet-
ic nnn interaction, the short-range-order phase
above T~ is divided into two regions by the dis-
order point TD. The spin pair correlation function
decays exponenti~Itly in magnitude throughout the
disordered phase, this decay being monotonic be-
tween T~ and T~, and oscillatory above TD. The
wavelength of oscillation may be temperature de-
pendent (disorder point of the first kind) or inde-
pendent of temperature (disorder point 'of the sec-
ond kind). In one dimension, ordering occurs only
at zero temperature for these finite-range inter-

action models. The disordered phase then extends
over the entire temperature range 0& T&~, and
may be divided into two regions by the disorder
point TD, as described above.

The question naturally arises as to whether a
disorder point can be detected and measured for a
lattice system. Unfortunately we cannot yet give
an affirmative answer to this question. Therefore
it seems reasonable that one should investigate the
effects of a competing interaction on quantities
which involve pair correlation functions, and
which can be measured directly for a magnetic
lattice system.

The purpose of this paper is to investigate the
changes which occur in the relative magnetic scat-
tering intensity when nnn interactions are present
in the Ising model of a ferromagnet. We shall dis-
cuss in Sec. II the relative magnetic scattering
intensity first from a qualitative viewpoint, and
then give details of the calculation in Secs. III and
IV, including results for two exactly soluble one-
dimensional models in Sec. V. In the succeeding
paper of this series we shall show how to estimate
the disorder point on a, variety of Ising lattices
with nnn antiferromagnetic interactions. A pre-
liminary report of some of the results of this in-
vestigation has been presented elsewhere. '

II. RELATIVE MAGNETIC SCATTERING INTENSITY

The relative magnetic scattering intensity X in
the static approximation is equal to the lattice
Fourier transform of the spin pair correlation
function. In general X will depend on both the mag-
nitude q and the direction e (a unit vector) of the
wave vector q = qe, as well as on the temperature
T. Considered as a function of q across the Bril-
louin zone, X(q) will have the periodicity of the
reciprocal lattice. For sufficiently small wave
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number q, X will have approximately normal
Ornstein-Zernike form (Lorentzian in q'), with

spherical symmetry. In the absence of competing
interactions, the second moment of the pair cor-
relation function will be positive, and isotherms
of X

' vs q' will be approximately linear for small
q, with positive slopes. When antiferromagnetic
competing interactions are present, the possibility
of anomalous scattering arises. That is, at suf-
ficiently high temperatures the second moment of
the pair correlation function may become negative
and X

' vs q' isotherms may acquire negative
slopes for small q. We shall show below that
anomalous scattering can occur for one-dimen-
sional chains when the antiferromagnetic nnn

interaction lies between —,
' and —,

' the nn interaction
in strength. The scattering is normal for weaker
values of the nnn interaction. This result acquires
some interest since it is now possible to produce
effectively one-dimensional magnetically inter-
acting systems, embedded in three-dimensional
crystalline matrices, with negligible interactions
in the transverse directions. In two and three di-
mensions we can exclude anomalous scattering on
cubic lattices. There is, however, still the theo-
retical possibility of anomalous scattering on the
diamond lattice.

The behavior of the magnetic scattering intensity

x(q) across the Brillouin zone is modified by the
introduction of the nnn interaction. This can be
demonstrated most easily at high temperatures,
where X is determined essentially by the lattice
generating function. In any selected direction e
parallel to a reciprocal-lattice vector, X can be
expanded in a truncated Fourier series to order
1/T in temperature. The characteristic periodic-
ity is determined by the direction e, taking into
account the lattice generating functions for both
nn and nnn lattices. The total magnetic scattering
involves a linear combination of the lattice gen-
erating functions weighted by the appropriate in-
teractions. As the antiferromagnetic nnn inter-
action strength increases, one passes smoothly
from the nn lattice at one extreme to She antifer-
romagnetic nnn lattice at the other. Itseemsrea-
sonable to suggest that the high-temperature mag-
netic scattering data should reveal the presence
of nnn interactions, and, when fitted to appropriate
truncated Fourier series, should permit a quanti-
tative estimate of the interaction strength to be
made. It is perhaps worth mentioning that both
the high-temperature magnetic scattering intensity
and the low-temperature spin-wave spectrum are,
in theory, determined by the same combination of
nn and nnn lattice generating functions. It might
therefore be instructive to make a comparative
study of these quantities.

III. MAGNETIC' SCATTERING AT SMALL WAVE NUMBERS

The relative magnetic scattering intensity in the
static approximation at wave vector q = qe and
temperature T is equal to the lattice Fourier
transform of the spin pair correlation function
r(r):

X =X (q, T) = ~ e' "'1'(r) . (3.1)

For a spin-& Ising lattice with "spin" g-, =+1 at lat-
tice site r,

1'(r) = (&o&, ) ~ (3.2)

For the present, we limit our dj:scussion to cubic
lattices. At sufficiently small wave number q we
can expand X for a d-dimensional cubic lattice as

2

X(q, T) =X (0, T) — r 'I'(r) + ~ ~ (3.3)

which to order q' is independent of the direction of
q. The scattering will have normal Ornstein-
Zernike form when the second moment of the pair
correlation function is positive. When antiferro-
magnetic interactions are present, the possibility
of anomalous scattering arises:

I
ro, normal

&0, anomalous .
(3.4)

For the Ising model at sufficiently high tempera-
tures, we can expand the coefficient of q to first
order in 1/T:

X (q, T) =X(0, T) —

(1/SENT)(q

'/2d)

X (q, J,a', + q, J,a2) + ~ . (3.6)

The sign of the final parentheses factor must now

be ascertained, by combining a physical and a
geometrical condition.

(i) The physical condition that the nn interaction

J, should determine the ground state when the nnn

interaction J2 is negative and antiferromagnetic is

X(q T) =X(o, T) —
& T 2d

~'J(r) + "
~

(3.5)

Here ks is Boltzmann's constant and J(r) is the
interaction between spins separated by a vector r.
At high temperatures the scattering will be normal
or anomalous according as the second moment of
J(r) is positive or negative.

Next, suppose a central lattice site is coupled
with q, nearest neighbors Pa/ all at distance a,
=

[ a, ~
through interaction J, =J(a,), and with q,

next-nearest neighbors (ag all at distance a, =
~ a, ~

through interaction J, =J (a,). Then
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p= q2~2/q, lJ',
I

& -a (3.7) IV. SCATTERING AT HIGH TEMPERATURES FOR A
GENERAL %(AVE VECTOR. q

a/a, =2 in one dimension,

a/a, & v 2 in two and three dimensions .
(3 8)

Combining these two conditions, we find that the
scattering always has normal Ornstein-Zernike
form in two and three dimensions, but is anoma-
lous at sufficiently high temperatures in one di-
mension when

(3.9)

For certain other lattices, investigated below,
anomalous scattering can occur at sufficiently high
temperatures for certain directions of the wave
vector q when p lies in an appropriate range.

For the diamond lattice with nn and nnn inter-
actions at high temperatures when q is small,

X(q, T) =I+4K, +12K2-~6(qa,)'(4K, +32K,),
(3.10)

for a variety of Ising lattices, including the cubic
lattices. 4

(ii} Also, for cubic Bravais lattices, the ratio of
nnn to nn lattice spacings is

J"(q}= Q e' ~' g(r} (4.2)

is the lattice Fourier transform of the Ising inter-
action J(r). It is convenient to introduce the di-
mensionless quantity

Kr =jr/kaT,
and write

(4.3)

X(q, T) =1+K(q)+ ~ ~, (4.4)

where K(q) is the lattice Fourier transform of Kr
defined by analogy with (4.2). When nn and nnn

Ising interactions are present, Z and lt can be
written conveniently in terms of the nn and nnn

fundamental lattice generating functions

Scattering at high temperatures for a general
wave vector q in reciprocal space is described
through the expansion of x to first order in 1/T by

X(q, T) =1+~%/4T+" (4 1)

where

where

K, =J,/0 T, 1=1,2 . (3.11)

The nn interaction determines the ground state
when p& ——,', and the scattering is anomalous when

q'Y (q)=+

q,~.(q)=~ e"' .
fa2)

(4.5)

(3.12)

Anomalous scattering can also occur on certain
two-dimensional lattices. For example, the high-
temperature form of X for the triangular lattice
t(1, 2} is

X(q, T) =1+6K,+6K, —~(qa,)'(6K, +18K,) .
(3.13)

The nn interaction determines the ground state
when p& -2 (see Appendix A), and the scattering
is anomalous when

(3.14)

The results of this section are summarized in
Table I which contains the small-wave-number
forms of X to order q', and various other lattice
information including the ratios of nnn to nn lat-
tice spacings (a,/a, ), the critical values of the
interaction ratio r =g,/~ Z, ~

above which the nn
interaction determines the ground state, and the
corresponding values of the parameter p, defined
in (3.7).

Then we have the high-temperature form of the
relative magnetic scattering intensity to order
1/T, using the notation of (3.11):

x(q, T) =I+q,K,r, (q)+q K,r,(q)+" (4 6)

The relevant lattice generating functions for cubic
lattices for general wave vector q are listed in
Table II. Formulas for K(q) on a variety of lat-
tices in certain selected directions e (unit vector)
of the wave vector q=qe are presented in Table
III.

The relative magnetic scattering intensity in a
reciprocal-lattice direction e has the general high-
temperature form to order 1/T, of a. truncated
Fourier series decomposition:

X(qe, T) = (1+c„K,+c„K,+ ~ ~ ~ )

+(c»K, +c»K, + ~ ~ ~ ) cosfqa,

+(c»K, +c»K, + ~ ~ ~ ) cos2fqa, + ~ ~ ~,
(4.7)

where the numerical coefficients c;; and projec-
tion factors f depend on the direction e and are
listed in Table III. It is perhaps worth remarking
that X can be so expanded in terms of a single
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TABLE I. Lattice data and the relative magnetic scattering intensity X(q, T) at small wave number q to order 1/T in
temperature.

Lattice ~ qi q2 + p g f/a a2/a 1 y(q, T) at small q and high T Nature of scattering ~

10(1,2)

lca(1, 2)

sq(1, 2)

h(1, 2) 3 6

6 6

1
2 2

1 1
2

1 1
2 2

2 2 1 1
2 2

2

1 2

1 2

v2

~ ~ ~ ~3

~ ~ ~

1+ 2X, + 2K, &f(qa f)2(2E,.+ 8K,)

1+2Xf +X2 g(qa f) (2Ef+4K2)

1+4Ei+ 4X2-T(qa f) (4Ki+ SK2)
1

1+3Ei+ 6K2-
4 (qai) (3Ki+ 18K2)

1+ 6Ef+ 6X2--(qaf) (6Kf+ 18K2)

Anomalous for —& p & —.1
2 4

Anomalous for —& p & ——1
2

Normal

Anomalous for -& & p &-&1

Anomalous for -& & p & -&

sc(1,2)

bcc(1,2)

fcc(1,2)

d(1, 2)

t as sq plus

one set of

nnn bonds

6 12

8 6

1
4.

12 6 -1
1
4

-Y 11

1~3

1/ 2

3 f~3
4

4 2 -1 ——1
2

2(2) f/2
3

1+ 6Ei+ 12E2 —
6 (qa 1) (6Ki+ 24K2) Normal

1+ SKi+ 6E2 —
6

(qa 1) (SKi+ SX2) Normal

1+ 12Kf+ 6X2 —
6

(qa 1) (12Ki+ 12K2) Normal

1 + 4Ki + 12K2 —(qa 1) (4Ki+ 32& 2) Anomalous for —-& p & -&6 4

4Xi+ 4K2 nn axis, normal

1+4X + 2K 1( g )2X 4Ki+ 8K2 ~ ~is,+ 1+ 2 qai anomalous fort ——&p&—
2 4

4Xi perpendicular to
nn axis, normal

(

t triangular

in shape

5Ki +E2
2X, +4K,1+4Ef+ 2K2 -T(qaf) &&

3Ki+ 3K2

nn axis, normal
nnn axis s

anomalous for -&f & p& -Tf

perpendicular to
nn axis nol mal

union jack
2

1 v2

fcc as bcc plus
8 4 1 f f ~3 2/~3

sq layers Y Y

S bo
fcc in shape 2

Replace K& by &At in sq(1, 2)

1+ 8Ki+ 4K2 -~6{ 1) {SXi+SK2)

1+ SKf+4K2 —6(qai) (6Kf+ 6X2)

Normal

Normal along nnn axis

Normal along nnn axis

~ Lattice notation is as follows: (1,2) denotes presence of first- and second-nearest-neighbor interactions; lc:
linear chain with all second-nearest-neighbor iIiteractions present, Fig. 4(a); lca: linear chain with alternate second-
neighbor interactions, Fig. 4(b); sq: simple quadratic or square lattice; h: honeycomb, Fig. 4(c); t: triangular lat-
tice, Fig. 4(d); sc: simple cubic; bcc: body-centered cubic; fcc: face-centered cubic; d: diamond; the triangular
lattice t as a square lattice plus one set of nnn bonds is illustrated in Fig. 4(f); the union-jack lattice is illustrated in
Fig. 4(e).

a, cube side length; ai, nn spacing; a2, nnn spacing.
For the first nWe lattices, g is independent of direction to order q2.
p = qtr/qt ——qt Jt/qtJ$, with Jt )0.

~ Effective coordination number.

TABLE II. Lattice generating functions for cubic lattices; q=q„i+ q„j+ q~k, a=cube side.

Simple cubic qi yf = 2(cosq„a+cosq~g+cosq~a)

q2 p2 =4(cosq~ a cosqy a +cosqya cosq~a +cosqga cosq» a )

Body-centered cubic

Face-centered cubic

q 1yf = 8 cos-q„a cos 2q„a cosgqga1

q2y2= 2(cosq„a+cosq„a+ cosq a)

qtyt=4(cos~„a cos&q, a+cos~tq, a cos zq, a+cos~t~a cos&tq„a)

q2 @2=2(cosq„a+cosq~a+ cosq a)
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TABLE III. Formulas for K(q) in certain selected directions e of the wave vector q. The lattice notation is explained
in Table I, footnote (a).

Lattice Direction f2 K(q) in direction e; x=fqa&

lc(i, 2)

lca(i, 2)

Along chain, nn and nnn axis

Along chain, nn and nnn axis

2E& cosx+ 2K2 cos2x

2K& cosx+E2 cos2x

sq(1, 2) Along sq edge, nn axis

Along sq diagonal, nnn axis

Along [21j direction

(i+ j)/vY

(2&+~ )/v S

'l 2K' + (2K' + 4K2) cosx
1
2

1
5

2E2+ 4K& cosx+ 2K2 cos2x

(2K&+ 2K2) cosx+ 2K& cos2x+ 2K2 cos3x

h(&, 2) Along nn direction

Along nnn direction

1 2K2+ 2E& cosx+K& cos2x+ 4K2 cos3x
3

K&+ (2E&+ 4K2) cosx+ 2E2 cos2x

t(X, 2) Along nn axis

Along nnn axis

1 2E~+ 4K& cosx+ 2K& cos2x+ 4E~ cos3x

2K&+ (4K&+ 4K~) cosx+ 2K2 cos2x

sc(&, 2) Along cube edge, nn axis

Along face )iagonkl, nnn axis

Along body diagonal, third-nn axis

Along t210] direction

(i+ ))/~2

(i+)+k)/v 3

(2i+ ))/&5

4K&+ 4K2+ (2E~+ 8K2) cosx

1
3

1
5

2K&+ 2E~+ (4K&+ 8E2) cosx+ 2E ~ cos2x

6K&+ 6E~ cosx+ 6K2 cos2x

2K(+ (2K)+ 6Eg) cosx+ (2K&+ 4K2) cos2x+ 2K2 cos3x

bcc(f. , 2) Along cube edge, nnn axis

Along face diagonal, third-nn axis (i+ j)/W2

Along body diagonal, nn axis (i+ j+k)/v 3

1
3 4K2 + 8Eg cosx + 2E2 cos2x

4K~+ 2K2+ (4K'+ 4K2) cosx

6E& cosx+ 6E2 cos2x+ 2EC& cos3x
9

fcc(i, 2) Along cube edge, nnn axis

Along face diagonal, nn axis

Along body diagonal

(i+ j)/W2

(i+ )+k)/W3

4K&+ 4K2+ 8K~ cosx+ 2E2 cos2x

2K(+ 2K2+ 8E( cosx+ (2K(+4K2) cos2x

6K~+ (6K&+ 6E2) cosx

0(&, 2) Along cube edge, nnn direction 3 2Kj + 2E2 + (2Eg + 8K2) cosx+ 2K2 cos2x

tas sq

plus one set

of nnn bonds

triangular

in shape

Along sq edge, nn axis

Along sq diagonal, nnn axis

Along sq diagonal, perpendicular
to nnn axis

Along nn axis

Along nnn axis

perpendicular to nn axis

(i+ j)/W2

(-i+))/vY

2(l+Wgj )

2Kf + (2K( + 2K2) cosx
1
2 4K( cosx+ 2K2 cos2x

2K2+ 4K, cosx

(2Ef + 2E2) cosx + 2E) cos 2x

1
4K& cosx+ 2E2 cos2x

2E&+ (2K&+ 2E2) cosx

union-jack Replace J& by 2J& in formulas for sq(1. , 2)

fcc as bcc plus nnn direction, along
sq layers edge of an sq layer

same as above,
but fcc in same as above
cubic shape

2E2+ 8K& cosx+ 2K2 cos2x
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variable

x =fqa, (4.8)

if, and only if, the relevant direction e is parallel
to a reciprocal-lattice vector. A proof of this is
presented in Appendix B.
At zero wave number

(a)
I

J(~q)
sc [IOO]

0.5

x Q)

I.O q&y

y(0, T) =1+q,K, +q, K, + ~ ~, (4.9)

so the coefficients c;, obey the trivial sum rules

Coy+Cyy +C2y+ ' —Q'

C02+Cx2+C22+ ~ ~
Q 2

(4.10)

and equally trivially, the smal) wave-number be-
havior of X has the form

X(q, T) =X(0, T) —(q'a', /2d)(b, K, +b, K, + ~ ~ ~ ),
(4.11)

where the numerical coefficients b„b„.. . are
given by linear combinations of the c,j.

The changes in the form of the scattering inten-
sity brought about by the nnn interaction are direc-
tion dependent on a given lattice, and emerge
clearly from the truncated Fourier series expan-
sion for X(q, T) at high temperatures. It is then
convenient to work in terms of the temperature-
independent quantity

(b)
I

FJ
()

(c)

J(q

0.5

sc [I I 0]

ks T [y(q, T) —1] =g(q) (4.12)

in the suitably normalized form J(q)/t', where

z = [(q,g,)'+ (q,JJ']'~', (4.13)

to allow for extreme cases. Graphs of J(q)/J' are
presented in Figs. 1—3 for the three cubic lattices
in the [100], [110], and [111]directions. The effects
of the antiferromagnetic nnn interaction can be
observed directly.

V. ONE-DIMENSIONAL MODELS

FIG. 1. Lattice Fourier transforms J(q)/J for the
simple cubic lattice in the [100], [110], and [111]di-
rections. See text, Sec. IV (4.12) and (4.13). The graphs
are labeled with the corresponding values of Z2/IZf I.

spacing~ ls

r(r) =-,'[(1+a)(W,/Z, )"+(1—n)(p, /Z, )"], (5.1)

In this section we discuss two linear chain mod-
els with next-nearest-neighbor interactions.
These models have been solved exactly and exhibit
disorder points. ' Explicit expressions for the pair
correlation functions are available, and it is
straightforward to calculate closed-form exact ex-
pressions for the relative magnetic scattering in-
tensity. These can be used to test both our ap-
proximate calculations of Sees. III and IV, and our
subsequent treatment of disorder points in the fol-
lowing paper.

with

~ = [(a'- b')/aa'],

where in terms of K] and K„
L =2e 2[(sinhK, )'+e ' a]'~',

a'=2e 2[(coshK,)'-e ~']'~'

A. , =e ~fcoshK, +[(sinhK, )'+e ' &]'~'),

p, ,=e a(sinhK, +[(coshK,)'-e ' 2]'~'),

g' —b' = 2@~2 sinh2Ky

(5.2)

(5.3)

A. Linear chain with both nnn interactions 1c(1,2)

For this model [see Fig. 4(a)] the pair correla-
tion between spins separated by a vector r along
the chain, with IrI =na„where a, is the nn lattice

The form of the pair correlation is determined
primarily by whether p, are real or complex. A.

is real and positive, and quite generally I ii,/
A,, I

&1, so there is only a disordered phase. The
change from real to complex p, occurs when 6'



JOHN STEPHENSON

(a)

J(
(a)

J( c[IQQ]

i/vr

1.5

(b)

boo[!IO]

0.5

0.5

bcc[l I I]

(c)
J(q

05 'g 1

CD~~

fcc [I I I]

FIG. 2. Lattice Fourier transforms J(q)/J for the
body-centered-cubic lattice in the [100], [110], and
[111]directions. See text, Sec. IV (4.12) and (4.13).
The graphs are labeled with the corresponding values of .

FIG. 3. Lattice Fourier transforms J(q)/J for the
face-centered-cubic lattice in the [100], [110], anti [111]
directions. See text, Sec. IV (4.12) and (4.13). The
graphs are labeled with the corresponding values of

=0, or

coshE, =e

or (5.4)

XQ~T' = 2(I+ n)(I -x') ~a(1 —~)(1 —y')
+

1 —2x cosq +x' 1 —2y cosq +y' '

(5.6)

O'P g2 g2
I'(r) = —,sinn8+ cosn8 (5.5)

displaying the oscillatory decay of the pair cor-
relation, with wavelength 2sa, /8.

Explicit calculation of X is straightforward, with
the result

tanhK, +(tanh-,'K,)' =0,
which has a solution when -~!J,! &J,& 0 at some
finite temperature TD, the disorder point. ~ is
real below TD and pure imaginary above, so the
decay of pair correlations is monotonic exponen-
tial below T~ and oscillatory exponential above T~,
with temperature-dependent wavelength. Above

TD, p, are complex, aridwe can set p, = pe',
where p. and 8 are real and positive. Then

where we have used the abbreviations

x=p, /X„and y=p /z, . (5.7)

x+y =(2e 2sinhK, )/X, -K, ,

xy = -(2 sinh2K, )/X', -K, ,

p =o.n. '/z, =(a' h')/n, X, --K, .
(5.8)

We have also written down the high-temperature
behavior of these quantities, since it is needed
later. It is evident that X can be written in the
form X =N/D with numerator and denominator
normalized to unity at infinite temperature, and
given by

Sincex, y, and o. can take complex values, it is
useful to rearrange the above expression in terms
of the real quantities:
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B. Linear chain with alternate nnn interactions lca(1,2)

This model is illustrated in Fig. 4(b). We list
the relevant formulas for pair correlations and the
relative magnetic scattering intensity. I.et s, de-
note spins linked by the nnn interaction J» and o;.

denote intermediate spins linked only to adjacent
nearest-neighbor s spins by the nn interaction Jy.
Then for spin separation na, =(j -i)a, between
lattice sites i and j, with j&i, we have:

(s,.s,) =x"~', n even

0.6

05—

OA—

(s;g.) =x'" '&~'y n odd

&&~&&,) =x"' 'y', n even

where in terms of K, and K„
cosh2K -e '~2

x =
cosh2K, +8 ~2

sinh2K,
cosh2K~ +e

(5.10)

(5.11)

and on the extreme right-hand side we have writ-
ten down the high-temperature behavior of these
quantities. It is straightforward to calculate X,
which has the form N/D with

-O. I

2
I I

5 4
kaT/I Jil

N=(1-xy')+2y(1-x) cosq+(y'-x) cos2q,
5.12

D = 1 —2x cos2q+x' .
It is easy to see from these expressions for the

pair correlations that a change in their form takes
place at a temperature TD, the disorder point,
located by

cosh2K~ =e

or

(tanhK, )'+tanhK, =0,
(5.13)

VI. SUMMARY

In this paper we have considered the modifica-
tions which may occur to the relative magnetic

which has a solution when -[J,( &Z, &0. There is
only one phase, which is disordered, and the de-
cay of pair correlations with increasing spin sep-
aration is exponential at all temperatures, except
zero. Below TD the decay is monotonic, whereas
above T~ it is oscillatory. The wavelength of os-
cillation is independent of temperature.

The scattering is anomalous at sufficiently
high temperatures when ——,

'
& p & -4, but remains

normal when ——,'&p&0. This is illustrated by
graphs of the coefficient of q' in X

' versus tern-
perature in units of

~

J', ~/ks in Fig. V. We do not
present graphs of X itself, since the relative scat-
tering intensity has the same qualitative form for
both the linear chains considered here.

PIG. 7. Graphs of 8, the coefficient of q in the
reciprocal scattering intensity g, plotted vs tempera-
ture for the linear chain with alternate nnn interactions
lca(1, 2) for various values of the interaction ratio J2/IJ J.

scattering intensity X when competing antiferro-'
magnetic next-nearest-neighbor interactions are
introduced into the Ising model. We have shown that
anomalous scattering can occur on certain lattice
systems, including two soluble one-. dimensional
models, in the sense that isotherms of the recip-
rocal scattering intensity y

' versus the square of
the wave number q' can acquire negative initial
slope at sufficiently high temperatures, provided
the relative strength of the nearest- and next-near-
est-neighbor interactions lies in an appropriate
range. The scattering from cubic lattices has
only normal Qrnstein- Zernike form for small wave
number. The general dependence of y on wave
vector q across the Brillouin zone has been in-
vestigated at high temperatures, where it depends
on the lattice Fourier transform of the basic nn

.and nnn generating functions. The truncated Fou-
rier series form of X has beendiscussed in detail.

APPENDIX A: GROUND STATE OF THE TRIANGULAR
LATTICE t(1,2)

The aim is to find the critical ratio p, for the
triangular lattice with antiferromagnetic nnn inter-
actions. This particular lattice is tricky to handle
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because the three nnn sublattices are themselves
triangular, and antiferromagnetism is not com-
patible with a triangular net. One must calculate
the ground-state energy first when the nn inter-
action is dominant and all spins are aligned, with

J,&0&J:

U, = -N(3Z, +3m,), (A1)

where E is the number of lattice sites. Next we
must construct an arrangement of spins in which
each of the three nnn triangular sublattices is
separately in a possible antiferromagnetic ground
state. In each triangle formed from nnn bonds
with antiferromagnetic interaction J„ there must
be two antiparallel spin pairs and one parallel
spin pair. 'This may be achieved as illustrated in

Fig. 8. The energy of this arrangement of spins
ls

Equating U, and U, we find the critical ratio

e = (a,/N)(e, b'+e,b'+e,b'), (B1)

The result extends the table of critical ratios p,
given by Stephenson and Betts. 4

APPENDIX B: FOURIER SERIES EXPANSION FOR X

Theorem: X(q, T) has a Fourier series expansion
in a single variable if and only if the direction e
.(unit vector) of the wave vector q = qe is parallel
to a reciprocal-lattice vector.

The proof is for a general Bravais lattice with
basis vectors by b2 b3 and reciprocal-lattice basis
vectors b', b~, b', satisfying the relation b; ~ b&

=5-) .
(a) If. Suppose the unit vector e is parallel to a

reciprocal-lattice vector. Then e has the form

U, =N(J, -8,) . (A2) with the "normalizing" factor N given by

N'=a', Q ~e,e&(b' ~ b'),

for integer values of e„e„e,. Then the product

q r involved in the definition of X(q, T) has the
form

q ~ r = (qa, /N)(n, e, +n, e, +n, e,),
in which we have set q=qe and r is a general lat-
tice vector,

r =n,b, +n,b, +n3b3, (B4)

FIG. 8. Diagram of a spin arrangement for the ground
state of the triangular lattice t(1, 2), with J2&0&J&,
when the nnn interaction J2 is much stronger than the
nn interaction J&. Spins on the three triangular nnn sub-
lattices are shown either surrounded by a circle or a
square, or unmarked. Each triangular nnn sublattice
is in a ground-state configuration. The actual overall
arrangement of spins consists of two lines of "+"spins
followed by two lines of "-"spin's in a regular periodic
(diagonal) array.

q ~ r =(Qa,/N)(n, e, +n, e, +n, e,) . (B6)

With the appropriate choice of N, viz. , N=1/f, we

find that the combination n,e, +n, e, +n, e, is an
integer, for all integers n„n„n,. Therefore
e„e„e,must be integers, and e will be parallel to
a reciprocal-lattice vector, as required.

with n»n»n, integers. The right-hand side of
(B3) has the form of an integer times fqa„where
f= 1/N. So y'has a Fourier series expansion in a
single variable.

(b) Only if Convers. ely, suppose y has a Fou-
rier series expansion in terms of a single variable
x =fqa„say, for a direction e of the wave vector
q= ye. We can quite generally write e in the form
(Bl), except that the e, and N are not yet specified
separately. It is required to show, for an appro-
priate choice of N, that the e; are integers, in
which case e will be parallel to a reciprocal-lat-
tice vector. Now by supposition, X has a Fourier
series expansion in a single variable, so

q r=mfqa, ,

where m is an integer. Calculate q r as in (B3)
for any lattice vector r:
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