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Various physical systems with:Hamiltonians of cubic and lower symmetry are predicted classically to exhibit

second-order phase transitions but known. to yield first-order transitions within the renormalization-group

approach either (a) because no appropriate "stable" fixed point exists, or (b) because the stable fixed point is

not physically accessible. [MnO seems to be an example of (a).] This situation is discussed under

circumstances where imposition of a further symmetry-beaking field, g &1, restores a continuous transition.

Two possible types of phase diagram are identified for g —«0, either (i) without or (ii) with tricritical points.

Renormalization-group trajectory calculations for examples of (b), namely a cubic Hamiltonian under a
quadratic anisotropy field, are presented: tricritical points are found and a universal amplitude ratio governing

their location is calculated to first order in e = 4—d.

I. INTRODUCTION

Henormalization- group calculations, especially
those using &-expansion techniques, ' have proved
most instructive in studying the critical behavior
of systems with interactions more complex than
isotropic short-range couplings. In particular,
the effects of interactions which break various
symmetries are important in studying phase tran-
sitions in solids. A central concept in the renor-
malization-group approach is the association of
criticality in a system with the existence of a
fixed-point Hamiltonian K* of an appropriate re-
normalization transformation R' =R[X]. However,
a critical point will be observed under variation
of the physical fields (e.g., temperature, pres
sure, magnetic field, stress, etc )only .if the
fixed point satisfies certain conditions.

In the first place, for observable criticality the
fixed point must be "stable" or, more properly,
"stable on the critical manifold. " To appreciate
this, consider an ordinary critical point in a fer-
romagnet: the critical point is found by varying
just the temperature and the magnetic field, so
that the "codimension" of the critical manifold
(in the terminology introduced by Griffiths') is 2.
Thus, the corresponding fixed point must have
only two relevant critical operators or only two
independent directions of instability. Any other
perturbations ~X about the fixed point should cor-
respond to irrelevant operators not under physical
control. More generally, we will say a fixed
point is stable if, under all small perturbations of
X*, Other than those corresponding to the physical
critical fields, the successively renormalized
Hamiltonians X*+&X', M+ 4X",. . . "relax" back
to X~.

In the second place, even if K~ is stable it must
be accessible under action of R from those "initial"

or physical Hamiltonians, X=X,O) which lie within
the range of the physically controlled fields.

It is of interest, however, to ask what the phase
transition behavior of a physical system is like
when one or other of these conditions fails. To
see the significance of this question we remark,
first, that in such circumstances a first order-
phase transition is often to be expected (in place
of a continuous or i.-like transition) even though
classical mean-fieM or Landau theory will nor-
mally predict a continuous transition. On the
other hand, the introduction of a new symmetry-
breaking physical field, say g, will frequently
bring into existence a new' fixed point which is
both stable and accessible. ' Thus, at least for
sufficiently large g, a continuous transition with
critical behavior is then to be expected. Hence
the symmetry-breaking field destroys the first-
order nature of the transition and the overall
phase diagram differs qualitatively from the direct
classical predictions. But what happens as g-0?
Is the first-order transition destroyed by any non-
zero value of g, or does it survive until g reaches
some threshold value? In this paper we answer
these questions explicitly within one context. How-
ever, before introducing the particular model
which we attack, it may be helpful to look at con-
crete examples in which no stable and accessible
fixed point exists, in order to see more clearly
the physical meaning of such situations.

Accordingly, let us recall that to study a given
physical system using the standard momentum
shell integration renormalization technique, the
first step is to construct an appropriate model
Hamiltonian which can describe the phase transi-
tions of interest and which embodies the correct
symmetries. Typically, one constructs an effec-
tive (Landau- Ginzburg- Wilson) reduced Hamil-
tonian for v-component, continuous local variables
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where x- T —T, is the basic temperature-like vari-
able. The O,($ ) are terms of fourth order in the
components g chosen to be invariant under the
symmetry group of the disordered phase. The
critical behavior in d =4 —& dimensions is then
studied by locating the appropriate stable fixed
point of the Hamiltonian. For Hamiltonians of the
form (1.1) it has been shown by Brezin, LeGuillou,
and Zinn-Justin that the isotropic fixed point
(u,*.&0, up =. . .=u~ =0) is stable provided the order
parameter P has less than n" (d) components, where
in the important case of perturbations of cubic
symmetry we have~

n"(d) =4 —2&+ 0(e') for e =4- d~0,
and

n" (3) =3.1&3 . (1.2)

[More generally, Brezin et al. establish only
n" (d) =4 —O(e).] However, for n &n" (d) the iso-
tropic fixed point is unstable with respect to a
subset of the N„. . . , uL perturbations. More re-
cently, ' ' it has been discovered that the effective
Landau-Ginzburg-%ilson Hamiltonians appropriate
to many real materials for which n ~ 4 &n "(3) (such
as Mno, UO„Cr, Eu, TbP, etc. ) yield no stable
fixed points. As mentioned above, this fact has
been interpreted as indicating that the transitions
in these materials should be of first order even
though Landau theory predicts continuous transi-
tions. However, by applying a suitable symmetry-
breaking field (such as an anisotropic stress or a
magnetic field), the symmetry of the original
Hamiltonian is lowered and the dimensionality of
the new order parameter is thus reduced, say to
m &n. The resulting Hamiltonians may then be-
come accessible to a stable fixed point. ' Consider,
for. example, a field g which enters the Hamilton-
ian (1.1) via the symmetrized term'

$(R) =[) (R)] (n=1, 2, . . . , n) which takes the form

R= dH ——
~VP~ — rgb

crit
iin
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is the same except that m and n- m must be inter-
changed. However, when the symmetry-breaking
field is small enough the remaining n- m or m
components can no longer be neglected since their
presence is responsible for the first-order tran-
sition at g=0. Two (r,g) phase diagrams seem
plausible for small g although more complex pos-
sibilities may be conceived. These are shown
schematically in Fig. 1. In (a) the transition is
taken to be first order only for g=O, but contin-
uous for gwO, i.e., the first-order transition is
destroyed however smaQ theI symmetry-breaking
field. Conversely in (b) the transition is assumed
to remain of first order for small enough g and to
become continuous only for large enough g. In
this case one may anticipate tzic~itical points
(possibly of anomalous character) at two finite
values of g (one positive and one negative). The
original first-order transition at g=O now appears
as an ordinary Aiple point.

Recently, the phase diagram of MnO under a uni-
axial stress has been studied in a most interesting
experiment. ' This. compound is an. fcc antiferro-
magnet of type II and exhibits a first-order tran-
sition. The transition is quite "close to critical, "
under zero stress. However, a tricritical point
is found at a finite value of g, the uniaxial [111]
stress, and beyond this the transition becomes
continuous. It has been subsequently pointed out'
that this change in the nature of the phase transi-
tion might be explained by noting that under zero
stress the transition is properly described by an
(n =8)-component vector model which yields no
stable fixed point; however, for large enough uni-
axial stress n- m =6 components are suppressed
and the transition can be described by a simple
(m =2)-component vector model which does have

Nl Vl /Pl Q (1.3)
gt

For large enough positive g such a term clearly
supresses the fluctuations of the n- m components
g„„,. . . , g„, and their effect on the resuIting
critical behavior can hence be asymptotically ne-
glected. The transition is thus properly described
by an m-component model, which might well yield
a stable fixed point and a continuous transition ex-
hibiting criticality. The situation for negative g

(a)

critica
line

(b)

trier itic
point

FIG. 1. Possible types of phase diagram in the (g, r),
or anisotropy field-temperature plane showing how a
first-order transition in zero field (g =.0) might develop.
In (a) a continuous or critical transition line exists for any
g & 0; in (b) first-order lines arise for small g and ter-
minate in tricritical points at nonzero g.
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an associated stable fixed point. However, the
character of the corresponding phase diagram
[whether it is of the type (a} or (b} in Fig. 1] has
not been determined theoretically.

%'e hope to study this particular issue in the fu-
ture. However, the model Hamiltonians so far
studied which yield no stable fixed points have
rather complicated fourth-order anisotropic
terms. Accordingly, we will first study (in this
paper) a simpler example of the same underlying
situation but one which arises from the inaccessi-
bility rather than the nonexistence of a stable
fixed point. '

Thus consider the n-component model with cubic
anisotropy as described by

X= &R -p V -gr —u

'- V (1.4)

The critical behavior associated with this model
has already been studied by several authors ""
It was found that for n ~n" (d) the isotropic fixed
point is stable (in agreement with the general re-
sult of Brezin et al.'), but for n &n" (d) a new cubic
fixed point is stable. " However, by examining the
flow diagram of this model on the critical mani-
fold it is discovered that although there is a stable
isotropic fixed point for n&n" (d) there are regions
in the (u, v) plane which lie outside its domain of
attraction as shown in Fig. 2. Consequently, if
the initial physical Hamiltonian is in such a re-
gion the stable fixed point is not accessible. In
fact, the renormalization group flows take Hamil-
tonians in these regions to domains where the re-
normalized Hamiltonian, in the form (1.4}, is
thermodynamically unstable (i.e., where the
fourth-order term uZ, (', +

vg«&PAL&

is not posi-
tive definite). In these circumstances, of course,
positive higher-order terms play a crucial role
and should be included in the initial Hamiltonian.
This situation has been studied using parquet
graph approaches" "and by integrating the re-
cursion relations. " These calculations establish
the fact, expected on heuristic grounds, that the
phase transition in a system which is not acces-
sible to the stable fixed point is of first order.
It may be mentioned again that Landau theory does
not recognize this possibility; instead, the transi-
tion is predicted to be continuous for all values of
(u, v) for which the Hamiltonian itself is stable.
However, we will take this point up again briefly
in Sec. II.

The nature of the (x,g) phase diagram can,
thereft)re, be examined in this model by studying
the effect of the symmetry breaking term (1.3) on
the transition associated with the Hamiltonian

Consider the n-component cubic model with a
symmetry-breaking field g described by the re-
duced Hamiltonian

n

V
. 0, n1 O=tfl+1

—egg,' —v f g,*pe),

with

r, =z —[1—(m/n)]g and x, =x+(m/n)g

(2.1)

For stability of the free energy we require u& 0 and
u+ —,'(n —1}v&0. 'Within the e expansion this model
is found to have two regions in the (u, v} plane

,
(with u and v of order e) which lie outside the
domain of attraction of the stable fixed point:
these are

(a) zo&0,

where

(b) v&0

v —6u for n=2,
v —3u+0(&') for n=3 „

v-2u for n~4,
(2.2)

(see Fig. 2). In this section we apply scaling ar-
guments to discuss the phase diagram in the first
region (a).

The free energy associated with the Hamiltonian

(1.4}. The anisotropic terms of this Hamiltonian
are sufficiently simple that the calculations are
tractable and can be performed analytically as we
show below.

In outline, the remainder of this paper is as
follows: In Sec. II we first analyze the phase dia-
gram of the Hamiltonian (1.4) with the symmetry-
breaking term (1.3), using scaling arguments.
This leads to the definition of a universal amPli-
tude ratio associated with the two tricritical points
induced by the symmetry-breaking field [assuming
Fig. 1(b) applies]. We also comment on the purely

. classical phase diagram within a wider context.
In Sec. QI, we use a perturbation expansion in the
cubic anisotropy parameter v to demonstrate the
existence of critical and tricritical points [see
Fig. 1(b)] in the limit of large symmetry-breaking
field g~ z1. The limit ~g~«1 is discussed in
Sec. IV using renormalization-group techniques
in d =4 —& dimensions, specifically the integra-
tion of the differential recursion relations. The
existence of tricritical points is confirmed and
the universal amplitude ratio defined in Sec. II is
then calculated to leading (zeroth) order in e.
Rudnick's" solution of the recursion relations for
u and v is recapitulated and generalized in the
Appendix.

II. SCALING ANALYSIS
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FIG. 4. Schematic phase diagram of the predictions
of classical theory for an extended thermodynamic space
in which g can become negative but positive sixth-order
terms in the Hamiltonian maintain thermodynamic sta-
bility. Now lines of tricritical points appear (at u =0) in
contrast to Fig. 3(a) and with greater similarity to Fig.
3 (b).

in the (f,g, zo} space [see Fig. 3(b)]. If both in-
equalities B2 &u (d) and u —Bt &u (d) ale satisfied,
two tricritical lines are present: one for g&0 and
one for g&0, Fig. 3(b).

In the scaling limit, (2.3), the projection of these
tricritical lines on the (g, f) plane must take the
form

(2.4)

—u(P, + P,') —vg,'P', , (3 1)

where r, =r- —,'g and r, =r+ ,'g, (g-&0). We are in-
terested in the thermodynamic behavior associated
with this Hamiltonian in the critical region for the
first component (, of the order parameter, that is
r, =0. For r, =O(1) which corresponds to a large
anisotropy field g, the second component of the
order parameter g, can be integrated out using a
perturbation expansion in powers of u and v. One
then obtains a reduced, single-component, or
Ising-like Hamiltonian,

simplicity we consider only the case n=2, but the
results can be generalized readily to n~ 2. The
analysis to be presented is directly applicable
only in the domain 0&u~ v' «1 which is included
in the region (a) defined in Sec. II: recall that this
is one of the two regions in the (u, v) plane lying
outside the domain of attraction of the stable, XF
fixed point (see Fig. 2}. However, the nature of
the answers to be obtained should apply throughout
region (a) since, as is clear from Fig. 2, the flows
in this region drive u towards zero while v re-
mains of order v*. We will show that the (g, r)
phase diagram (for g&0) exhibits a tricritical
point at a finite value of g as indicated in Fig. 1(b).
By symmetry a similar tricritical point arises
for g&0. The Hamiltonian now simplifies to

x= ,' I
vy—

and

g=-A.„. t~~ for g&0 . (2.5}

X= ——,'(Vy, )' —',rP —u-g,' —ey,',
where to leading order in u and v we find

(3.2)

The ratio A„/A„„should be a universal quantity,
independent of the irrelevant variables (such as u
etc.) and equal to x', /x, . This ratio is calculated
generally in Sec. IV to leading (zeroth) order in
& =4 —d. However, by symmetry the ratio is
clearly equal to unity in the case n=2, m=1.

We have made the point that within the stability
region of (2.1) in the (u, v) plane, classical Landau-
type theory can give a qualitatively misleading
phase diagram inasfar as no tricritical lines and
associated first-order surfaces are predicted.
However, within a broader parameter space in
which a positive sixth-order term is included in
(2.1) the phenomenological theory is less mislead-
ing (see Fig. 4). Then the instability condition
ao &0 (needed for tricriticality) is replaced by u &0.
The P' terms ensures stability of the free energy,
but lines of tricritical points are now evident.

III. CUBIC MODEL WITH A LARGE ANISOTROPY FIELD

In this section we discuss the (g, r) phase dia-
gram of the cubic model with a large symmetry-
breaking, anisotropy field g. For computational

r=r, +2'(r„d),
u =u —v'B(r„d),

(3 3)

(3 4)

while % is of order v' and will remain positive in
the regions of interest. The functions A(r„d) and

B(r2, d) are integrals over the P, propagator,
namely,

W(r„d) = d"q 1

... (2n)'r, +q' ' (3.5)

B(r„d)= (3.6)

and d is the spatial dimensionality.
Now, in three or more dimensions, the reduced

Hamiltonian (3.2} will yield a continuous transi-
tion for u ~ 0, a first-order transition for u ~ 0
(fv &0), and a tricritical point at r = O(8) =O(v')
and u =O(xv) =O(v ). The tricritical point can there-
fore be located to leading order in v by solving the
equations r(r, g, u, v) =u(r, g, u, v) = 0 using (3.3)
and (3.4),

Consider now the integral B(r„d): this is a de-
creasing function of ~, which approaches zero as
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r, -~. For d = 3 and d = 4 the explicit values are

and

B(r,; 3) = —2E,[r,"'~' cot 'r, —(1+r, ) '],

B(r ;4.) = —K [In(1+x,') —(1+x,) '],

(3.V)

(3.8)

where Z„=2 '" "m "~'[I'(—,d)] '. Let us fix u and v

and vary x, . For large enough z, we have

u =u —v'B(~„d) =u&0, (3.9)

and so the Hamiltonian (2.2) exhibits a continuous
transition. As z, is decreased, however, the in-
tegrals B(r„d) become indefinitely large (for d
~ 4) and u will change sign. For smaller r, the
transition thus becomes first order. The system
hence exhibits a tricritical point at x, =x, t given
by

B(K2 g ~ d} 0/V (3.10)

IV. RENORMALIZATION GROUP ANALYSIS OF
TRICRITICAL REGION

A. Outline

In this section we will demonstrate the occurrence
of tricritical points at small anisotropy fields ~g~
«1 in the region 0&m/u«1. We willutilize the
renormalization group trajectory integral method'
to calculate the amplitude ratio A /A„ to leading
(zeroth) order in & =4 —d but general m and n, .
The results involve an integral which is evaluated
explicitly only for the case of principal interest,
namely m = 1 and n = 3. (The result for m = 2, n = 3
follows trivially by symmetry and likewise the
amplitude ratio must be equal to unity in the case
m=1, n=2 as already observed. )

Now, as explained above, the integration over
the P, components is justified only when ~, =O(1).
However, for small g in the critical region ~,
=r (Og)=0-, we also have r, =r+O(g) small. To
handle this situation we use the trajectory integral
method, ' to relate the initial Hamiltonian with
small x and g to a renormalized Hamiltonian in
which x, is of order unity. Only then is the g,
field integrated out, and the tricritical point iden-
tified. For m =1 the procedure is then straight-
forward and yields the tricritical relation

~t Ag tt (4.1)

However, since this expression is valid only if
x, ,a 1 [withB(r, „d)SO(1)'see (3.V) and (3.8)]the ex-
istence of the tricritical point has been demonstrated
only inthe region 0&I«v'. This approach cannot be
extended to the region ~g~ «1 since the expansion

' (3.3) for r is then no longer valid. This region
will be discussed in the next section using a re-
normalization group approach.

B. Recursion relations and matching

Consider the Hamiltonian (2.1}.Under action of
the renormalization group' it is transformed but
to leading order in q =4 —d the renormalized Ham-
iltonians 3C(l) remain in the parameter space
(r„x„u,v). To this order the differential recur-
sion relations for r, (l), r2(l), u(l), v(I) are found
to be

' =2r, + [12u+2(m —1)v](l —x,)

+ 2(n —m.)v(1 —y,), (4.2)

' =2r2+ [12u+2(n —m —1)v](l —r, )

+ 2mv(1 —r,),
—= eg —36u2 —(n —1}v'
dl

(4.4)

—= &v —24vu —2(n+ 2)v
Qv

dl
(4.5)

For m =2 we may follow the same procedure.
However, after integrating out the (n —m)-com-
ponent g, variables we are left with a two-com-
ponent, or XY-like reduced Hamiltonian with cubic
anisotropy. If this Hamiltonian lies in the domain
of attraction of the isotropic n=2 fixed point, it
will display critical (rather than tricritical) be-
havior. On the other hand, if it lies outside of the
domain of attraction, it can display only a first-
order transition. Thus the tricritical point may
be located by requiring that the reduced Hamil-
tonian lies on the borderline of the domain of at-
traction of the stable, XY fixed point. This leads
to a relation of the same form as (4.1) but with a
different amplitude 4,.

In what follows, we shaH explicitly derive the
form (4.1) and its analogs but we calculate the am-
plitude ratio explicitly only for n =3, m =1, as
mentioned.

We remark that tricritical points exist only for
m&n" (d). If n&m&n"(d), the region in the (u, v)
plane which lies outside the domain of attraction
of the stable fixed point of the n-component model
coincides with the corresponding region of the m-
component model, namely 0&v &2u. Thus, when
the initial Hamiltonian corresponds to 0 & v &2u,
the renormaljzation group recursion relations
transform the n=component Hamiltonian into an
unstable m-component model. The transition is
then expected to be first order even for a large
symmetry-breaking field ~g~» 1 and hence no tri-
critical point occurs. The phase diagram for n
& m) n" (d) then resembles Fig. 1(b) but with the
tricritical points removed to infinity.
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where we have also expanded the propagator fac-
tors as (1+r,) '=1 —r, . It has been shown" "
that as long as r, sO(1) the u and v relations (4.4)
and (4.5) yield results correct to O(e). This means
that providing x, and x, do not become too large,
the flows in the (u, v) plane are not affected, to
O(e), by the breaking of the isotropic quadratic
symmetry. This point, which is essential for the
treatment of the present problem, was first em-
phasized by Nelson and Domany, "and has been
used previously in calculating the thermodynamic
functions of a bicritical system. ""

As to the r, and r, relations, (4.2) and (4.3),
where terms of order x',. have been neglected, it
should be noted that these terms would be impor-
tant if we were here interested in calculating scal-
ing functions that are correct to O(e); however,
the various exponents and amplitudes remain
correct to orders & and &', respectively, when the
truncated E(ls. (4.2) and (4.3}are used.

The Hamiltonian (2.1) and its flows have been
investigated extensively in the context of bicriti-
cal behavior. " In that case, the initial parameters
u„v, are assumed to be in the vicinity of the
stable isotropic fixed point [for n &n" (d)]. Here
we study the case where u, and v, are such that
the Hamiltonian with r, =r, will not flow (in the
u, v plane) into the stable fixed point (see Fig. 2),
but rather tend to flow out of the classical stability
wedge. To be specific, we assume 0&u, /v,
&x2(n —1) with n&n)((d). (For n =3 this is correct
only to leading order in &.)

Our procedure will now be as follows. Equa-
tions (4.2)-(4.5) will be solved in an approxima-
tion valid for any l for which r, (l) sO(1). We
then select a value of I* by setting

then X d will yield a first-order transition as t
is varied. Clearly, the borderline case between
criticality and a first-order transition, i.e., tri-
criticality, occurs when

u/v =—',(m —1), (4.9)

for n")m~1 (to leading order in e). Thus the
tricritical Hamiltonians are specified [to O(e)]
by the conditions

r,(l*)=l, t=0, (4.10)

[see (4.6)] in conjunction with (4.9}.

—=X g-12ghu+2g&vdg
dZ

(4.11)

—,=~,r+ + [12~u+2(n- l)~v](1 —r),
dr 2e(n- 1)

(4.12)

where the eigenvalues

X 2
2~(n-I}

X 2
n-2

3n
' '

3n
(4.13)

correspond to the unstable, borderline fixed point

[(a) in Fig. 2]

C. Solution of quartic-term, equations

The coupled (u, v} differential E(ls. (4.4) and (4.5)
have been solved in closed form by Rudnick26 (see
also Appendix A), We will use the fact that u(l)
and v(l) remain of order u* and v* (or less}, that
is of order e. In order to solve E[ls. (4.2) and

(4.3), we reintroduce the original variables r and

g [see (2.1)]for which the recursion relations
can be written

r, (l*)=1+0(e) . (4.6)
n-1

u+
36n ' 6n ' (4.14)

At this point the renormalized Hamiltonian K(E*}
is noncritical with respect to fluctuations of the P,
variables. Thus, the trace over ]C), ean be per-
formed, keeping terms of appropriate order. After
this step we obtain a reduced Hamiltonian that de-
pends only on the [I), components and has the form

1

2(v. = —f d& —2(vp. )'+
2 -1

+u 4+v
e-1 e&g

(Obviously, for m =1 we do not have a v term. )
In R„~we easily identify a temperature-like vari-

able t. If (u, v) are such that R,~ lies in the do-
main of attraction of the m-component isotropic
fixed point, t =0 defines a critical (reduced) Ham-
iltonian. If, however, u™and v satisfy

and

&u(E) =u(l) —u*, hv(E) =v(l) —v+. (4.15)

Again, the expressions (4.11)-(4.14) are correct
only to order &.

Given u{l) and v(l) the solutions of (4.11) and
(4.12) may be written

(4.16)g(l) = 8"'g(l),

p(() =d, exp( — [12ee(l') —2ev(l )]dl ),
''

0
(4.1V)

and

r(l) =t(l) —6u(l) —(n-1)v(l), t(l) =e ' F(E), (4.18)

2(() = leep( f[12ee(v,)v 2(e —1-)ev(( )]d) }, ''
0

u/v & ,' (m —1) (n" m 1), — (4.8) {4.19)
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The reason for subtracting off the fixed point val-
ues I* and v* will become apparent below.

D. Location of tricritical points

Having solved the recursion relations, we turn
to determine l*. It proves convenient to impose
the requirement in the form

(4.30)

where l is the value of l for which the flow in the
(u, v) plane (which, one recalls, is decoupled in
leading order) goes from (u„v,) to [u(l ),v(l )]
such that the condition (4.23) is satisfied. Com-
bining this requirement with (4.29) and (4.25)
yields

t(l+)+(m/n)g(l+) =1. (4.20) g(l„)/[t,(l„)]'=n/(n- m)

t =r, (l*)+O(~).

Imposing t =0 in accord with (4.10) yields, to
leading order, the relation

(4.21)

t(l+) —(1 —m/n)g(l+) =0. (4.22)

The tricriticality conditions are completed, to
leading order, by

f(l*) u(l ) m —1
v(P') 6

(4.23)

These two equations together with (4.20) impose
three conditions on five variables tp, gp Qp vp and
l*. Thus, for fixed uo and vo we can, in principle,
eliminate l*, and obtain t, g, gp

Consider first Eq. (4.20) which, by using (4.16)
and (4.18), May be rewritten

'Fe' +(m/n)ge' =1. (4.24)

If we now define

g=g/t~ with Q=Xz/X„

and put

y=z /xz@

(4.26)

(4.26)

Since u(l} and v(l} remain of O(e), or less, this
ensures, via (2.1), that x2(l*) =1+0(a) in accord-
ance with the prescription (4.6). In principle,
this equation can be solved for l~ for any (t„g„
u„v,). However, we want to find the tricritical
points. Accordingly we call on (4.9) and (4.10).

On performing the trace over the (3 variables,
we obtain a reduced Hamiltonian with temperature-
like variable"

with

go=g~ and to=t (4.31)

d„= exp-2e ev(l)dl).m n m p

(4.33)

Obviously, for g&0 we will get quite analogous ex-
pressions with A in (4.32) replaced by -A„
Thus the amplitude ratio is given by

A m t'mexp-2e( ee(l)dl). (4.34)

In order to calculate explicitly the integral en-
tering this expression we have generalized Rud-
nick's exact solution of the (u, v) equations for
the case" n =2, to general n. By utilizing the tri-
critical condition (4.23}to determine l and noting
that l =- ~ corresponds to the unstable fixed point
(4.14) we can then obtain an expression for A„/A. „„
valid for general m and n —m [&n"(d)]. These cal-
culations are presented in Appendix A. The re-
sult, however, involves an integral [see (A6)]
that is somewhat intractable for nonintegral m
and n. Nevertheless, for the case of most prac-
tical interest, namely m =1 for n =3, the integral
can be performed straightforwardly and we con-
clude

where t, and g, denote the tricritical point values
in the initial Hamiltonian. On using the definitions
(4.1V) and (4.19) we see this is equivalent to the
announced result

(4.32)

together with the trajectory integral expression

we may substitute in (4.24) to obtain

4'2+(m/n)z4'2=1, (4.27)

9
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=0.406486 (n=3). (4.36)

from which we see that 4 is a function of z alone.
The criticality condition (4.22) now becomes

Of course this result is subject to corrections of
order &.

'"2 —(1 —m/n)z4''=0, (4.28) E. Conclusion

which on using (4.2V) and (4.13) yields

z=n/(n —m) (4.29)

to leading order &. Finally, we must invoke the
condition (4.23) for tricriticality. This means that
for given up vp and m we must also have

This completes our analysis. We have demon-
strated explicitly how a symmetry-breaking term
can alter the transition behavior of a Hamiltonian
so that a first-order transition corresponding to
an inaccessible fixed point, becomes a triple point
with two associated tricritical points, beyond which
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the transitions become continuous. In the scaling
regime the universal ratio determining the loca-
tion of these tricritical points has been found to
leading order in q. Further calculations using the
trajectory .integral approach could yield the full
scaling function W(x, y) introduced in (2.3). How-

ever, it seems more worthwhile to study one of
the more complicated examples, discussed in the
Introduction, in which the original first-order
transition occurs because the symmetry is such
that no stable fixed point exists. We hope to dis-
cuss such a situation in the future.

APPENDIX

To calculate the amplitude ratio from the formula
(4.34) we first solve the (u, v) Eqs. (4.2) and (4.3).
Following Rudnick's solution" for n =2, we intro-
duce the substitutions

y=e"/c, M=eyU, v=eyV,

f=2(/v = U/V.

These yield

(A1)

(A2)
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with

m
R~B~,

n-m n
(A7)

&m

R, =exp -2n v l dl,
&n-m

(A6)

R2 = exp [2nvn(l„- l„„)]. (AS)

To calculate 8, we transform to an integral on f
according to

v l dl= t/' —d
df

d 2 —1 6 —n+1, A10
fn-m

where for k =m or (n —m) we have, by definition,

(A11)

m(4 m)
(n m)[4 (n m) J

(A12}

which correctly inverts on replacement of nz by

(n —m}. For m=1, n=3 we find R,(1,3)=—", .
To handle the factor B2 we rewrite (AS) as

B,(m;n) =(I /I„„)'/'"" =(I /I„)'/', (A13)

where, for & &0,

in which, finally, the tricriticality condition (4.23)
has been used. On integrating (A10) explicitly we
obtain

and

—=-V(2f -1)[6f- (n-1)],

dV V[24f + 2(n+ 2)]
df (2f—1)[6f- (n —1)] '

(A3)

(A4)

(A14)In=e "2/e = e"dl = dy =y(fn),
~00 Pp

in which y, =y(l=-~) =0. We may then use the
solution (A6) for y(f) if we recall (A11) for fn and
note that

The second equation here may be integrated easily
for na4 to yield

t4(-~) I* n —1
v( ~) v* 6

(A15)

V(f) A(2f I) (8+8)/ (n 4)(6f n+1)3tt/(n 4) (A6)

where A is a constant of integration. Thi;s result
may then be substituted into (A3) which is then
formally solaced for y(f) by

/ (6f I n+ 1)4(tt 1)/(4 n)

y B)1-2/ (4 ) df +y0 (A6)
fp

where B =A '. Inversion of this relation gives f
as a function of y and hence f (l). Substitution in
(A5) then gives V(l) and finally u(l) and v(l) follow
from (A1) and (A2).

To use these results to evaluate the integrals en-
tering the amplitude ratio expression we rewrite
(4.34) as

(1.3) (220/37 x 7)16/ 3 (A16)

On combination with (A12) and (A7), we find the
result quoted in the text.

This follows by recognizing that for small m all
the (u, v) trajectories in question emerge original-
ly (i.e., at l = —~) from a region close to the un-
stable borderline fixed point specified by (4.14).

This analysis thus expresses the ratio R, and
hence, via (A12) and (A7), the amplitude ratio
for general n and I in terms of an explicit inte-
gral. The integral in (A6) is not simple for gen-
eral n and m but for m =1 and n =3 (or other in-
tegral values) it may be performed trivially. On
substitution in (A13) we thence obtain



DESTRUCTION OF FIRST-ORDER TRANSITIONS. . .

~(a) K. G. Wilson and J. Kogut, Phys. Bep. 12C, 75
(1974); (b) M. E. Fisher, Rev. Mod. Phys. 46, 597
(1974); (c) A. Aharony, in Phase Transitions and Criti-
cal Phenomena, edited by C. Domb and M. S. Green
(Academic, New York, to be published).

2R. B. Griffiths, Phys. Rev. B 12, 345 (1975).
3P. Bak, S. Krinsky, and D. Mukamel, Phys. Rev. Lett.

36, 829 (1976).
4E. Brdzin, J. C. LeQuillou, and J. Zinn- Justin, Phys.

Rev. B 10, 892 {1974); see also D. B.Nelson, J. M.
Kosterlitz, and M. E. Fisher, Phys. Rev. Lett. 33,
813 (1974) for the value of'nx(d).

5(a) D. Mukamel, Phys. Rev. Lett. 34, 481 (1975); (b)
D. Mukamel and S. Krinsky, J. Phys. C 8, L496 (1975);
(c) P. Bak, S. Krinsky, and D. Mukamel, Phys. Rev.
Lett. 36, 52 (1976); (d) D. Mukamel and S. Krinsky,
Phys. Rev. B 13, 5065, 5078 {1976); (e) P. Bak and
D. Mukamel, Phys. Rev. B 13, 5086 (1976).

6S. A. Brazovskii and I. E. Dzyaloshinskii, JETP Lett.
21, 164 (1975).

~V. A. Alessandrini, A. P. Cracknell, and J. A. Przys-
tawa, Commun. Phys. 1, 51 (1976).

If the Hamiltonian (1.1) lies inside the domain of attrac-
tion of a fixed point, the symmetry-breaking field g
defined in (1.2) introduces multicritical (bicritical or
tetracritical) behavior. See for example: (a) M. E.
Fisher and D. R. Nelson, Phys. Rev. Lett. 32, 1350
(1974); (b) D. R. Nelson, J. M. Kosterlitz, and M. E.
Fisher, Phys. Rev. Lett. 33, 813 (1974); (c) A. D.
Bruce and A. Aharony, Phys. Rev. B 11, 478 (1975);
(d) J. M. Kosterlitz, D. B. Nelson, and M. E. Fisher,
Phys. Rev. B 13, 412 {1976).

BD. Bloch, D. Hermann-Ronzaud, C. Vettier, W. B.
Yelon, and R. Alben, Phys. Bev. Lett. 35, 963 (1975).

The change of the order of the phase transition induced
by axial anisotropy in n-component, s6 models has
been discussed by B. Oppermann [J.Phys. C 7, L366
(1974)] using a 1/n expansion. However, the sym-
metric models here are predicted by classical mean-
field theory to display afirst-order transition.

"(a) K. G. Wilson and M. E. Fisher, Phys. Rev. Lett.
28, 240 (1972); (b) A. Aharony, Phys. Rev. B 8, 4270
(1973); (c) A. D. Bruce, J. Phys. C 7, 2089 (1974).
M. K. Grover, L. P. Kadanoff, and F. J. Wegner,
Phys. Rev. B 6, 311 (1972); D. J. Wallace, J. Phys.
C 6, 1390 (1973).

3I. F. Lyuksyutov and V. Pokrovskii, JETP Lett. 21, 9
(1975).

' I. F. Lyuksyutov, Phys. Lett. 56A, 135 (1976).
T. Nattermann and S. Trimper, J. Phys. A 8, 2000
(1975); T. Nattermann (unpublished).

~ J. Rudnick (unpublished).
'~See, e.g., M. E. Fisher, Proc. Nobel Symp. 24, 16

(1973), and P. Pfeuty, D. Jasnow, and M. E. Fisher,
Phys. Rev. B 10, 2088 (1974).
K. G. Wilson, Phys. Rev. Lett. 28, 548 (1972); M. E.
Fisher and P. Pfeuty, Phys. Rev. B 6, 1889 (1972);
F. J. Wegner, Phys. Rev. B 6, 1891 (1972); A. Ahar-
ony, Phys. Lett. 49A, 221 (1974).

~J. Rudnick and D. R. Nelson, Phys. Bev. B 13, 2208
(1976).
D. R. Nelson and E. Domany, Phys. Rev. B 13, 236
(1976).

2~E. Domany, D. R. Nelson, and M. E. Fisher, Phys.
Bev. B (to be published).

22E. Domany and M. E. Fisher (unpublished).
3Compare also M. E. Fisher, Phys. Bev. Lett. 34, 1634
(1975).


