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Monte Carlo simulations are used to study the roughening transition in the solid-on-solid and discrete
Gaussian models of interfaces. It is demonstrated that very long simulation times are required to obtain a
meaningful description of interface properties. Strong evidence is presented for the existence of the roughening

transition, which is reflected in the thermodynamic properties of interfaces as well as the expected divergence
of the interface width.

L INTRODUCTION

In 1949, Burton and Cabrera' suggested that
the interface between two phases in the three-di-

', mensional (3D) Ising model should exhibit a
"roughening" transition at a temperature T~ con-
siderably below the bulk critical temperature
T',D(ising). This transition is characterized by
the interface becoming infinitely "rough" in the
sense of a divergent interface width. The primary
motivation for studying this transition comes from
the theory of crystal growth, which uses the lat-
tice-gas interpretation of the Ising model. As dis-
cussed in detail by Burton, Cabrera, and Frank, '
interface roughening should play a basic role in
determining growth rates and crystal perfection.
Below T~, growth only occurs by nucleation or by
spiral growth in the presence of screw dislocations.
Above T~, the nucleation barrier is expected to
vanish, giving a much higher growth rate that is
linear in the chemical potential difference ~ p, .

The argument used by Burton and Cabrera' for
the- existence of the roughening transition was
based on a mapping of the interface problem onto
the two-dimensional spin-& Ising model, which is
valid at low temperatures. Consider a 3D simple-
cubic Ising model with nearest-neighbor exchange
J in the x and y directions arid J' in the z direction.
The interface is taken to be perpendicular to the
z axis and is perfectly flat at T=0, with S'=-—,

'
for z~1 and $'=+ —,

' for z~0. In the lattice-gas
interpretation, S'=+ —,

' represents a particle and
S'=-—,

' corresponds to a vacancy or hole. For
small values of T &0, particles will appear on the
surface (S'=+-,' spine in the x, y plane with 8 =1)
with an energy 4J+J' —J' =4J. The interactions
within the x, y plane are just those of the two-
dimensional (2D) Ising model with exchange con-
stant J. Since the system is symmetric, the z
=0 layer also maps onto a 2D Ising model. Burton
and Cabrera then argued that since the 2D Ising
model has a phase transition' at T2D(ising)
= (2)Tsn(ising), at which the magnetization van-
ishes, the interfa. ce should also show a similar

transition at about the same temperature, T„
= T',n(ising). This transition should be character-
ized by the particle concentration (c„=(8')„+-,',
where the average is taken over the x,y plane
with s =n) becoming the same in both layers. The
gradient of the particle concentration then van-
ishes and- the interface width diverges.

The difficulty with this argument is, of course,
that before the interface width has become infinite,
the mapping onto the 2D Ising model has broken
down. The argument is, however, suggestive and
also indicates that if the roughening transition does
in fact exist, the value of J' should not be impor-
tant. Most work on this problem has therefore
concentrated on the solid-on-solid (SOS) limit,
in which J' -~ and the Hamiltoniari can be written

where i and j denote the x and y coordinates, h, &

takes on integer values, and we have introduced
& =J to make contact with previous work.

In 1951, Burton, Cabrera, and Frank' extended
the discussion to the three-and five-level versions
of Eq. (1) in the Bethe approximation, but did not
find any transition for these cases. They did find
a maximum in the specific heat and made the
rather unfortunate statement that it "can be in-
terpreted as the transition temperature, " but it
is clear from the exact solution of the correspond-
ing one-dimensional interface problem' that such
an interpretation is not valid.

It might be supposed that the failure to find the
roughening transition was due to the limitation to
a finite number of layers, but in 1966 Temkin
showed that this was not the case.4 Temkin ap-
plied a Bragg-Williams approximation to the SOS
model with an infinite number of layers. His re-
sults provided a good qualitative description of
the thermodynamic properties, but still did not
predict a roughening transition. This result cast
considerable doubt on the existence of roughening,
since Temkin's method, when applied to the 2D
Ising model, reduces to the usual mean-field ap-
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proximation with a phase transition. The problem
posed by Temkin's results has recently been re-
solved by the identification of the essential cor-
relations that had been neglected. ' It was demon-
strated that the roughening transition can be ob-
tained from a mean-field treatment, reinforcing
the belief that roughening does take place and is
closely related to the phase transition in the 2D
Ising model. However, the new mean-field ap-
proximation does not provide a good estimate for
T~, nor a rigorous upper bound. [A rigorous low-
er bound is available since van Beijeren' proved
that Ts» T',n(ising) for arbitrary values of J'.]

The method of low-temperature series expan-
sions has also been applied to this problem.
W'eeks et al.' and Gilmer et al.' have calculated
the exact values of the first eight terms in the
expansions of four properties of an interface in
an isotropic Ising model (J' =J}. Pade analysis
of each series shows evidence of a singularity
supporting the existence of roughening. Unfor-
tunately, four different values of T~ are predicted.
Three of the series represent different measures
of the interface width and are related by exact in-
equalities. "" These inequalities are violated by
the predicted values of T~. The predicted expon-
ents describing the divergence of the various mea-
sures of the width also violate these inequalities
if a single value of the roughening temperature is
assumed. This means that these series are not
long enough to show their true asymptotic behavior
and we cannot rely on their predictions.

Leamy et al."have also presented series pre-
dictions for the SOS model, but the exact inequal-
ities are again violated. (The only available self-
consistent set of roughening exponents are those
given by the mean-field approximations)

onte Carlo simulations have also been per-
formed in an attempt to clarify the situation. "'
Although they have contributed to our knowledge
of the thermodynamics of interfaces, they have
not been able to provide satisfactory evidence for
the existence of the roughening transition. This
has been primarily due to the use of short simula-
tion times and the failure to study the size depen-
dence and time dependence of the relevant pro-
perties.

The main purpose of this paper is to present the
results of Monte Carlo simulations that do demon-
strate the existence of the roughening transition
and clarify its relationship to the phase transition
in the 2D Ising model. We shall show that the
roughening transition is reflected in a singularity
in the specific heat and critical slowing down as
well as in the expected divergence of the interface
width.

We shall also present the results of what we

believe to be the first Monte Carlo simulation
of the closely related discrete-Gaussian (DG)
model, described by the Hamiltonian

$Q(DG)=q [(h;~ —h;, ) +(h;; —h; ~,~) ]. (2)
t ~

por height differences of 0 and +I, Eqs. (1) and

(2) give the same values of the energy. Since the
average height difference for neighboring sites
is about 0.25 at roughening, the transition is ex-
pected to be essentially the same in both models
and to occur at approximately the same tempera-
ture. The DG model, however, is somewhat more
tractable mathematically and has been mapped
onto the 2D Coulomb gas by Chui and Weeks" and
onto a sine-Gordon theory by Kroll, Muller-Krum-
bhaar, and Wagner. "

In Sec. II, we shall describe the relevant details
of the Monte Carlo method. Sec. III contains the
thermodynamic properties of the interface and
Sec. IV has a discussion of the interface width.
Time-dependent correlation functions in Sec. V
demonstrate the presence of critical slowing down.
The properties of a step in the interface also show
the effects of roughening and are discussed in
Sec. VI.

II. MONTE CARLO METHOD

Monte Carlo simulations of both SOS and DG
models were carried out for a sequence of N xÃ
square lattices with periodic boundary conditions,
where N=5, 10, 20, and 40. Buns were made
both with and without a single (10}-step in the sur-
face. The algorithm involved single-site process-
es that changed the height of the surface at a chos-
jen site by one unit and did not conserve the total
height (no particle conservation).

Two separate chains of pseudorandom numbers
were used to generate the x and y coordinates
of a site. A third chain was used to decide whether
to attempt a creation or annihilation (b,h&& =+ 1 or
-1). If the proposed energy change was less than
or equal to zero, it was carried out immediately;
otherwise, the change was only carried out with
a probability exp(-pb. E) as required by detailed
balance. Separate chains were used for EA, ,&=+1
and -1. The five chains were broken by the use
of a different random number generator and per-
muted every N' Monte Carlo step (that is, in inter-
vals of one Monte Carlo step per site). System
properties were recorded at intervals of one
Monte Carlo step per site.

For each value of the temperature T and linear
dimension N, a continuous simulation of 1.1 x 10
Monte Carlo steps per site was made (1.76 x 10'
Monte Carlo steps for a 40 x 40 lattice), starting
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from a flat surface (k&& =0). For the analysis,
each simulation was )ivided into 11groups (or
runs) of 10'. The first run was discarded and
averages were taken over each of the remaining
ten runs.

Errors proved to be larger than one would ex-
pect from simulations of this length, due to the
long relaxation times discussed in Sec. V. (These
long relaxation times prevented the study of larger
lattices with the available computer time. ) We be-
lieve that the most reliable error estimates are
given by the spread in the values for each quantity
obtained from each of the ten runs. The validity
of this estimate depends primarily on the relaxa-
tion times being much less than 10' Monte Carlo
steps per site, which is consistent with our re-
sults for the time-dependent correlation functions.

Direct integration of the measured time-depen-
dent correlation functions" to obtain values of the
effective correlation times resulted in error esti-
mates that were somewhat erratic and generally
more optimistic than those obtained by comparing
different runs.

Consistency checks were made by repeating the
entire calculation for a few values of T and N
with different initial random numbers. These
checks always agreed within the error estimates.

The common procedure of using different start-
ing configurations, such as those generated @t

higher temperatures than one is interested in,
was avoided in this calculation because of the
possibility of freezing in metastable states with
a double step in the surface. "

It is very diffj.cult to be sure that a Monte Carlo
simulation does not contain systematic errors.
It is conceivable that an additional, very slow re-
laxation time (or even nonexponential decay) could
cause such errors. We did look for a time depen-
dence of the calculated quantities and made con-
sistency checks on the time-dependent correlation
functions. For the simulation times used, we did
not find evidence of longer relaxation times or non-
exponential decay. Tests with shorter runs (~10'
Monte Carlo steps per site) did contain systematic
errors that led us to the longer simulations.
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FIG. 1. Average energy per site E as a function of
temperature T (in units of e with kB=1) for the SOS( )
and DG(X) models with linear dimension N= 10.
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tion of temperature (in units of c with k~ =1) for
both SOS and DG models. The expected equivalence
of the two models at low temperatures (T~ 0.8&) is
confirmed. Anticipating that we will find T~(SOS)
= 1.15m and T„(DG)= 1.%, we see that the energies
of the two models differ substantially in this tem-
perature range. It is, however, interesting to
note that the energy of each model at its roughening
temperature is very nearly 0.5&. The inflection
points corresponding to the specific-heat maxima
can be seen more clearly by viewing Fig. 1 at an
angle. The statistical errors are somewhat small-
er than the dots used for the SOS model.

Figure 2 plots the specific heat versus tempera-

III. THERMODYNAMIC PROPERTIES

Throughout all simulations, the energy was
monitored at time intervals of one Morite Carlo
step per site. The averaged energy per site (E)
(also denoted simply by E when no confusion can
arise), was calculated, as well as the specific
heat from the fluctuations
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Figure 1 shows the calculated energy as a func-

T

FIG. 2. 'Specific heat C vs T for the SOS( ) and DG(X)
models.
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FIG. 3. C vs T for N = 5, 10, 20, and 40 in the 808
model.
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ture for both models. The errors are about twice
the size of the crosses (-0.03) at and above the
maximum and smaller at lower temperatures.
The two models are again seen to be identical at
low temperatures and qualitatively the same at
higher temperatures, although the SOS specific
heat is about a factor of two higher than that found

for the DG model.
A maximum in the specific heat does not, by it-

self, imply a phase transition and we must examine
the size dependence to see if it turns into a singu-
larity in the thermodynamic limit. This is done in
Fig. 3 for the SOS model. For high and low tem-
peratures, the specific heat is almost independent
of N, but at intermediate temperatures, we find a
significant N dependence. The peak shifts to lower
temperatures and narrows as N increases, sug-
gesting a singularity near T =1.15& in the thermo-
dynamic limit [recall that the rigorous lower
bound for Ts is T',n(ising) = I.13459@).'

The behavior of the peak in the specific heat for
the DG model is rather different, as shown in Fig.
4. The size dependence is again only present at
intermediate temperatures, but the peak does not
show signs of narrowing and moves to higher tem-
peratures as N increases. Since we do not have a
rigorous upper bound for T~, extrapolation is dif-
ficult. If T„exists for the DG model, it is defin-
itely higher than for the SOS model. However, it
must be noted that the evidence for any singularity
in the specific heat for the DG model is consider-
ably weaker than for the SOS model.

IV. INTERFACE WIDTH

The width of the interface is not uniquely defined
and many measures of it are conceivable. ' One
possibility is the maximum jump in layer concen-
tration (c, —c,), which corresponds to the maxi-
mum density gradient in the continuum description.
The reciprocal of this quantity gives a reasonable
measure of the width, but it is unfortunately not an
appropriate quantity to calculate in a simulation
that does not conserve particle number.

The moments of the concentration profile are
considerably easier to study and we have calculated
both the second and fourth moments. The average
value of the height was subtracted in each case, so
that we computed

(n') = g n'(c„- c„„)

1.0

= ((h, ~
—(h, q))'), (4)

1.0 1.2 1.3

FIG. 4. C vs T for N = 5, 10, 20, and 40 in tl e DQ
model.

with a similar expression for (n4)

Figure 5 shows (n') as a function of T for various
values of N in the SOS model. The prediction of
the Temkin approximation is shown for compari-
son. If the points for any finite value of N are
examined, they are seen to lie on a smooth curve,
which is qualitatively the same as that predicted
by the Temkin approximation; no phase transition
is evident, However, if the size dependence is
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FIG. 5. Second moment of the concentration profile
(n2) [see Eq. [4)] vs T for several values of N in the
SOS model. The solid line gives the prediction of the
Temkin approximation.
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taken into account, the width at higher tempera-
tures does appear to be diverging as N increases.

The even spacing of the points and the analogy
with the continuous Gaussian model" suggest plot-
ting (n') vs ln(N) as shown in Fig. 6. For T
~ 1.10m, (n') reaches a limiting value and shows no

sign of diverging. On the other hand, for T~ 1.20,
(n') is linear in ln (N) for N ~ 10 to within the ac-
curacy of the calculation (about 1%), giving addi-
tional evidence that the singularity in the specific

1.2
I

1.3
I

1.4

FIG. 7. A2 as a function of temperature for the SOS
model, where A is obtained by fitting Eq. (5) to the
points in Fig. 6.

heat is indeed associated with roughening.
If we fit the linear regions to the form

(n') -A ln(N)+a, (5)

and plot A,' vs T, we find the straight line shown
in Fig. 7. A least-squares fit of the points shown
extrapolates to a roughening temperature of 1.14&,
which is consistent with the rest of the calculation
and the rigorous lower bound. '

If we generalize Eq. (5) and assume that the var-
ious moments of the concentration profile take on
the asymptotic forms

&l~l')-(&- &s)'" [»(»]" (6)

then the Lapunov inequalities"

(7)

0.4
x 1.20 imply that
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FIG. 6. (n2) vs ln(N) for various temperatures in the
SOS model.

(f& /k (f&,/(k+ 1) .

This implies in turn that (n') should diverge at
least as fast as [ln(N)]a. Unfortunately, the data
do not support this prediction for the values of N
used; (n') is better fit by [ln(N)]' '. This means
that either Eq. (6) is wrong or N is not large
enough for (n') to show its true asymptotic behavior
(or both). Actually, the ratio (n~)/(na)a does satisfy
inequality (7) and decreases monotonically with in-
creasing N. Since unity is a lower bound for this
ratio, (n4) should be proportional to (n')' for large
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FIQ. 9. X2 —-exp( —4pe)/(n ) as a function of Y
= exp(—2Pe) for various values of N in the SOS model.
The solid line represents the SOS prediction of the low-
temperature expansion of Leamy et al. (Ref. 11).

N. If Eq. (6) is correct, the exponent inequality
(9) must then become an equality; P, =2/, =2.

Figure 8 shows a plot of (n',) vs ln(N) for the DG
model. Aside from the difference in scale with
Fig. 6 (the DG values are smaller), no linear be-

FIG. 10. Same as Fig. 9 for the DG model. The solid
line is also the same as in Fig. 9 and represents the
low-temperature expansion for the SOS model (Ref. 11).

havior is seen for T~ 1.30&. The values for T
=1.35& and 1.40& appear to be almost linear in
ln(N), but more points are needed at higher tem-
peratures to decide whether Eqs. (5) and (6) pro-
vide an appropriate description.

Finally, it is interesting to compare our results
directly with those obtained from low-temperature
series expansions. " As mentioned in Sec. I, the
roughening behavior predicted by these series
shows certain inconsistencies indicating that they
are not yet long enough to show their true asymp-
totic behavior. However, the series are still ex-
pected to give good predictions of the interface
properties for temperatures sufficiently far below

8'
Figure 9 shows a plot of X, =exp( —4Pc)/(n') vs

Y=exp(-2P&) for the SOS model with N=5, 10, 20,
and 40. The solid line shows the predictions of
the eight-term series." At low temperatures, the
size effect is magnified by this plot and shows the
Monte Carlo points converging toward the series
prediction as N increases. Thus, the Monte Carlo
results confirm the series predictions at low tem-
peratures. This is an important consistency
check, since the Monte Carlo results do not agree
with the roughening behavior extrapolated from
low temperatures. "" It should be noted that the
Monte Carlo method involves only an extrapolation
in system size and not in temperature.
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Figure 10 shows the corresponding plot of X, vs
F for the DG model. The solid line is again the
series prediction for the SOS model since DG
series are not available. The plotted points lie
considerably higher than those for the SOS model,
corresponding to the smaller DG interface width.
Figure 10 is also consistent with T„(DG)& T„(SOS),
but the data are not sufficient for a direct extrapo-
lation.
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V. TIME-DEPENDENT CORRELATION FUNCTIONS

The dynamics of our interface models were
studied through normalized, time-dependent cor-
relation functions" of the form

20—

x oo
o

o

o o

for A =E and A = (n'&.
Figure 11 shows v~ vs T for various values of N
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X
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0.
0.8 1.0 1.2

FIG. 11. Effective initial time constant, v ~z -- —1/in
Lt'z(t =1)], as a function of temperature for the SOS
model.

(10)

where A was taken to be either the energy E or the
second moment of the concentration profile (na&.

If f„(t) followed a simple exponential law, the re-
laxation time could be obtained from the inverse of
the initial slope. Although fs(t) and f~(t) are actu-
ally more complicated, we can still define an ini-
tial relaxation time characterizing the short-time
decay of correlations. Since Z and (n'& were re-
corded at intervals of one Monte Carlo step per
site, we used

0 0000
g

0 0 0 0
+ . + ++++ + I

Ig

o~ I I I I I

0,8 1.41.2

FIG. 12. Effective initial time constant 7 „2 (from the
second moment of the concentration profile), as a func-
tion of temperature for the SOS model.

in the SOS model. " For high and low tempera-
tures, the size dependence is negligible. However,
the maximum between T =1.1& and 1.2E shows a
definite size dependence, characteristic of critical
slowing down. This behavior is quite similar to
that seen in the 2D Ising model2' and supports the
link between the roughening transition and the
usual second-order phase transitions.

The behavior of v„„shown in Fig. 12, is con-
siderably different. For low temperatures, v„,
is essentially size independent and nearly equal to
7'~. However, it rises to a very high peak near
T =1.15m (compare the scales in Figs. 11 and 12)
and remains large for higher temperatures. This
differs strongly from the usual critical slowing
down, but it is consistent with the picture of an
interface width dominated by large long-wave-
length fluctuations.

Actually, both correlation functions show evi-
dence of both long and short relaxation times, as
shown in Fig. 13 for the SOS model, with T =1.15&

and N =20. Note that the long-time behavior of

f„,(t) corresponds to a relaxation time of about 92,
which is much longer than v~, = 24 (both in units of
one Monte Carlo step per site).

Critical slowing down is also seen in the DG
--model, as shown in Fig. 14, but v'~1 is much farther
from its asymptotic behavior than it is for the SOS
model. v~ also exhibits critical slowing down for
the DG model as seen in Fig. 15 and provides good
evidence for the existence of roughening. How-

ever, it. is not sufficient to locate the transition.
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FIG. 13. Semilogarithmic plot of the normalized
correlation functions fz(t) and f„2(t) as a function of
time t (in units of one Monte Carlo step per site) for
the SOS model (T=1.15m and %=20).

VI. THERMODYNAMIC PROPERTIES OF STEPS

4,5-
OG

4.0

0
X

3.5-

Recently, Leamy and Gilmer'~ made the inter-
esting suggestion that the internal energy associ-
ated with a step should go exactly to zero at T~.
Unfortunately, confirmation of their suggestion
turns out to be a difficult and somewhat subtle
problem. First, it must be noted that very high
accuracy is necessary for this calculation, since
the Temkin approximation, ~' which does not pre-

FIG. 15. Same as Fig. 12 for DQ model.

E,„=N[E(1 step) —E(no steps)], (12)

and the step specific heat from the energy

fluctuat-

ionss

dict roughening, does predict a rapid drop in the
step energy. Leamy and Gilmer's Monte Carlo
simulation times of 250 steps per site'~ were not
sufficiently long to provide the required statistics.
In addition, they only considered a 20 x 40 lattice
with zero, two, four, and eight steps and defined
their step energy as the linear term in a poly-
nomial fit of the surface energy as a function of
the number of steps for this particular lattice size.
This is not equivalent to the asymptotic energy of
a single step in the limit of infinite lattice size.
The nonanalyticity they found seems to have been
due to the use of different methods of fitting their
data above and below what they believed to be the
roughening temperature. The value for T„ they re-
ported is about 10% too high.

The method we used involved simulations for a
series of N xN lattices with and without a single
step as described in Sec. II. The step energy per
unit length

C„=N[C(1 step) —C(no steps)], (13)
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o 40
+ 20
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I
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FIG. 14. Same as Fig. 11 for the DG model.

were thus obtained as functions of both T and N.
The basic behavior of E„as a function of T is

shown in Fig. 16 for both the 808 and DG models
with N =10. The two models show similar behavior
(identical at low temperatures), which is qualita-
tively the same as that predicted by the Temkin
approximation. "

The exact result for a one-dimensional interface
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ponding one-dimensional problem.
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FIG. 17. E,t as a function of 1/N for various tem-

peratures in the SOS model.

in a two-dimensional Ising model is shown for
comparison. The Monte Carlo points lie well be-
low this curve, even at fairly low temperatures.
This is a well-known size effect' and as N is in-
creased, E,t will also increase (for low tempera-
tures) until it agrees with the curve. This size
effect is clearly seen in Fig. 1V, where E„is
plotted against 1/N for the SOS model. The plot
also shows that E„decreases for larger systems

FIG. 18. Same as Fig. 17 for the DG model.

at higher temperatures, giving support to Leamy
and Gilmer's suggestion. However, E„probably
goes to zero much more slowly than 1/N near T„
(if it does go to zero) and Fig. 1V does not provide
conclusive evidence that it vanishes.

The situation is similar for the DG model, as
shown in Fig. 18. Here, the plot of E„vs 1/N
suggests that the singularity, if present, lies near
T =1.25& or 1.30&.

More progress can be made by looking at the
step specific heat. The basic temperature de-
pendence is shown in Fig. 19 as a plot of C„vs T
for both SOS and DG models with N =10. Again,
the shape of both curves is qualitatively the same
as that found in the Temkin approximation" and
the size effect is again prominent at low tempera-
tures.

Figure 20 shows the behavior of the, negative
peak in a plot of (-C,„) vs T for various values of
N in the SOS model. The size dependence is very
strong (note the change in scale from Fig. 19) and
provides our best single piece of evidence for the
value of T„being (1.15+0.05)c, as opposed to the
older predictions"" "centered about 1.28&.

Figure 21 shows (-C„)vs T for various lattice
sizes in the DG model. The size dependence is
also more pronounced than it was for the interface
specific heat C (see Fig. 4), but it is still far from
its asymptotic behavior. From this plot, the sin-
gularity appears to be developing about T = 1.20&
or 1.25&, but since the peak is moving to higher
temperatures with increasing lattice size, these
values may be too low.
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VII. CONCLUSION

One of the main purposes of this work was to
determine whether the roughening transition does
indeed exist. We believe that our Monte Carlo

FIQ. 21. Same as Fig. 20 for the DQ model.

simulations have provided very strong evidence
for its existence in the SOS model and good, al-
though weaker evidence in the DG model.

The singularity in the specific heat and the phe-
nomenon of critical slowing down showed the re-
lationship between the SOS model and the 2D Ising
model to be closer than previous work on this
problem had indicated. The value of the roughen-
ing temperature. T~(SOS) = (1.15+ 0.05)e found from
these simulations is significantly lower than pre-
viously believed and is indistinguishable from the
critical temperature of the 2D Ising model T,'
(Ising) =1.13459@, which is known to be a
rigorous lower hound [T„»T', n (Ising)].

The DG model appears to have a roughening
transition at a higher temperature than the SOS
model. Because the peaks in the varjous quanti-
ties measured generally move to higher tempera-
tures as N increases in the DG model, it is more
difficult to locate the transition exactly. Our best
estimate is Tz(DG) =(1.3 +0;1)e, which is consis-
tent with the value of (4/n)e =1.27324& suggested
by Kroll, Muller-Krumbhaar, and Wagner. "

It is hoped that the study of these two simple
systems will serve as a guide to the expected phe-
nomena and possible pitfalls to be encountered in

I

future experimental and theoretical work on the
properties of interfaces.
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