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In this article, a new simple method to calculate memory functions within the Mori formalism is presented. It
is then used to derive the relaxation function'for a Heisenberg chain. The results for different choices of
relevant variables are compared with experiments and other theories, It is found that for the right choice of

-variables, . the results are in much better agreement with recent experiments on tetramethylammonium-
manganese-trichloride (TMMC) than the results of other theories.

I. INTRODUCTION

During the last five years a lot of work has been
devoted to the study of dynamical properties of
one-dimensional spin systems. In these systems
no spontaneous magnetization at nonzero tempera-
tures exists' and consequently the simple spin-
wave theory' cannot predict spin waves in contra-
diction with a lot of experiments. '

From the theoretical point of view the situation
is not clear. For one-dimensional Heisenberg
antiferromagnets, such as tetramethylammonium-
manganese-trichloride (TMMC) and CuC12'2N(C, D,),
continued-fraction expansions" have been used to
describe the dynamical properties. The static
quantities which determine the continued-fraction
expansion have been calculated exactly"' for the
classical one-dimensional Heisenberg system. At
the moment, there are no similar results for
planar systems. ' In Ref. 4 the authors introduced
a termination function in order to obtain a three-
pole approximation. Some authors' pref er a Gaus-
sian assumption, but in both cases they fail to pre-
dict spin waves for certain q values and certain
temperatures, in disagreement with recent neu-
tron-scattering experiments. ' Another way of
calculating relaxation functions is given by the
mode-mode coupling equations. ' However, one
should realize that these equations are probably
the simplest equations one can derive from Mori's
formalism' after making some approximations. "
In addition, a lot of phenomenologic assumptions
are needed and although the mode-mode coupling
scheme is systematic itself, a calculation of the
relaxation function in successive approximations
is impossible without making questionable supposi-
tions.

Qn the other hand, numerical results for classi-
cal systems are known from computer calcula-
tions' and it follows that there is a serious dis-

agreement between the theoretical values and the
value obtained by computer simulation for the dif-
fusion coefficient at infinite temperature.

Except for the direct computer calculations, we
feel that the methods mentioned above fail because
one has to make a crucial approximation for the
transport coefficients. From Ref. 10 it is clear
that the time evolution that determines the trans-
port coefficients is not the same as the time evolu-
tion of the total system. Therefore the main pur-
pose of this work is to show how one can evaluate
these quantities with the correct time evolution in
a simple and systematic way using the Mori form-
alism as a starting point.

In Sec. II, we recall some well-known results of
the Mori formalism and we give a rather abstract
but very general derivation of the equations from
which the frequency-dependent transport coeffi-
cients can be calculated. This general formulation
makes it much easier to apply this scheme for
other physical systems. We show that if one makes
only one reasonable approximation, the transport
coefficients are uniquely determined by the mo-
ments of the relaxation functions. In Sec. III we
write the Hamiltonian for theone-dimensional
Heisenberg magnet and- we give the relevant vari-
ables. In Sec. IV we give the dynamic equations
and we explicitly show how the general theory
works in this particular example. We make a de-
tailed comparison with the experimental data for
TMMC using the classical results for the moments.
Finally the fluctuation-dissipation theorem is used
to calculate the static quantities for the quantum-
mechanical system.

II. FORMALISM

A. General theory

Let F denote the Hilbert space of operators
A„;p. =1, . . . with scalar product (; ). The time
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evolution in F is determined by the Hermitian
Liouville operator L which is related to the Hamil-
tonian of the system by LA = [H, A] or equivalently
by A(t) = e'~' A(0) =e'"'A(0)e '"' .If we are only in-
terested in the motion of some operators A.

„

i
= 1, . . . , n the projector on this n-dimensional sub-
space E is given by"

PB=A,.X,.i(A,.;B), BEF . (2.1)

Here we used the sum convention and we denoted
X,-,'. for the inverse of the matrix {A,.;A&);i,j
=1, . . . , n. If Q is the projector on the orthogonal
complement of E we have the following properties

Q =1 P, -P =Pt=P', Q =Q~=q'. (2.2)

(zQ —QI,Q)Q(z -L) 'P =QLPP(z —L) 'P . (2.3b)

Substituting the expression for Q(z -L) 'P obtained
from Eq. (2.3b} into Eq. (2.3a) we find

[zP —PLP -PLQ(z —QLQ) 'QLP]P{z —L) 'P =P .

(2.4)

Taking the i,j matrix element we have

[z~„—(A,;IA, )X;,' .(QLA;, (z-QLQ) 'QLA, )Xg-]

x g,. (z I.)-'A,.}=(A,.;A,.), (2.5)

wherei, j,k, l =1, .. . , n.
Although it is not necessary, one can define the

scalar product as the static susceptibility X„„(0),
and then gk; (z -L) 'A&) represents the relaxation
function, while (4,.; IA, )X»' and (QLA, ; (z
—QI.Q) 'QLA, )X,', correspond to the frequency ma-
trix and memory matrix, respectively. Now we
have to evaluate the memory matrix. In principle,
this is as difficult as a direct calculation of the re-
laxation function itself. Because the time evolution
has been separated into a dominant part (the fre-
quency matrix) and a perturbation {the memory
matrix) one might expect that it is easier to find
an approximation for the memory matrix than to
approximate the relaxation function itself. "'"
However, there is an additional difficulty because
the time evolution of the memory matrix is deter-
mined by QLQ. If it is possible to use perturba-
tion theory it is sometimes allowed to omit Q op-
erators for small wave vectors, "but such an ap-
proximation leads to unreasonable results for spin

If we want to know how the resolvent of I, given
by (z -L) ', Imz &0, which contains all information
about the system, acts on the subspace E we can
use the trivial identity z(z —I ) k=l+L(z —L) ' and
the definition of the projectors in order to obtain
the set of coupled equations'

(zP PLP)(z-—L) P -PLQ Q(z —L) P =P; (2.3a)

systems in the paramagnetic region. " Therefore
we present a simple method which takes a chosen
number of Q's into account.

Defining the function f,.&(z) by

f)~(z) = (QLA ), (z —QLQ) 'QLA)),

and using the identity z(z —QLQ) '=1
+QLQ(z -QLQ) ' twice, we easily obtain

(2.8)

kk Z Ik» )fkg(

=z{QIA,.; QLA, )+ (QL.2A,.; QIA~)

+(QLkA, ; (z —QLQ) ~QLA&), (2.7)

where we denoted Q~+~'= (A„.L"A,)X»'.
In principle we can continue in this way, but

since we have to stop anyhow, we need an approxi-
mation. The simplest thing we can do is to re-
place the third term on the right-hand side of Eq.
(2.7) by a complex number R,~

and we have

{Z' 8; k+«l'' k+flPk'»kg»

=z(QLA,.;LA,)+ (QL'A, .;LA))+Re . (2.8)

Taking the limit @=i&, &-0 we find

0)+k~fk,.(ik) = (QI.'A, , LA~) +R)~.

Substituting this equation for R,.
&

into Eq. (2.8)
yields

(2.8)

(zk5»+z 0[ '+kQpk')ffk~(z) =z(QIA
q , IA~)+ Aq+.k'fk~(iE) .

(2.10)

Since QLQ is a Hermitian operator we can use Eq.
(B3) of Appendix B immediately for y(&o) = 1 and
consequently we can write

(QLA ),IA~)

Now it is clear that Eqs. (2.10) and (2.11) constitute
a linear set of coupled equations for f,.~(iz). For
simple systems such as phonon or spin systems
these equations can be solved analytically as will be
shown later on.

If we want to calculate the next approximation for
f,&

we have to apply z(z —QLQ) '=1+QLQ(z —QLQ) '
twice again. Then we should make the same ap-
proximation as in the previous case thereby ob-
taining a new set of coupled equations. In our
opinion the second approximation for f,&is better.
than the first one, because more Q operators are
involved and a higher moment is needed.

The simplest approximation one can make for
the memory function is to replace it by its value
in iE. In fact, one supposes that the memory func-
tion decays very fast as a function of time com-
pared to the natural motion of the system. ' In
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our approach we do the same, but in a later stage,
as can be seen from Eqs. (2.7)-(2.9). Then we
get an expression for the memory function, where
its own value in iE occurs as a parameter. How-
ever, because this approximation for the memory
function is frequency dependent, we can use the
sum rule Eq. (2.11) to determine this parameter.

As will be seen later on, the sum rules on the
memory function also imply sum rules on the re-
laxation function.

B. Scalar p-oduct

It has been found that the scalar product defined
bylp

(2.i2)

C..(e)=(A, ( -L) 'B)

(A, B)=f (e~A'B)dX,
0

where & ) stands for the thermal expectation va]ue,
is a very convenient tool to describe dynamical
properties. It represents the static susceptibility
X„s(0),and th'erefore the function

theorem is equivalent to the statement that the sys-
tem is in thermal equilibrium. '4 Therefore we
can correctly account for the fact that we assume
that the system is in equilibrium. Of course the
expressions for the static susceptibilities will de-
pend on the approximation for the dynamic quanti-
ties, but as oudined in the previous section, we
can make the approximation systematically better.

H = -4 Q 8,.' S,„. (s.i)

If J is positive the system is ferromagnetic and
for negative J values it is antiferromagnetic. De-
fining Fourier transformed operators by

$R 1
e fknge

k

n

(2.2)

we have

III. MODEL

The Hamiltonian for the one-dimensional Heisen-
berg system with nearest-neighbor interaction is
given by

=--i dte~~ dX e~~A~ t B Q

0 0

H = —& Q (S;S,+S;S;)cosk . (s.s)

Inm &0, (2.13)

corresponds to the Laplace transformed relaxa-
tion function. Since the fluctuation dissipation the-
orem (see Appendix I3) provides relations between
the spectral density of the symmetrized correla-
tion function and static susceptibilities, it is use-
ful to define another scalar product by

(A IB)=-'&(A' Bk) (2 14)

where (, j denotes the anticommutator.
Although this scalar product is less interesting

from the physical point of view, "we will show that
it can be used to calculate certain static quantities.

Therefore we define, in complete analogy with
the previous case, the Laplace transformed sym-
metrized correlation function by

y~e(e) =(A l(e -L) 'B)

dt e'"&(At(t), B(0)t), Ime &0 .

(2.is)

From these equations, it should be clear that
we can apply the theory, given in Sec. IIA, to the
relaxation function or the symmetrized correlation
function, depending on the choice of the scalar
product, while the fluctuation dissipation theorem
will give us a relation k~etween the static correla-
tion functions and the static susceptibility.

It is well known that the Quctuation dissipation

Here and in the following, N denotes the number of
spins. For simplicity we have chosen the lattice
constant equal to one and we use units where 5
=1, k~= 1.

Since a one-dimensional Heisenberg magnet is
isotropic at finite temperatures, it is sufficient to
take one spin component. As the total spin S~ 0 is
a conserved quantity, we have I-"Sg 0 0, n
= 1, 2, . . . and consequently we have to take'0

(Sa LSa L'Sa (s.4)

as the set of relevant variables. However, this
set is rather large for obvious reasons, and there-
fore we will not work with a set larger than

(S)'„LS)'„LS) (s.s)

Because the energy density is a conserved quantity
we should treat it as an additional variable but
since it couples to the other variables in the trans-
port coefficients only, we neglect it. We close
this section with a remark on the notation of the
scalar product. If A„and 8, denote Fourier trans-
formed operators then (A~, B,) = S„,(A„,B~) because
of translational invariance. Therefore we will
write (A, B)~ in the following. Of course, this also
holds for the scalar product defined by Eq. (2.14).

IV. DYNAMIC EQUATIONS

For clarity, we rewrite the basic equation (2.5)
for the relaxation matrix C (e, q) in the well-known
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form"
(4.1)[.1-il,+Z, ( )jc(., q) =x„

where 1 represents the unit matrix, 0, the fre-
quency matrix, Z, (s) the memory matrix, and y
the static susceptibility matrix.

At first we will take

IS;, LS;'I (4.2)

t'(s, s), o

0 (LS, Is),j
(4.3)

(s, a), (I.s, a)
(S, S), ' (LS, LS),

Here B denotes an arbitrary operator.
The frequency matrix is given by

(4.4)

as our set of secular variables. In the following we
drop the superscript z. In this case the static sus-
ceptibility matrix X, and the projector P on the
space spanned by the secular variables are given
by

and the solution for C ss(s, q) yields

(s, s).l..+ Z.(.)j
s'+ Z (z)s —(I.S, LS),/(S, S),

(4.8)

In order to show how the general theory, ex-
posed in Sec. II, works, we will now evaluate the
transport coefficient Z, (s) explicitly. Using the
identity s(s —QI,Q) '

= 1+ QLQ(s —QLQ) ' we find.(QL'S, ( -QLQ) 'QL'S),

= (QL S, I. S),+ (QLQL S, (s —QLQ) QL S), ,

(4.9)

where we have used Eq. (2.2). Multiplying the
equation with z and using the identity once more,
we get

&'(QL'S, (s —QLQ) 'QL'S),

=g(QLss, I S) +(QLQLQL S, (s —QLQ) QL S),
(4.10)

where the term (QLQL'S, QI, 'S), is omitted right
away because it is zero by time reversal invari-
ance. It is easy to verify that we can write

00 =
(I.S, I.S),

(LS,IS),)
0

j'
(4.6)

QLQLQL S = — ' 'QI. S,+QL~S, (4.11)
(L'S, I S),

q

0 1

(I.S, I.S).
(s, s),

and because QLS, = (1-P)LS,=O, the memory ma-
trix can be written as

and so in this particular case, the general Eq.
(2.7) becomes

SL'S I'S&'+ ' —' (QL'S (s -QLQ) 'QL'S)
(LS, Ls),

=s(QLss, L'S),+(QL4S, (s —QLQ) 'QL S), .
(4.12)

where

Lo (QL S, (s —QL-Q) QL S),j

/0 o)
ko z,(s)i

(4.6a)

Following the general theory we replace the sec-
ond term of the right-hand side of Eq. (4.12) by a
complex number 8 and we have

s'y ' ' (QI'S (s —QIQ) 'QI'S)
(LS1Ls) C

-1
@SS ~~V O'S gS ~Q'

&+Z~(s)j &@s, s»sq) @r,sr. s(&~q) j

Z, ( ) = (I.S, I,S) (qI, 'S, (s qI.Q)-'QI. 'S), . (4.6b)

Now Eq. (4.1) reads

I'

(LS, LS)
(s, s),

=s(QL'S, L'S), +R. (4.13a)

Taking the limit a=i&, q-0 we have

LS LS ' lim (QI.'S, (s —QLQ)-'QI, 'S) =R
(LS,IS), a~is

(4.13b)

((s, s),

( o

0
(4.7)

(LS, LS) j

From symmetry considerations (see Appendix A)
we know that lim, ~&(QL'S, (s —qLq) 'QLsS) must
be pure imaginary. Then Eq. (2.11) reads

(qI.'S, I,'S),= —lm(R)
1 d~ [&u +(I.'sS, L'S),/(I.S, I.s) ] (4.14a)
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and con.sequently we have

(L2$ L2$)1/2
Im(R)=-(QL'$&I, 'S)

(
' „,', , Be(&)=0.

(S, S), (LS, LS)z (IsS, L2$)z
g 8 z

(4.18)

(4.14b)

Substituting this expression into Eq. (4.13a) we
finally obtain

1 (QLsS, L'S),
(L$, LS), a+i(L'S, L'S)'/'/(LS, LS)"' '

(4.15)
Nom it is clear that me have extracted the slowest
varying contributions out of the memory term.
Furthermore Eq. (4.15) shows that, in this approx-
imation, the memory term decays exponentially in
time, in agreement with Lovesey and Loveluck. "
However, we do not need additional approximations
for the calculations of the relaxation rates in terms
of static quantities. Inserting this expression in
the equation for the relaxation function Eq. (4.8),
and expanding the relaxation function for large s
values, we arrive at"

This means that our relaxation function nom satis-
fies the sum rule Eq. (810) for n=0, 1,2. The
first two sum rules are fulfilled by construction,
because we have taken S, and LS, as our secular
variables. As far as the third sum rule is con-
cerned, this one seems to be implied by the sum
rule on the memory function. Indeed, going one
step further in the determination of the memory
function, we find that the next sum rule, for n = 3,
is also fulfilled. The quantity of interest for in-
elastic neutron scattering is the dynamic form
factor"

, S(~, q) = ~„ass(~,q), (4.17)

where 4ss (&u, q) represents the imaginary part of
the relaxation function. within the approximations,
given earlier, ass(ur, q) looks like

[(L'$,I.'S), —(LS, I,S)',/($, $),](I.'$, Lss)', /2/(LS, I,S)',/'
ss ' &u2[uP —(L S, L'S) /(LS, LS) ] +[(I S I. S) /(I.S, LS),][(d —(LS,LS),/(S, S),]' ' (4.18)

If this approximation for the relaxation function
would turn out to be a bad one, there could be two
reasons: our set of secular variables is not con-
venient, or we would have to evaluate Z, (z) better.

A. Classical limit

To test the expression for the relaxation function
we nom turn to the classical Heisenberg chain.
For this system the statics mere solved exactly,
and the relation between the static susceptibility
and the static correlation function becomes ex-
tremely simple:

($,$),= p($ lS),= p($;s',&. (4.19)

As there exists a lot of literature on the classical
Heisenberg chain we here merely state the most
important results. The static correlation function
is given by sas 7

I

tern, is written as a function of temperature in the
following may.

a =-Inlv l. (4.21)

(S,S),= P($;S',),
(LS, LS),= —', ZS'(I —cosq)v,

(I.'S, L S) = —9sZ'S'(I —cosq)

x [5V —2v + 3y+ vy —v y

(4.22a)

(4.22b)

with

y =1 —3v/PJS

3v(1+2V+y) cosq+ 2v'(2+y) cos'q],

(4.22c)

(4.22d)

The first classical moments mere calculated by
several authors, and the results for the static sus-
ceptibilities are' "

SzSz S 1—
3 1+v —2v cosq

(4.20a) In the low-temperature limit, P-~, the classical
results reduce to

with

v =coth(PJS ) —I/PJS'. (4.20b)

Here S stands for [$(S+1)]'/'. The classical in-
verse correlation length, which is a measure for
the extention of the short-range order in the sys-

(S,S),- 1/3
l
J

l (1 + cosq),

(LS, LS),—~ I&IS'(1 —cosq),

(L'S, LsS),——", l
8 l'$~(1 —cosq)'(1 w cosq),

(4.23a)

(4.23b)

(4.23c)

(4.2M)
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where the minus sign refers to the ferromagnet.
The dynamic form factor for neutron scattering

Eq. (4.17), in the classical limit, reduces to

S((o, q) = (-1/P)c f, (&u, q) .
From Eq. (4.18), and the fact that

(4.24)

(4.26}

(4.26a)

(S,S)q(L2S, L2S)

8 (LS, LS)2

me conclude that in this limit, the spectrum con-
sists of two very sharp peaks, symmetric with
respect to the origin, and with their positions de-
termined by

Q(q) =2JS(1 -cosq)

d
h

h
2 =.

0
C

2

0
4

Vl

C

1

~e ~

~ ~

4
T =12K

3

~ em& 0

T= 30K 2
' ee

~.e ~ ~
~e

d i"~ e 0
~ T =30K- 2

h ~ ~ e
e e ~

1
~e

~ ~
~ ~

3
~

'e ~ T=21K

~e

1
~ P

I I el e 0

in the case of a ferromagnet (J)0), and

Q(q) = 2S
(
J sinq f

(4.26b)

in the case of an antiferromagnet (J'&0). With in-
creasing temperature, the widths of the peaks in-
crease and their heights decrease.

We mill nom summarize the main results, as
well as the comparison with experiment and other
theories. For the ferromagnet, for small wave
vectors, we find that well-defined spin waves exist
if q» z' ', where z now is given by Eil. (4.23a).
A central peak is seen when q «z' . For larger
wave vectors and increasing temperature, the
spectrum changes from a two-peak structure to a
three-peak structure. Of course the heights of
the peaks decrease with increasing temperature,
as well as the areas under the curve, since they
are given by (1/P)(S, S)=(S;S;). For the antifer-
romagnet, experimental data are available for
TMMC. Because TMMC has spin —,', we expect
the classical model to give a reasonable desex'ip-
tion. The region of greatest experimental inter-
est for the antiferromagnet is not the small-q re-
gion, but the region for which q* is small, where
q~ is defined by

=7T —q . (4.27)
This can easily be understood as follows: because
in the antiferromagnet two neighboring spins want
to stand opposite one to the other, the probability
for observing a spin mave mith a certain small-q
vector (long wavelength) is much smaller than for
observing a spin wave with the corresponding
small-q~ vector, although their excitation ener-
gies are equal as can be seen from the dispersion
relation Eil. (4.26b). We then find for the condi-
tion for the existence of spin waves intQe small-q*
region: q*» x' '. Our results are in good agree-

3

J ~

~e

~e

2

2

0 =-'~

~ ~
~ T=1

~ ~

4
.45K

3

0 1 2 3 4

(meV)

0 1 2 3 4

tmeV)

FIG. 1. Theoretical and experimental line shapes for
q*=0.05m. The dashed lines are the results for the set
of variables {SLS },the full lines for (S, ,LS,A j.
We took J=- 13 K, $= ~, and only adjusted the theoreti-
cal results so that the height of the peak at 12 K is equal
to that of the measured one. To make a detailed compar-
ison, one should convolute the theoretical spectral func-
tion with the experimental resolution function. The ex-
perimental resolution is in this case 0.6 me&, which is
equal to the width of the measured peak at T=1.45 K,
and therefore the spin-wave linewidth is certainly
smaller than the experimental one.

ment with theories of Lovesey and Meserve, ~ who
use a termination function in a continued fraction
method, and of Tomita and Mashiyama, ' mho use
a Gaussian assumption. The latest experiments
on TMMC, ' which were done for very small q*
values, however, revealed that the existence of
spin waves is not connected with x' but with x.
From the Fig. 1 it is obvious that our results
cannot predict spin waves for very small q~ val-
ues, at the temperatures they are measured.

As already mentioned, one thing me can do is to
improve the determination of the memory func-
tion. Then one finds

g s(QL'S, L2S),+g (QL4S, Lms), -iXq

g +[(L'S,L S) /(IS, IS) ]g +(L S,I S) /(LS, IS}
(L'S L'S}'i (L S L'S) (L'S L S)'i

= (Q ' ~ (I,S, LS);1' (LS, I,S),
+

(I,S, LS)',12

(4.28a)

(4.28b)
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where the expression for (L'S, L'S), is taken from
Ref. 5. We found that, doing this, the results were
not improved drastically. Therefore we concluded
that our set of secular variables was not satisfying.

The next secular variable we can take is I'S,.
For convenience, however, we will take

0

(I,S, I,S),
(s, s), 0

0

(4.32)

Again B denotes an arbitrary operator.
The frequency matrix is also easy to calculate

(Ls, LS)
(4.29) 0 ,A),

{I,S,I.S),

((S,S),

x =

(0
(LS) Ls),

0

because this choice makes the static susceptibility
diagonal. Our set of secular variables is thus
fs„LS„A,j. The susceptibility matrix and the pro-
jector I' are readily found to be 0 0 0

Z, (e)=l 0 0

&0 o S,O:))'

with

(4.33a)

and the memory matrix contains one nonzero ele-
ment

and

(A,A), = (L'S, L S), —(LS, LS)',/(S, S), ,

(S,B), (LS,B), ((4.,B),
(S,S), ' (LS, LS), ' (A, A),

(4.30)

(4.31)

&,4') = —
A (QLA, (z —QLQ) 'QLA), .

0

(4.32b)

The solution of the matrix equation Eq. (4.1) gives
for the relaxation function

(S,S),[s'+ Z, ( )s (A, A),/(I, S, I,S),]
&[&2 (I,'S LS2), /(LS, LSS),] +Z,(z)[s'- (LS,LS),/(S, S),]

'

For the memory functi'on we find

1 (QLA, LA),
(A, A), a+t'(LAS, LA)'~2/(A A)~~2 '

( A ~) )
(IS,LS),(L'S, L S), (LS, LS),

(QLA, LA), = (Lss, L~s),

(4.34)

(4.35a)

(4.35b)

(4.35c)

We now find that the criterion for the existence of
spin waves for small-q values in the ferromagnet
and in the antiferromagnet is q»~. More precise-
ly, the line shape goes over from a two-peak struc-
ture to a one-peak structure at z = 2.5q for the
ferromagnet and at z = q for the antiferromagnet.
If we make a comparison with the experiment'
for the wave vector qua =0.05s'(Fig. 1),we conclude
that we have a much better agreement than with
our previous choice of variables. However, espe-
cially at the lowest temperature, our linewidth is
smaller than the experimental one. We came to
the same conclusion for the values q*=0.03m and
q~ =0.015m.' Generally we have an improvement
with respect to our previous results, because
they predict a central peak, except at the lowest
temperature for q~ =0.05m, at the measured tem-
peratures and wave vectors. We also plot the re-
sults for the value q*=0.25m in Fig. 2.
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FIG. 2. Theoretical results for q*= 0.25m for the set
of variables (S,LS,A ), compared with experiment.
As for Fig. 1 we only adjusted the heights.
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(z+ iDq') e„(z,q) = (S, S), ~ (4.38)

For our first choice of secular variables, we
find

We may conclude that in changing the set of sec-
ular variables from (S„LSPto (S,, LS,,AP, we
improve the results considerably. Yet there re-
mains a discrepancy at small-q* values because
our linewidth is too small. The reason is probably
that at these small-q~ values and low tempera-
tures, a better determination of the memory func-
tion is needed. Of course this is equivalent with
knowing higher moments, and therefore at present
we are not able to do this. Another important
cause of error is that the measured system
(TMMC) is of course a quantum-mechanical one,
and especially at these low temperatures, we ex-
pect the quantum-mechanical effects to become
important. The difference between the probability
for absorption and emission is represented by the
Bose factor in Eq. (4.17). As we already men-
tioned, in the classical case the Bose factor disap-
pears [Eq. (4.24)], and the spectrum becomes
symmetric with respect to the origin.

Another quantity of interest, which we can cal-
culate is the diffusion coefficient. In the high-
temperature limit P -0, and for small wave vec-
tors q, the equation for the relaxation function,
in both cases, reduces to

D =1.08J[s(s+1)]~~2 (4.38)

B. Quantum system

Let us now turn to the quantum mechanical sys-
tem. Here the situation is much more complicated
because only for infinite and zero temperature
some exact results on the static quantities are
known. " We will use the fluctuation dissipation
theorem to calculate these quantities.

From our discussion in Sec. IIB it is clear that
if we take

IS„LS,)I, (4.39)

as the set of relevant variables the symmetrized
correlation function corresponding to the relaxa-
tion function given by Eq. (4.8) reads

(S I S),[z+ i,(z)]
+ ~,(z)z —(I S I Ls),~(s I S

(4.40a)

with

(qL'S IL'S}
(LS I LS), z+ E(L'S I

L'S)' "/(LS I
Ls)'" '

This result is in much better agreement with the
computer result«' D = 1.33J[s(s+ 1)]' 2 than the pre-
vious one.

D =0.58Jfs(s+1)]'i 2 (4.3V) (4.40b)

in good agreement with mode-mode coupling cal-
culations. "" For the secular variables
fS„LS„A,], we have

Writing the quantities (I S, LS),. (I S I LS),.
(L'S, L'S)„and(L'S I L'S), in terms of correla
tion functions we obtain

(sos), =(s;s', &,

(LS, LS) = —g [A(k, q)+A(k, —q)](s;S*,),
k

(4.41a)

(4.41b)

(Ls iLS),=
4 Q A(k, —q)IA(p, q)(s«S «,S«s «„),

k~P

(4.41c)

(L'S, L'S),=, g [A(l, —q)+A(l —P+ k, q))[A(P, 0 —q)A(k, q)+A(k, P+ q)A(P, —q)] (S;S;S,.««s. ,)
1

l, k, P

+ g (A(p, q) [A(l, 0+ l)A(k+ l, q)+A(k, q —l}A(l, q)]+A(l, —q)
1

l, k, p

X~[A(p, k+ l)A(@+l, —q) —A(k+l+q, p+q)A(p, —q)] j(s;S«s'„««S«), (4.41d)

(L'SiL'S),=,g [A(p, a+q}A(a, -q)+A(k, p-q)A(p, q))
1

k, p

x [A(l, m —q)A(m, q)+A(m, l+ q)A(l, —q)] (S«s««, s:«S'„S;„„S,), (4.41e}
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where A(k, q) =Z(k) —Z(k —q). In order to obtain
Eqs. (4.41) we explicitly used the symmetry of the
system.

Furthermore these quantities are related to each
other by the fluctuation dissipation theorem [see
Eq. (B9)] and we have

(S,S),= ——
I der —tanh @~~(&e, q),

1 f'" 2 p&@

(4.42a}

(LS, LS),= —— d&u2&otanh +~~(~, q),
1 P&u

7T mco

(4.42b)

(L'S, L'S),= — d&o 2~'tanh 4zz(~, q}.
77 moo

(4.42c)

Notice that if we had started here with the corre-
sponding relaxation function, we do not have an
equation similar to Eq. (4.42c) because the inte-
gral would diverge. However, Eqs. (4.42) are not
sufficient to calculate all quantities because the
set is not closed. If we would'take instead of LS,
all possible combinations of two spin operators
as relevant operators we still have to give the
six-spin correlation functions in terms of two-
and four- spin correlation functions. Therefore
we want to express (I.S

~
LS), and (L'S

~

L'S), in
two-spin correlation functions and the simplest
thing we can do is to decouple the correlation
functions which determine these quantities. Then
we can calculate the correlation function self-con-
sistently from Eq. (4.42b) while Eq. (4.42a} and
Eq. (4.42c) give the corresponding values for
(S,S), and (I,'S, L'S}„respectively. Instead of
solving these equations simultaneously for a num-
ber of q values we first used the classical expres-
sion for the correlation function [see Eq. (4.20)]
and we determined the parameter v. The inte-
grals of Eq. (4.42) were calculated up to ten deci-
mals by using the residue theorem. In Fig. 3 we
compare the obtained value for v with the classi-
cal one and we conclude that in the high- and
medium-temperature region the difference is very
small. However as the temperature decreases we
see that our value lies below the classical value
given by Eq. (4.20b). Then the corresponding in-
verse correlation length is greater than the classi-
cal one. This means that if the classical relaxation
function shows a central peak, this quantum-me-
chanical relaxation function cannot show spin wave
peaks. In order to test the analytic form for the
quantum-mechanical correlation function we calcu-
lated this quantity directly by solving the equations
(4.42) and the equation

1 g(S, , )
SS+1)

g (4.43)

simultaneously for a hundred different q values.
Except for the difference in computer time we did
not notice any change. From these results, we
conclude we cannot decouple the correlation func-
tions and we feel that it is not necessary to take
the larger set of variables if one is not able to
make better approximations for higher-order spin-
correlation function. We could also introduce
bosonlike operators which have been used for the
quantum- mechanical one-dimensional Heisenberg
system in the low-temperature region by Mikeska. "
At the moment we are working at this problem.

It should also be mentioned that for a three-di-
mensional system in the high-temperature region,
one can approximately calculate higher-order cor-
relation functions by diagram techniques' and
therefore our scheme can give better results.
However, in this case, the integrals over q space
become too complicated.

.01

PJs

FIG. 3. Comparison between classical value (solid
line) and computed value for the parameter v and as a
function of inverse temperature.

V. CONCLUSIONS

The main aim of the present work was to show
how one can calculate frequency-dependent trans-
port coefficients in a very simple and systematic
way. We have applied this method to the classical
one-dimensional Heisenberg magnet and we com-
pared the theoretical results with the experimental
results for TMMC. Taking (S;,LS;) as the set of
relevant variables our final relaxation function
shows the same behavior as those given by various
authors. New experiments revealed that the cri-
terion for observing spin-waves is given by q*» z
instead of q*» z' '. Following the general scheme
we calculated the transport coefficient in a better
approximation but since the obtained line shapes
did not differ enough from the previous ones we
concluded that our set of variables had to be ex-
tended. Taking L'S', as the additional variable we
repeated the calculations for the transport coeffi-
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cients and the relaxation function and, except for
a discrepancy in the linewidth, the obtained line
shapes are in much better agreement with the ex-
periments than the previous ones.

Observing that the general theory can be used to
evaluate the symmetrized correlation function if
one introduces another scalar product, we used
the fluctuation dissipation theorem to calculate the
static quantities for the quantum-mechanical sys-
tem. In order to obtain a closed set of equations
we had to decouple some static correlation func-
tions. From the comparison of our classical re-
sults and the less satisfying results obtained for
the quantum case we concluded that the decoupling
procedure is a fatal approximation. A possible
solution for the problem is that one has to intro-
duce boson operators and at present we are work-
ing at this problem.
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(A, LC) = (e ~A~e '"LC)dI(
0

~e LCe dX
0

f e-xH ~ C e+~ d~
0

d
(Ate-xHCe)(e)

dA,

Qte-BHCesH) + (A tC) ([At C]) (A7)

After introducing Fourier transformed operators
we obtain in a straightforward way

(A ~B},=(B'~A'), ; (A, B),=(B',A') „.(As}

If the system is invariant under space inversionI
we have

& I
4= ~&a("I )-a (A»a=&~&z(A» a

if IA(r)It = e„'A(-r),c„'denoting the parity of the
operator A under space inversion, and IB(r)It
=a+~(r). If the system is invariant under time
inversion we have2~

(A
~
B)~= (e Be

~

e'Ae) „;(A, B),= (e'Be, e'Ae), ,

(A10}

where 6 denotes the time inversion operator.
From these equations we can easily deduce simi-

lar relations for P:

APPENDIX A g„(,k) = -g „(-,-k) = -g* (- *,-k) (All)

In this Appendix we summarize some properties
of the scalar products. In the following A, B, and
C are elements ef E. By definition, a positive
definite scalar product (A; B) must fulfill the fol-
lowing relations:

(A;B)*=(B;A), (A 1)

(A; XB)= X(A; B), X: complex number. (A2)

(A; 8+ C) = (A; B)+ (A.; C),

(A;A) =0~A =0.
(As)

(A4)

(A~B)=(B'~A'); (A, B)=(B',A'}. (A5)

Remembering the cyclic permutation property in a
trace we immediately have

(AILB) =(LAIB}' (»LB)=(L»B) (A6)

thereby showing that L is indeed Hermitian.
In general the integral J,e (e'~A~B) dA. cannot be

calculated exactly. However, if B=LC we obtain

One easily verifies that the scalar products defined
by Eq. (2.12}and Eq. (2.14) satisfy the required
conditions. Furthermore they have the:remarkable
property

and

g„e(z,k) = e„'ez'P„z(z,—k) (A12)

if IA(r)It=@~A(-r), IB(r)It=a~+( r). The equa—tion
obtained by time inversion depends too much on the
type of the operators A and B and therefore a gen-
eral expression is not useful. It is also trivial
that Eq. (All) and Eq. (A12) hold for the relaxation
function C„e(z,k).

APPENDIX B

If y(z) is a holomorphic function of z in a domain
D of the complex plane and D contains all the
eigenvalues of a bounded operator T acting on a
Hilbert space E, one defines the operator q (T) by
the Dunford- Taylor integraP'

q(Z')=2 .f V(z)(z-&)'Cz.

Here F( D may consist of several simple closed
curves I'~ with positive direction, such that the
union of the interiors of these curves contains all
the eigenvalues) of T; If T is Hermitian, the func-
tion (z —T) ' has poles for Imz =0 only. Taking a
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contour as shown in Fig. 4, with e small and posi-
tive, and assuming that y(e) =p(-s) fulfills the
required conditions, we easily find

q (T) = . lim d(op(u))[((o+ie —T)"'
2FZ 6-+0

—((d ie—-T) ']. (B2} -spr T spr Ti,

In a number of cases one can define a similar op-
erator valu. ed function for unbounded operators.
Then we have

1 ~
)t'A

i y(L)B)» = —
2

. lim d(o y((o)[g»((d+ie, k)
m tQ

$~((d —$C, k)] .
(as)

Using Eq. (A11) w'e obtain

=-1 .
(A iy(L)&)»=2 . lim d(d y((d)[g»((u+ic, k)

7t 2 6~0

—g*„(~+ic, k)] .

-iS

FIG. 4. Integration contour in the complex g plane.
SprT denotes the spectral radius of the operator T.

1 dX(g', e"(e»+I)-'a] ), .
0

(Bsb)

Using (AtB)»= (lie»A~)»= (e»BA')» repeatedly we
find

For A =B this equation reduces to
+00

(A i p(L)A)» = —— d(t) p(&u)g„"„((u,k),
~ OO

(B4)

(B5)

2 A L tanh —B = g~AtB ~dX=, B q.
pg

0

(asc)

where g„"s((d,k) denotes the imaginary part of
lim, ,g„s(s,k). If we take y(&o) =(d'", n=0, 1, . . .
we have

1
(L"A iL "A)» = —— d~ ~'"g„"„((d,k) . (as)

This is the well-known expression for the mo-
ments. For p(ur) = (1/(d) tanh»p(u, Eq. (B4) yields

Consequently we reobtain a fluctuation dissipation
theorem'~

(A, B)» = ——. tanh —[I»))( (di+e, k)
1 '"d~ P&a

~00

—ps*„(~+ic,k)] .
(a9)

By interchanging the scalar product in Eqs. (B3)-
(B9), the equivalents of Eqs. (Bs) and (B9) are
found to be

—tanh [g»(&u+ i&, k)
1 '"d&o P(d

aoo

-Pjl„((t)+it, k)] . and

+00

(L"A, L"A)» = —— d &a &o»"4 „„(&u,k)
e CO

(alo)

On the other hand we have
(A 8)»= — . d~ &ucoth [C»(~+i&, k)

1 pro

(asa)

Ca»'„((a+i~, k)] .
(B11)

*Supported by the project "Neutron Scattering, " I.I.K.W. ,
Belgium.

)Supported by SFB Ferroelektrika der Deutschen For-
schungsgemeinschaft.¹D. Mermin and H. Wagner, Phys. Rev. Lett. 17,
1133 {1966).

2F. Bloch, Z. Phys. 61, 206 {1936). For a review of
theoretical and experimental results see M. Steiner,
J.Villain, and C.G.Windsor, Adv. Phys. 25, 87 (1976).

3R. J. Birgeneau, H. Dingle, M. T. Hutchings, G. Shir-
ane, and S. L. Holt, Phys. Hev. Lett. 12, 718 {1971);
Phys. Rev. B 5, 1999 {1972);Y. Endok, G. Shirane,



5390 HANS DE RAEDT AND BART DE RAEDT 15

R. J. Birgeneau, P. M. Richards, and S. L. Holt, Phys.
Rev. Lett. 32, 170 (1974); M. Steiner, in Proceedings
of the Conference on ¹utron Scattering, Gatlinburg,
Tennessee, 1976, , edited by R. M. Moon (U.S. EBDA,
Washington, D.C., 1976), Vol. II.

4S. W. Lovesy and R. A. Meserve, Phys. Rev. Lett. 28,
614 (1972).

~H. Tomita and H. Mashiyama, Prog. Theor. Phys. 48,
1133 (1972).

6M. E. Fisher, Am. J. Phys. 32, 343 (1964).
VJ. Villain, J. Phys. (Paris) 36, L173 (1976).
G. Shirane and R. J. Birgeneau, report (unpublished).

~F. B.McLean and M. Blume, Phys. Rev. B 7, 1149
(1973).
H. Mori, Prog. Theor. Phys. 34, 399 (1965).
A. Lagendijk and H. de Raedt (unpublished).
F. Carboni and P. M. Richards, Phys. Rev. 177, 889
(1969). N. A. Lurie, D. L. Huber, and M. Blume,
Phys. Rev. B 9, 2171 (1974); M. Blume, G. H. Vine-
yard, and R. E. Watson, BNL 19437 report (1975)

-(unpublished).

3Here we follow W. Gotze and K. H. Michel, in Dynami-
cal Properties of Solids, edited by G. K. Horton and
A. A. Maradudin (North-Holland, Amsterdam, 1974).

~4R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
~~S. W. Lovesey and J. Loveluck, in Proceedings of the

Conference on Neutron Scattering, Gatlinburg, Ten-
nessee, 1976, edited by R. M. Moon (U.S. EHDA,
Washington, D. C., 1976), Vol. II.

~ L. Van Hove, Phys. Rev. 95, 1374 (1954).
VD. G. McFadden and R. A. Tahir-Kbeli, Phys. Rev. B
1, 3649 (1970).
J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128,
2131 (1962); T. Morita, J. Math. Phys. 12, 2062
(1971); see also Ref. 12.

~~H. J. Mikeska, Phys. Rev. B 12, 2794 (1975).
20F. Wegner, Z. Phys. 30,- 433 (1968).
2~E. P. Wigner, Group Theory (Academic, New York,

1959). K. H. Michel (unpublished).
T. Kato, Perturbation Theory For Linear Operators,
2nd ed. (Springer-Verlag, Berlin, 1976).


