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The spin dynamics of paramagnets with uniaxial and exchange anisotropy is investigated in the high-
temperature limit. For a Hamiltonian consisting of both an anisotropic exchange and a uniaxial anisotropy
interaction, lowest-order integral equations for the dynamical two-point correlation functions are derived by
means of a previously developed infinite-temperature diagrammatic technique. These equations are valid for all
values of the spin quantum number S and for all values of the ratio D/J, where D is the uniaxial anisotropy
energy and J is an exchange energy. A systematic study of the numerical solutions to these equations is then
made as a function of both S and R =3D2/16S(S + 1)J* for 1 < S <5/2 and for 0.0 < R< 5.0. In particular,
the “local” spectral functions, the spin diffusion coefficients, and the exchange-narrowed dipolar linewidths are
studied as a function of these parameters. The latter quantities are measurable in neutron scattering and EPR
experiments in magnetic insulators. Finally, the diffusion coefficients and dipolar linewidths are evaluated for
the uniaxial paramagnets NiF,, CoF,, FeF,, and MnF,, and the experimental implications of these results are

discussed.

I. INTRODUCTION

The effects of a crystal-field anisotropy energy
(i.e., single-ion anisotropy) on the static and
thermodynamic properties of magnetic systems
have received considerable attention in recent
years.'™® Although an understanding of the effects
of such a uniaxial anisotropy energy on the dynam -
ical properties of paramagnets is very important
for the explanation of such experiments as elec-
tron paramagnetic resonance,’*® Raman scatter-
ing,'*17 and neutron scattering in magnetic insula-
tors,'® relatively little work appears to have been
done in this area.

It should also be noted that a knowledge of the
spin dynamics in paramagnetic systems is rele-
vant to the understanding of the properties of
other physical systems. For example, it has
been shown that NMR experiments in solid *He
can be described quite well using a Heisenberg
model for the nuclear spins.!®™®

Most of the existing theories of dynamical effects
in anisotropic magnetic systems concentrate on
effects either in the critical temperature re-
gime?2"® or in the low-temperature, spin-wave
regime.®"?” There have been a few treatments of
the dynamics in the high-temperature, paramag-
netic regime, but, until recently, these have
usually been semiphenomenological® or moment
method?® approaches.

In the high-temperature regime, the only first-
principles treatments of the dynamics of a para-
magnet with uniaxial anisotropy to date has been
the recent work of Joukoff-Piette and Resibois?®3°
(JPR). They have approached the problem with an
infinite-temperature kinetic-equation formalism
that is essentially an extension of earlier work by

15

Resibois and Deleener® on the isotropic Heisen-
berg system. While their work is very elegant
and is certainly a step in the right direction away
from phenomenology, it is, unfortunately, so ex-
tremely formal as to obscure the physics of their
approximations., Furthermore, their earlier
papers® on the isotropic system have already
been criticized® for predicting qualitatively incor-
rect fluctuation spectra at T=, and it is not
clear whether this defect has been corrected in
JPR.

The first purpose of the present paper is to pre-
sent an alternate formalism to that of JPR for

.the first-principles calculation of dynamical two-

point correlation functions in a Heisenberg para-
magnet with both anisotropic exchange and uniaxial
(single ion) anisotropy. The formalism is based
upon the technique of diagrammatically expanding
the spin self-energy at infinite temperature. This
technique is an extension of ideas due originally
to Bennet and Martin.®® These ideas were formu-
lated in terms of moment diagrams by Reiter,3
and were then expressed in terms of self-energy
diagrams by Myles and Fedders.3* The technique
has previously been used successfully on a variety
of different problems3***® and is capable, in princi-
ple, of diagrammatically generating equations for
the self-energy which are valid to all orders of
the interaction in a Brillouin-Wigner kind of per-
turbation theory. Although Fedders* has recently
shown that, at least for the case of the isotropic
Heisenberg magnet, it is possible to resume an
infinite subset of these self-energy diagrams, in
practice it is usually only practical to keep the
lowest-order or “bubble” approximation in this
diagrammatic expansion.’*"* Because of the ad-
ditional complexity of the problem with both ex-
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change and uniaxial anisotropy included, in this
paper only these lowest-order diagrams will
again be kept. The resulting lowest-order integral
equations give a formalism for the calculation

of spin correlation functions which is applicable
for all values of the spin quantum number S and
for all values of the ratio D/J, where D and J are,
respectively, the uniaxial anisotropy energy and
an exchange energy. In addition, the correlation
functions obtained by solving these equations are
expected to contain errors of the order of 1/Z,
where Z is the number of spins®™° in the range

of the interaction. These errors occur because
the technique makes use of a high-density or 1/Z
expansion to obtain and solve the basic equations 3
In the last several years, such high-density ex-
pansions have been used by several authors3? 34 41,42
in conjunction with several different techniques to
study various aspects of the physical properties

of dense magnetic systems. The 1/Z expansion
has, in fact, become a standard method for ap-
proximately treating problems in strongly inter-
acting spin systems..

Although the equations resulting from this dia-
grammatic formalism and those given by JPR
yield qualitatively similar numerical results,
there are several advantages to the former ap-
proach over the latter. One advantage is that with
the diagrammatic formalism, in contrast to the
formalism JPR, one can obtain a clear recipe for
extending the theory to higher orders in the inter-
action. The physics of such an extension is also
clearer from the self-energy approach; one is
making the extension by simply going to higher
orders in a Brillouin-Wigner perturbation scheme.
A second advantage of the method discussed below
is that for a given value of S there are many less
coupled integral equations to solve than with the

method of JPR. Because of this fact, with the
self-energy method, unlike the method of JPR,
the introduction of a truncation scheme to reduce
the number of equations for numerical solution -
is only necessary for large S. For example, by
Eq. (2.16) of Ref. 30, for S=3% the formalism of
JPR requires the simultaneous solution of 146
coupled integral equations.

Clearly, such a task is impractical for most
computers, so that a truncation scheme must be
introduced. On the other hand, using the formal-
ism to be discussed below requires the solution
of only 20 coupled integral equations for S=3, so
that a computer solution without the introduction
of a truncation scheme is still practical. A final
advantage of the new formalism is that the dia-
grams used are not as complicated as those dis-
cussed by JPR so that the physical basis for the
approximations made can hopefully be more easily

seen,

As mentioned above, the application of the low-
est-order or “bubble” approximation of the self-
energy diagrammatic expansion to a paramagnet
with anisotropic exchange and uniaxial anisotropy
results in integral equations which are applicable
for all values of the parameters S and D/J. The
second purpose of the present paper is, in the
limiting case of isotropic exchange, to make a
systematic study of the numerical solutions to
these equations as a function of both S and D/J.

In particular, solutions for the “local” correla-
tion functions, the spin-diffusion coefficients, and
the exchange-narrowed dipolar linewidths will be
studied as a function of S and R for 1<S<% and
0.0<R <5.0, where R=3D?/165(S+1)J2. The
parameter R will be varied rather than D/J itself
since R, as will be seen below, is a naturally
occuring parameter in the equations for the cor-
relation functions. Only the limiting case of iso-
tropic exchange is considered for actual numerical
study both for simplicity and because the main new
features of the solutions, as compared to the case
of the isotropic Heisenberg paramagnet, are ex-
pected to come from the uniaxial anisotropy rather
than the anisotropic exchange.

The third and final purpose of this paper is to
apply the above described formalism to real
paramagnets with uniaxial anisotropy. In particu-
lar, the spin-diffusion coefficients and dipolar
linewidths will be computed for the substances
NiF,, CoF,, FeF,, and MnF, and the experimental
implications of these results will be discussed.

The remainder of this paper is organized as
follows. Section II contains a discussion of the
physical model to be used, the types of correlation
functions to be considered and the notation to be
used throughout the paper. In Sec. III, following
a discussion of the spin self-energy method ap-
plied to the anisotropic Heisenberg paramagnet
plus a uniaxial anisotropy energy, the lowest-
order or “bubble” equations are derived for this
system for all S. In Sec. IV, the method of solu-
tion to these equations is discussed and, .in the
limiting case of isotropic exchange, they are
solved numerically for 1<S<% and 0.0<R <5.0,
Sections V A and VB contain the calculations of
the dependence of the spin-diffusion coefficients
and exchange-narrowed dipolar linewidths on the
parameters S and R, This dependence is computed
using the self-consistent results of Sec. IV. In
Sec. VC, the diffusion coefficients and dipolar
linewidths are computed for the uniaxial para-
magnets NiF,, CoF,, FeF,, and MnF, and the
relevance of these calculations to experiment is
discussed. Finally, Sec. VI contains a brief sum-
mary and conclusions.
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II. MODEL

It is assumed that the dynamics of the spins are
adequately described by an anisotropic Heisen-
berg paramagnet plus a uniaxial anisotropy term.
The Hamiltonian is then

H=—} Z  Sadu(6,1),(7) =D Zj [s.@1%, (1)
viiay

where S,(¢) is the ath Cartesian component of the
spin operator §(i) at site ¢ which evolves in time
according to the Heisenberg representation,
J(6,7)=J,, (i —7) is the exchange energy between
spins at sites ¢ and j, and D is the anisotropy
energy. As is noted in Refs, 25 and 27, the physi-
cal origin of the anisotropy energy D in real
paramagnets, such as MnF,, is probably mainly
the magnetic dipole-dipole interaction. For these
real systems, then, it is probably more appro-
priate to replace the second term in Eq. (1) by
the dipolar interaction or, equivalently, to absorb
that dipolar interaction into the first term in that
equation. On the other hand, the phenomenological
parameter D is actually measured in several sys-
tems**™*" 50 that if one uses Eq. (1) as it stands to
calculate spin-correlation functions for realistic
cases, experimental-theoretical comparisons of
the results can be made by putting the measured
value of D into the calculated results. Also, as
stated above, one of the purposes of this paper
is to investigate the dynamics of a model system
described by Eq. (1). In particular, the depen-
dence of the spin-correlation functions on the ratio
D/J is one of the primary interests in the following
calculations. Thus, the interaction will be taken
in the phenomenological form of Eq. (1) with D
(and, of course, the exchange energies) being
taken as known. The effects of an external mag-
netic field could easily be included in the following
discussion.*”*® However, since for ordinary lab-
oratory fields, the Zeeman interaction is only a
small perturbation on A and since including this
interaction would introduce many more indices into
the notation, the effect of an external field will
be neglected here.

Following Ref., 34, the two-point correlation
functions to be considered here are defined in the
high-temperature limit as

Gopli, g, t —t")=(AL(, DAL, He i 1), (2)

where the angular brackets denote an average in
the canonical ensemble, O(¢) is a step function,
and A, is a shorthand notation for the irreducible
tensor spin operator A4,,, where in general -1
Sm<land l<2S. The operators 4,, are dis-
cussed and defined in Refs., 32 and 34 and are
basically the Racah spherical harmonic operator

equivalents discussed by Lindgird and Danielsen?®®
but with a change in normalization so that
Tr(|A,,|?)=2S+1. TableI of Ref. 49 gives a list
of all Racah operator equivalents in terms of the
ordinary spin operators S,,S, for 0<7<8, The
precise method of obtaining the 4,,, operators
used here from the Racah operators is discussed
in detail in Appendix A of the present paper. How-
ever, as will become apparent later, in order to
obtain equations for the correlation functions it is
not necessary to know the form A,,, take as a func-
tion of the spin operators. Rather, it is sufficient
merely to know how these operators A;, commute
with one another. In this regard, as will be shown
in detail in Appendix B, the commutation proper-
ties of the A4;, can be determined solely from their
tensor properties without having to explicitly write
the relationship between them and the spin opera-
tors. Thus, the reader is referred to Ref, 49 and
Appendix A if he desires the detailed form of the
A,,.
The translational invariance of the system in
time and the invariance of the crystal lattice under
translations through a lattice vector enable one

to Fourier transform G,4(i,j,¢ —¢') by the stan-
dard prescription®®

Gogli —j,t ~1t") |
“d - 3 (B; = wfw (t=t’
=]%Z: f FwGuB (§, w)e'T Fitpgriote=ty  (3)
q -c0

where N is the number of lattice sites and the
summation is over all wave vectors { in the first
Brillouin zone. The Fourier-transformed func-
tion G,4(q, w) is the function which will be of
primary interest in the calculations to follow.

III. DERIVATION OF THE EQUATIONS OF MOTION

In this section, the diagrammatic method devel-
oped in Refs. 34 and 48 will be applied to the
Hamiltonian, Eq. (1), to obtain equations of mo-
tion for the G,4(d, w). Since it is basically the
same method as was used for several previous
calculations ,**-*® the following derivation will be
as brief as possible with the main emphasis being
on the features which are unique to the problem at
hand. The starting point for the derivation is the
expression of the correlation function in terms of
a mass operator or self-energy Z,4(d, w). In the
high-temperature limit, this function is defined by
the equation

wGaB@; (.0) - Zar(., w)G,,B(", w) = iGaB, (4)

where v is summed over and X(¢) is proportional
to a step function. This definition of the mass
operator is only useful, however, if one can find
a method of expressing =~ as some functional of



FIG. 1. Graphical repre-
sentation of the operators
A

the correlation function G.

In Refs. 34 and 48, it was shown rigorously that,
for the isotropic Heisenberg paramagnet, such a
functional can be obtained diagrammatically at
infinite temperature. The method for proving the
existance of such a diagrammatic expansion for
Z4y in the present case is exactly the same as
was used in those references and the arguments
which apply to the isotropic case apply equally
well to the interaction given by Eq. (1). Thus, no
detailed discussion of these points will be given
here. In brief, then, the method for obtaining an
infinite-temperature diagrammatic expansion of
the self-energy is as follows. One first forms the
Reiter-type moment diagrams®? for the exchange
plus uniaxial anisotropy interaction, Eq. (1). After
keeping only the “skeleton diagram” 3* subset of
these moment diagrams, diagrams for Z,, are
then obtained by resumming that subset by the
same method as in Ref. 34.

Integral equations for G,z can thus be obtained
by the use of the Reiter-type vertices3? from the
interaction in Eq. (1). Since the equation of mo-
tion for A;,, couples to4,,, ,, due to the commuta-
tion relation of A4,,, with the second term of Eq. (1),
in order to form vertices for that interaction it is
necessary to include lines for the tensor operators
A,, for all -I<m <[ and for all /<2S. There-
fore, the graphical notation used in previous cal-
culations,**-*® where A,,, was represented by com-
binations of lines with arrows and dotted lines,
would clearly be much too cumbersome for this
case. Instead, the graphical representation for
the tensor operator A,, will be taken simply as a
single line with the label (I,m). This notation is
illustrated in Fig. 1.

Before forming the Reiter-type vertices® for the
interaction of Eq. (1), it is convenient to first re-
write that interaction in terms of the tensor opera-

tors A,,.. The interaction then takes the form
= 1S(6+1) O Ayl G, i)AL ().
iyjimym’
- kD ZAzo(i), 1)
where
B =[FHSE+1)(2S - 1)(25+ 3] 2, ")

and an unimportant constant term has not been
shown. The relationships between the exchange
energies J,,,, and the J,, of Eq.-(1) is shown ex-
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plicitly in Appendix C.

The Reiter-type vertices®? for the interaction
Eq. (1’) are formed from the matrix elements of
the Liouville operator exactly as is discussed by
Reiter.?® The discussion here will be limited only
to these basic vertices since they give all of the
moments exactly to order 1/Z, where Z is the
number of spins in the range of the interaction.
There are two kinds of these basic vertices which
occur for the interaction of Eq. (1). The exchange
interaction gives the usual kind**~*® with one line
entering the two lines leaving, while the uniaxial
anisotropic interaction gives a vertex with one
line entering and one line leaving. In the latter
variety the interaction energy D will be denoted by
a cross on the line, The Fourier-transformed ba-
sic vertices for the interaction of Eq. (1’) are
given, along with their analytical expressions, in
Fig. 2. In that figure, the quantities Ci™,, . and
C2,,m are coefficients related to the commutators
of the 4,,, in the following manner:

[A 1m’ ’Alm] = C}m' 'Al,m+m' (53.)

ym+m

and

[A50,4,,]= Cl A m* CittmAres,me (5b)

In Sec. IV [Egs. (10)], the explicit forms of these
coefficients are shown for arbitrary S, I, and m
and in Appendix B a detailed discussion is given

(e.m +m)
a. =
8133”) Cei,'m;m' T i (18(3-2-1)
p 2fm L(e-tm)
s C2% m D8 (3-1)
c 3,(em) 1,(e+1,m) i,

ws CAomD8(3-1)

FIG. 2. Basic vertices for the interaction of Eq. (1)
(a) Basic vertex for all I for the anisotropic exchange
term. (b) Basic vertices for all I for the uniaxial ani-
sotropy term. The shorthand, §=3, §,=2, and q; =1
has been used.
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(¢,m+my
a (e,m) (¢,m)
b (¢,m) (¢-1,m) . (¢,m)
c fem) _  (e+1m) . (e,m)

—x x

FIG. 3. Basic ‘bubble” diagrams. (a) Contribution of

exchange; (b) and (c) contributions of uniaxial anisotropy.

on how one determines them, with particular em-
phasis on the derivation of the C%), . Curiously,
the latter quantities do not appear to have been
explicitly derived before.

2@, t)_zS 2(S+1)2 Z {7

9N dy mm’

For the infinite-temperature limit being con-
sidered here, only the diagonal correlation func-
tions G,, and diagonal self-energies =,, are non-
zero. Therefore, in the following discussion, the
abbreviations G,, =G, =G,,, will be used with the
corresponding abbreviations for the self-energy
functions. Also, it should be noted that, in the
absence of a magnetic field, G,,=G,, _,.

The vertices shown in Fig. 2 can be used to con-
struct diagrams for Z,, which are valid to any
order in the interaction. As was stated in the
introduction, however, only the lowest order
“bubble” approximation will be considered in this
paper. The remainder of this paper will then be
concerned with only this lowest-order approxima-
tion. These “bubble” diagrams are formed by
connecting two of the vertices of Fig. 2. The basic
types of these lowest-order diagrams are shown
in Fig. 3. Note that, in this lowest-order approxi-
mation, there are no cross terms in T,,, between
the energies J,,,, and D, Evaluation of these dia-
grams by the rules discussed in Ref. 28 gives the
following lowest-order self-energies:

m(q1 2(Ci:$+'m ’)2+J ’ (q]_) m-m,m -nn(q ql)cl' m-mcl’:-rm }

X Glm(q1) t)G]_,mm' (‘ q19 t) - 'l(IuL )2D2(02+1,m 2027);(’ t)’ . (63.)

2@ 0= 57 1

qumm

‘Z(“s)zDz[(CZ-hm )*G,. 1L,m(d51)

and

m(al) z(cl.num )261771(-&1, t)Gz,rMm' (ﬁ - 51, t)

+(CB, )Gy, @, 0)], (1<1<25), " (6b)

iS%(S+1 .
gs, (-. t)" ( + ) Z [Jm (ql. ]2(C]é"§m+m') G1m(q1,t)st,m+m (q ql!t)-Z(l‘l‘s)zDz(czS-].,m)ZGZS-]..m(.’t)’

qlv mm*

The second exchange energy term|in Eq. 6(a) comes

about because for /=1, there are two different
ways of combining two vertices like the one in
Fig. 2(a) to form the “bubble” in Fig, 3(a). Equa-
tion (6¢c) is clearly a special case of Eq. (6b) but
it has been written to emphasize the fact that the
hierarchy of equations truncates automatically at
1=2S because of the properties of the coefficients
C%,,»- Inparticular, as can be seen from Sec. IV
and Appendix B, C3%,, ,, is identically zero. Like-
wise, C2% . vanishes and there is only one term
in Eq. (6a) which is proportional to D2, Thus, it
can be seen that the present formalism, when the
symmetry in m and —m due to the absence of an
external field is taken into account, requires the
simultaneous solution, for a given S, of

(6c)

?_S:(H 1)=5(2S+ 1)+ 25=5(25+ 3)
=1

coupled nonlinear integral equations. This should
be compared with the formalism of JPR which
requires® the simultaneous solution of (2S
+1)[8S(S+ 1)+ 3] such equations for a given S. For
the present formalism, it has been found that a
numerical solution without the introduction of an
artificial truncation scheme is practical even for
S as high as 3. On the other hand, the JPR for-
malism requires, from a practical point of view,
the introduction of such a truncation scheme for
any S. For very large S, a truncation scheme is
probably also necessary with the present formal-
ism and a method similar so that used by JPR
would probably be applicable,
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As can be seen from Appendix B, the quantities
Ci™ . are of the form

C%:nr;-c-m' = [3/S(S+ 1)]1 kb%:nr:l»m’ ’

where the b}™,,,. are independent of S and are
shown explicitly in that appendix and in Eq. (10a)
of Sec. IV. Thus, the S dependence of the exchange
terms of Eqs. (6) consists merely of the scale
factor

1525+ 1)¥[3/5(S+ 1)]* 2= 35(S+ 1).

This is\in agreement with previous results for

the isotropic Heisenberg system.**“® On the other
hand, the quantities CZ; ,. and thus the terms in
Eqgs. (6) which are proportional to D?, have a
more complicated S dependence. This dependence
is shown explicitly in Eqgs. (10b) and (10c¢) and may
be found from the forms of C%), , which are de-
rived in Appendix B.

Equations (6a)-(6c) along with Eq. (4) form a
closed set of nonlinear integral equations for the
correlation functions G,,,. These equations re-
produce the infinite-temperature frequency mo-
ments of the Z,, exactly to lowest order in 1/Z.
While only valid for infinite temperature, they
are also valid for all values of the spin quantum
number S, for arbitrary ratios of the uniaxial
anisotropy energy to the exchange energy, and for
arbitrary exchange anisotropy. Furthermore,
they are the lowest-order equations in a Brillouin-
Wigner perturbation theory in the energies J,
and D. The exchange-energy-dependent part of
Eq. (6a) has been obtained before in a slightly
different notation.3***%! Also, the exchange-de-
pendent part of Eq. (6b) has been obtained before
for the limiting case of /=2 and isotropic ex-
change.’* However, the derivation of these equa-
tions for general /,m and the inclusion of uniaxial
anisotropy effects are new results.

J

S(S+ 1)

r,@,w=

+Ddz),, () %g2n(@, @),

Z{[J@)Jz TEME - ql)}Z(

IV. SOLUTION OF EQUATIONS FOR THE CASE OF
ISOTROPIC EXCHANGE

In this section, the nonlinear integral equations
derived in Sec. II will be solved for the limiting
case of isotropic exchange for 1<S<%, and for
various ratios D/J of uniaxial anisotropy and ex-
change energies. Only the limiting case of iso-
tropic exchange is considered both for reasons
of numerical simplicity and because the uniaxial
anisotropy energy should reasonably be expected
to produce the most significant new features of
the solutions for the correlation functions, as
compared to the solutions for the isotropic case
discussed in Ref. 34. In Sec. V, the solutions for
the dipole correlation functions G, (d, w) will be
used to obtain the spin-diffusion coefficients and
exchange-narrowed dipolar linewidths as a func-
tion of S and D/J.

First, for convenience, the G, and the =, are
expressed in terms of spectral representations as

©dw g,@,w)
T w-=w +i€

Gar’ w)=i

and

(7a)

® dw' I‘Q(a’ w’)

TG, w)= :
«\d, e T W—w +i€

=II, (..y w) =i, (d, w) (To)

where € is a positive infinitesimal quantity. The
quantity g,(d, w) is the experimentally measured
line-shape function and is related to 1, (4, w) and
T'.(d, w) by the equation

8a(,0)=To@, w)/{[w-1,@, »)]*+[T.@, »)]%}.

(8)
By Fourier transforming Egs. (6a)-(6c), and by
using the above spectral function definitions, it
can be seen that, in the isotropic exchange limit,
those equations are equivalent to

1.m+m )2_[ _lgx,-m'(ﬁn W)83, mome @ =Ty, 0 — w,)

(92)

m(.’ S(S+ I)Z [NL)PZ (bl,mﬂn‘)zf —""‘“gl,-m Gy, ©,) &1, mom* @ —61’ W = w,)

+ Dz{[dz-l.m(s)] gl-l.m(q9 w) + [dlq, (S)]zglq,m(a’ w)} >

and

(1<1<25), (9b)

S S+ 1 . “ dw. -
Ty5,m(@, 0)=—2m— ( ) Z [J(‘i1 ]z(bé's:an')zf #gl.-m'(‘inwx)gzs.mm'(a‘q1’w"°’1)

+ Dz[dgos-l (s)]zgzs-x, m(ﬁ, w)-

(9¢)

Note that to obtain Egs. (9) from Egs. (6) use has been made of the fact that, in the isotropic exchange



5332 CHARLES W. MYLES 15

limit, J,5=0,s,7J. In Eqgs. (9) the quantities b}'™,

1@+ 1) = m@m £1)],

Bhmeme )2 = 5SS+ 1)(Ch 1 )= | 2

l,mtm’
0,

1,mm

m2l+m+ 1) —m+ 1)[4S(S+ 1) -1(1+2)]

. and d33, .(S) have been introduced, where

(321, m©O)P= (L )(CR,, n)*=

and

27+ 1)(21+ 3)

m2(l+m)(l = m)[4S(S+1)- (1 - 1)1+ 1)]

(332, m(S)]P= (L )*(C32, m)* =

Here, explicit use has been made of the definitions
of Cy'™, .. and C%,  derived in Appendix B and,

for emphasis, the dZ,,,,(S) have been written expli-
citly as functions of S.

Equations (8) and (9a)-(9¢c) are the integral equa-
tions which will be discussed in this section., Sol-
ving these sets of four variable nonlinear integral
equations could be very difficult in the general
case. Thus, following Refs. 34-39, the “local”
equations will be solved first and the self-consis-
tent solutions to these equations (the “local” spec-
tral functions) will be substituted into Eqs. (9) to
obtain an approximation to the wave-vector -depen-
dent linewidth functions T';,(§, w). In particular,
the “local” solutions for the dipolar spectral func-
tions g,, will be used to obtain approximations to
the functions I',,,(d, w) which can be used to calcu-
late the spin-diffusion coefficients and the dipolar
linewidths.

The philosophy behind making such a “local” ap-
proximation to Egs. (9) has been thoroughly dis-
cussed in Refs. 34 and 48, where it is given a
rigorous mathematical foundation. Thus, here
only the main ideas which form the basis for this
approximation will be discussed. The approxima-
tion is based on the fact that Eqs. (9), which are
the result of the “bubble” approximation to the
self-energy, are only accurate to order 1/Z, since
they are the analytic representation of diagrams
formed from vertices which only give the moments
accurately to that order. Thus, if these equations
are themselves expanded to lowest order in 1/Z,
one would expect the solutions of the resulting
equations to be almost as accurate as the solutions
to the exact equations. Such an expansion of Egs.
(9) is known as the “local” approximation. It
should be emphasized that this local approximation
is not a necessary approximation to solve Eqgs.

T =3 G [ 2

(2r-1)(21+1)

m'=x1,
m'=0, (10a)
‘otherwise,
y (10Db)
(10c)

r

(9). It is, however, an approximation which makes
the numerical solution to those equations much
easier and more economical with respect to the
amount of computer time used, while at the same
time, it sacrifices very little in accuracy as com-
pared to an exact solution. In particular, physical-
ly observable quantities which are calculated from
the approximate solutions are expected to differ
by only one or two percent from the values that
would be obtained if the exact solutions were used.
This expectation has previously been confirmed
quantitatively for the case of the isotropic Heisen-
berg magnet by comparing the electronic spin-
diffusion coefficients®* and the NMR linewidths*
computed using solutions to the “local” approxima-
tion equations to those same quantities computed
using Blume and Hubbard’s®? exact solutions for
that case. Finally, it should be noted that the
approximation just discussed has the effect, in
coordinate space, of replacing g, (¢,7,w) by
£4(®)5;,;. The functions g,(w) are thus the spec-
tral functions for the autocorrelation functions
and the physical origin of the term “local” approx-
imation can be seen.

In the following discussion, it will be convenient
to use dimensionless variables so that frequencies
are measured relative to V, where

Ve= ZS(S+ I)Z:Jz(.) (11)

Thus, the dimensionless variables here and those
in Ref. 34 are the same, which will facilitate com-
parison of the results obtained here with those
obtained for the isotropic case. It can be shown
that expanding Egs. (9) in the manner discussed
above leads tothe following wave-vector—indepen-
dent equations:

=2Z e (y1)g1.mom'(y y1)+R[d2'm(S)]2§2m(y), (12a)
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~ “dy; - -
rlm(y)=%z (b§:2+m )2] 73) gl,-vn’(yl)gl.mém'(y _yl)
m’ ©

m

;"R{[d?gl,m(s)]zg-'l-l, (y) + [dl*]_,m(s)]zgl.u,m(y)} ’ (1< l < 28)7 (lzb)
and ‘
P (9) =32 (O5dmem)® f @gl,.,,.r(yl)gzs,m.m (9 =91)+ Rd58.1,m )] Faset,m (9)- (12¢)

where y=w/V is a dimensionless frequency, R
=D?/V?, and the tilde denotes that the quantities
are in dimensionless form. Similarly, the dimen-
sinnless “local” forms of Eqs. (8) and (7b) are

Ea(9)=To(MALY -1 (»+[T ()% (13a)

and

o(y)= Pf.. L = zl) (13b)

where P denotes the principle part integral. Equa-
tions (12) and (13) are the equations that will be
solved in this section. To obtain the true solu--
tions to the wave-vector-independent “local” line-
width and line-shape functions, one makes the
transformations

T, (w)= VT (w/V) (14a)
and

ga(w)= (14b)

Eo(w/V)

v .
The first approximation to the wave-vector-de-
pendent dipole linewidth function is,* in dimen-
sionless form,

@, )= D) L) -IGVE-8)]7um(s)

+R[d2,,,.(s)] Zam(9), ’ (15a)
where

Pim()= T (9) = R[A2°,(S)2Z o (). (15b)

This solution reproduces correctly all of the mo-
ments of T, (d, w) to order 1/Z for all §. On the
other hand, Eqgs. (14a) and (14b) reproduce all of
the moments of T, (d, w) for 7> 1 accurately to
order 1/Z. Thus, the g;,(d,w) for I>1 are inde-
pendent of § to that order. The fact that the second
term in Eq. (15a) is independent of § is a reflec-
tion of this fact.

Equations (12) and (13) have been solved numer-
ically by iteration on a computer for all values of
S in the range 1<S <% and for various values of
R in the range 0.0 SR <5.0. The results for the
“local” dipolar spectral functions ,,(y) and g,,()
are summarized in Figs. 4-6. Note that at R=0.0,
£1,(9)=3,5(») and that these functions are indepen-
dent of S for that value of R. This result is expec-

r

ted from the knowledge that R =0.0 implies D=0.0
and thus the problem is reduced to that of the iso-
tropic Heisenberg magnet again, Therefore, for
R=0,0, the solutions for the “local” dipolar func-
tions are the same as those obtained in Ref. 34.
The general behavior of these quantities as func-
tions of R and S is as follows. For constant S, the
function ,,(y) begins as a fairly narrow Gaussian-
like curve for small R. As R increases, the peak
height of this function drops and the curve gradual-
ly becomes broader and flatter while still retaining
its Gaussian-like shape. Finally, at very large R,
this function has become virtually a constant over
the frequency range for which the R = 0.0 function
is nonzero. This behavior is shown explicitly for
S=1,3, 2, and § in Fig. 4. For constant S, the
function g,,(y) also, of course, begins as a Gaus-
sian-like curve at small R. In contrast to 2,,(y),
as R increases, the peak height of 3,,(y) increases

“and this function gradually becomes narrower and

more sharply peaked. Also, as this narrowing
continues, the curve begins to change its shape
from Gaussian-like to Lorentzian-like. Finally,
at large R, this function has become so narrow and
sharply peaked that the R =0.,0 function is virtually
a constant over the frequency range for which the
large R function is nonzero. This behavior is
shown explicitly for S=1, &, 2, and ¥ in Fig. 5.
For constant R and varying S the functions g,,(y)
and §,,(v) also have opposite behavior. Starting
from a Gaussian-like shape for S=1, ,,(¥)
broadens out and becomes flatter on its peak as
S is increased, but its Gaussian-like shape is re-
tained. On the other hand, as S is increased, the
function ,,(v) changes from a Gaussian-like
function at S=1 to a narrow, sharply peaked, Lo-
rentzian-like function for S=%. This behavior for
£,,(») and Z,,(v) is shown for R=0.5 in Fig. 6.
The term “large R” in the above discussion
means the largest value of R for which the com-
puter program could obtain convergent solutions
for these functions within a reasonable number
of iterations and with the use of a reasonable
amount of computer time. A reasonable number
of iterations was considered to be of the order of
25 and a reasonable amount of computer time was
considered to be of the order of 10-15 min. For
most values of S, this “large R” value was R~5.0,
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FIG. 4. Dipolar spectral function Z;(y) for various S. (a) S=1; (b) S=J; (¢) S=2; (@ S=%.

It should be stated at this point that one of the

new facts that the above results show is that even

with the fairly large spin value of S=3, one has
not yet, even for practical purposes, reached the
classical (S=%«) limit where, for a given value of
R, the functions £,,(y) and Z,,(y) would no longer
vary as a function of S. (In other words, if the
classical limit were reached, these functions
would have reached saturated values as a function
of S.) In fact, for the largest value of R for which
solutions were computed, R =5.0, the difference

between the g,,(y) for S=2 and that for S= % is of
the order of 30% for the entire frequency range.
Thus, the fact that the spins are quantized is still
important, even for S=%. Similar results hold
for Z,,(y). Also, as R decreases this difference
increases. This last point indicates that the clas-
sical limit might be approached faster for large
values of R than for small values of R. Thus, the
size of the uniaxial anisotropy energy to exchange
energy ratio appears to have a marked effect on
the value of S for which the classical limit is
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FIG. 5. Same as Fig. 4 but for Z;,(y).

reached.

In the above context, “classical limit” means
the classical limit for all practical purposes. If
that limit were reached in this sense the solutions
to Egs. (12) and (13) would no longer depend on S.
The true classical limit must, of course, be taken
by properly taking the S= limit of Egs. (12). It
is not yet clear exactly how to do this.

Even though the functions 3,,(y) are the functions
of primary interest, the numerical solutions to
Egs. (12) and(13), of course, yield self-consis-
tently all of the functions 3,,(y) for 1<7<2S.
Since, for example, for S=3, one has 20 such
functions, there is clearly neither enough space
here nor, in fact, sufficient interest in these
functions to show all of them and their various
dependences on S and R. The quadrupolar func-
tions g,,(y) are, however, observable in acoustic
experiments in magnetic insulators®® and so are
of some intrinsic interest in themselves while the

Z1m(9) for 1> 2 do not appear to be observable.
Therefore, some representative results for the
Z.m(v) are shown in Fig. 7.

The behavior of the 3,,(y) as functions of R and
S may be summarized as follows. Again, for
R=0.0, one has the result Z,,(y)=2,(y)=2,.(»)
and that these functions are independent of S in
that limit. Thus, in this case, the results for
these functions are again the same as found in
Ref. 34. For constant S the functions 3,,(y) and
Z,,(y) behave, as a function of R, in a manner
similar to Z,,(y) while Z,,(y) behaves somewhat
like Z,,(y). In particular, the functions 3, (y) and
Z,5(y) begin, for small R, as broad Gaussian-like
curves and become broader with a corresponding
decrease in peak height as R is increased until,
for Rz 1.0, they are virtually constants over the
range for which the R =0.0 functions are nonzero.
This behavior is summarized in Figs. 7(b) and
7(c). On the other hand, the functions g,,(v) be-
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FIG. 6. Dipolar spectral functions for different S at
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comes narrower and increases in peak height as
R is increased. At the same time, it changes
from a Gaussian-like to a Lorentzian-like curve
and, for large R, becomes so narrow that the

R =0.0 function is virtually a constant over the
range where the large R function is nonzero. Rep-
resentative results for this function are shown in
Fig. 7(a). For constant R, the functions 3,,(y)
also behave as a function of S similar to the func-
tions g,,(y) with Z,,(y) and Z,,(y), like Z,,(y),
broadening and becoming flatter for increasing

S and Z,,(y), like 3,,(»), narrowing and becoming
more Lorentzian-like for increasing S. In addi-
tion, it should be noted that the Z,,(y) are in gen-
eral, for a given R and S, broader functions than
the Z,,,(v) at corresponding R and S.

The general behavior of the g,,(y) for all I<2S
can also be described by comparison with the
Z1m(¥). Inparticular, it was found that, for either
constant R and increasing S or constant S and in-
creasing R, the functions Z,,(), like Z,,(y), nar-
row and become increasingly Lorentzian-like
while the functions g,, (y) for 0<m <[ like ,,(y),
broaden and become increasingly flat., Also, it is
a general fact that for a given R and S, the func-
tion g,,,(») is broader and less sharply peaked
than the function §_,,,(¥). It is clear that the
solutions presented here for the Z,,(y) are quali-
tatively similar to those of JPR. However, since

they work in time space and the work here is in
frequency space, it is difficult to make a quanti-
tative comparison between the two theories.

It is clear from Egs. (12) that R is a naturally
occuring parameter in those equations. However,
in most previous studies of uniaxial anisotropic
magnetic systems,!™®2% % the parameter that has
been varied is D/J, where J is an exchange con-
stant. To make contact with these previous stud-
ies, it is necessary to express the quantity R ex-
plicitly in terms of D/J. From the definition of R ,

2
R=gz=p /B T @. (16)
it can be seen that in order to accomplish this it
is necessary to assume a form for J(q) and thus
to assume a particular lattice structure.

The main motivation for this work was originally
a study of the spin dynamics in substances like
NiF,, CoF,, FeF,, and MnF,. In fact, Sec. VC,
the spin-diffusion coefficients and the exchange-
narrowed dipolar linewidths will be computed for
these substances. Thus, with that application in
mind, it is convenient to assume a J(§) and a
lattice structure which are appropriate for those
materials. In any case, the dependence of the
parameter R on the ratio D/J should not depend too
strongly on the choice of lattice structure. All
four of the above mentioned compounds possess
a rutile structure with first-, second-, and third-
neighbor exchange constants.**™*" In this case, it
can be shown that the exchange interaction has the
form

J(@)=2J, cos(g,c)
+8J,cos(3¢,a) cos(3q,a) cos(3q,c)
+2J [ cos(g,a) + cos(q,a)]. (17a)

where J,,J,,J,; are the first-, second-, and third-
neighbor exchange constants, a and c are the lat-
tice constants in the & and ¢ directions of the ru-
tile structure, and ¢,,q,,q, are the Cartesian com-
ponents of the wave vector 4. Using Eq. (17a) in
Eq. (16) gives the result

R=3D%/45(S+ 1)(J2+ 4J3%+ 2J2). (17b)

Fortunately, for the substances mentioned, it is
experimentally found that J,,J,<<J,.*>**" There-

fore, itwillbe assumed that the model system de-

scribed above will have this same property for all
values of S and R. In this case, one can neglect
J% and J3 in the denominator of Eq. (17b) and can
thus obtain the rather simple expression

R =3D%/16S(S+1)J2, (17¢)

where J, has been abbreviated as J. Equation
(17¢) is the form that will be assumed for R for
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FIG. 7. Representative results for the quadrupolar spectral functions. (a) Z(¥), S=1; (b) F»(¥), S=2; (c) &x(»), S=2.

the rest of the paper. In order to make contact
with previous work!"®2% 30 and relate specific
values of R to specific values of D/J, for example,
the values of R shown in Figs. 4-7, |D/J| given
by Eq. (17c) is shown in Table I as a function of

R and S. :

V. SPIN-DIFFUSION COEFFICIENT AND
EXCHANGE-NARROWED DIPOLAR LINEWIDTH

A. Spin-diffusion coefficient

Since, as was discussed in Sec. IV, the spectral
functions g;,(d, w) for > 1 are independent of § to

order 1/Z and the “local” solutions 3,,(y) are
approximations to these functions which are accu-
rate to that order, they are adequate solutions
within the accuracy of the theory. On the other
hand, the dipolar spectral functions 7,,(d,y) re-
tain a wave-vector dependence even to order 1/Z,
as can be seen by Eq. (15). The remainder of this
paper will be concerned exclusively with these
functions. In particular, in this subsection, a
discussion will be given as to how one obtains a
self-consistent approximation to the § dependence
of these functions which is accurate to order 1/Z.
Then these approximate §-dependent solutions will
be used to obtain values for the spin-diffusion co-
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TABLE I. Table of |D/J| as a function of R and S as
given by Eq. (17¢).

R \'S 1 32 2 2
0.0001 0.0321 0.0447 0.0566 0.0683
0.001 0.1033 0.1414  0.1789 0.2160
0.005 0.2309  0.3162  0.4000 0.4830
0.01 0.3266  0.4472  0.5657 0.6831
0.025 0.5164  0.7071  0.8944 1.0801
0.05 0.7303 1.0000 1.2649 1.5275
0.1 1.0328 1.4142 1.7889 2.1602
0.25 1.6330  2.2361 2.8284  3.14157
0.5 2.3094  3.1623  4.0000  4.8305
0.75 2.8284 .  3.8730 4.8990 5.9161
1.0 3.2660 4.4721 5.6569 6.8313
2.5 5.1640  7.0711  8.9443  10.8012
5.0 7.3030  10.0000  12.6491  15.2753

efficients as a function of R and S. The treatment
given here will be much the same as that given
for the isotropic case in Ref. 34,

The starting point to obtain an approximate §-
dependent solution for the gl,,,(ii,y) is Eq. (15a)
which can be rewritten

fl(.i) q,y)=01(ﬁ) ‘[:—%)'Lgm(yl)gu(y —yl)
+Rf(S)Z(y), (18a)

-~ “dy, . -
F®@9=0@ [ 242,58,y -y), (18b)

where
o@= B (16) -s@WE-8)] (180)
94
‘and
1, S=1
fS)=%[45(5+ 1)- 3] = ¥, s=3 (184)
%, s=2,

These equations have been shown explicitly for
m=0 and m=1 in order to try to make the follow-
ing discussion clearer. The “local” functions
&10(»), &,,(¥), and 5,,(y) are known self-consis-
tently from the solutions to Egs. (12). Equations
(18) are clearly a first approximation to the §-
dependent linewidth functions I‘m(° ,v), hence the
notation I'{:)(@,y) has been used.

A first approximation to the g-dependent line-
shape functions %,,,(d,y) can now be obtained by
substituting Eqs. (18) into Egs. (7) and (8). Before
thls is done, however, it is convenient to note
‘that the only § dependence in Eq. (18) occurs in the

quantity @(§). This is fortunate because it makes
the next few steps in the calculation much easier
to do numerically. In particular, utilizing this
fact enables one to conveniently suppress the §
dependence of a(q), and thus that of Eq. (18), and
to instead treat that quantity as a parameter «
which varies over the physically allowable range
for a(q)(2.0=a=>0.0). At the end of the calculation
the q dependence of a(q) can then be explicitly re-
inserted to obtain the d dependence of the function
T,,@,») or 3,,@,y). This scheme results in a
considerable savings in both the complexity of the
numerical analysis and the amount of computer
time required to do the calculation because, with
it, one has only a one-dimensional parameter o
to keep track of rather than a three- dimensional
wave vector §.

With this convention, the substitution of Eqgs.
(18) into Eqs. (7) and (8) yields

EX(a,y)=T(a,y) /{[y-T8(a,y)]2+[FL(a, y)]%}

(19a)
and
- “ d T o
Hii,.’(a,y)=Pf o —1——~—*—;(_yy 1, (19b)
-o0 1

where T'{1)(a,y) signifies the T, ,,(d,y) of Egs.

(18), with a=a(d) treated as a parameter, and
the superscripts again denote the first approxima-
tion. The specific § dependence of £{%)(d,y) can
be obtained by assuming a form for the exchange
interaction J(§), calculating the § dependence of
a(q) from Eq. (18c) and substituting that result
into Eqs. (18a), (18b) and (19).

Although the above scheme yields a first approx-
imation for the Z,,(d,y), a better approximation
can be obtained from this result by one more “it-
eration” through Egs. (7), (8), and (9a). In other
words, the next approximationstotheI’,,(q,y) can
be obtained from the 2{3)({, y) by substitution of those
functions into the right-hand side of Eq. (9a). When
this is done, the result is

FOF,9)= ﬁggzﬂzw@) G- E,)]

X Au(a(ti),y)-l-Rf(S)gm(y),

(20a)
FO@, )= Ziﬁf,;f)gtﬁ@)-m-w@ln
XA La@),y), (20b)
where
Au(a,y)=f_:—‘ir—yl§{ (o, )8 @,y -v,)  (20c)
and
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TABLE II. Coefficients in Egs. (21) for S=1.

5339

R a.y a.q ay ay as b.1 bg b1 bg
0.0 0.0 0.5689 0.2760 0.0318 0.0022 0.5689 0.2760 0.0318 0.0022
0.25 0.0 0.1874  1.547 -1.393 0.4032 0.1267 1.169 -0.9643 0.2698
0.50 0.0 0.1320 1.330 -1.155 0.3213 0.0697 0.9566 —0.8035 0.2197
0.75 0.0 0.1318 0.9739 —0.7750 0.2044 0.0507 0.7876 —0.6763 0.1849
1.00 0.0 0.1476 0.6443 -—-0.4322 0.1015 0.0428 0.6602 -0.5784 0.1590
2.50 0.0 0.1918 0.3138 -0.2842 0.0675 0.0326 0.3069 —0.2861 0.0813
5.00 0.0171 0.0741 0.0301 -0.0032 0.0 0.0212 0.1398 -0.1286 0.0315
Ay, ~ 1) W a polynomial in & and then by substituting the
Ala,y)= f 211 (0, 9,081 (@, - 9,). (20d) functional form for a(q) into the polynomial.

In Eqgs. (20a) and (20b) o has been shown as a

|

Once this polynom1a1 and the functional form of o(q)
are specified, the, sum in Eqgs. (202) and (20b) can

function of § to emphasize the fact that it must be
treated as such in order to explicitly evaluate the
I“z’(q 9). On the other hand, the functions

A, (a,y) in Eqgs. (20c) and (20d) can be evaluated
with a treated as a parameter. In the latter two
equations, it has been assumed that since the
main quantities of interest are to be evaluated
near =0 and since Egs. (20) are only expected
to be accurate to order 1/Z , one can replace
Em(ﬁl,y;)gm(ﬁ —'ﬁpy —yl) by §1mﬁ,,y1)§1m@1,3’
-9,) in Eq. (92). Inthe §—0 limit, such a re-
placement should make errors smaller than 1/Z.
Finally, the lack of a § dependence of Z,,(d,y) to
order 1/Z is seen explicitly in Eq. (20a).

Equations (20) are good second approximation
to the linewidth functions I, (§,y) which should be
accurate to order 1/Z. A further approximation
to Z,..(d,) could now be obtained, if one desired,
by the substitution of Egs. (20) into Eqgs. (7) and
(8). However, this will not be done here, because
the spin-diffusion coefficients can be calculated
from the I'{® 4,9)-

The functlons F(a,y), I (a,y), &L(a,y),
and 4, (a,y) have been evaluated numerically for
various values of @ in the range 0.0s @ <2.,0 and
for various y. The explicit § dependence of the
A, (a,y) which is necessary for the evaluation of
Egs. (202) and (20b) can be found for a given y by
first fitting the numerical results for A, (a,y) to

e done and an approximation for I'{2(g, y) canbe
found. Since, for the calculation of the spin-diffusion
coefficient, only the y = C limit of Eqs. (20) is of in-
ferest only that limit will be discussed here. When
flt topolynomials in @, the functions 4, (a, 0) take
the forms

A (a,0)=a,/a*+a,/a+ay+a,a+a,0®  (21a)

and

A (@,0)=b_,/a+by+b,a+b,a?, (211)

where the a; and b; are of course, functions of R
and S. Typical values of these quantities for

1S <3 and various R are shown in Tables II-V.
For the coefficients used in the following calcula-
tions, the forms (21a) and (21b) fit the computer
generated functions to within 0.5% for all values
of a,

In the following calculation, the exchange inter-
action J(d) will be assumed to be of the form [Eq,
(17a)] relevant for the rutile lattice structure with
lattice parameters a and c¢. Also, it will again be
assumed, following experimental evidence in ru-
tile paramagnetic compounds, that J,,J, <J,.4%47
Under these conditions, a(g) is given by

a(d) =1 - cos(zq,a) cos(3q,a) cos(zq,c). (22)

If Egs. (22), (21), and (20) (evaluated at y=0) are
now combined and the wave-vector sums in Eqs.

TABLE III. Coefficients in Egs. (21) for S=3.

R a.p a4y ay ay as by by by by
0.0 0.0 0.5689 0.2760  0.0318 0.0022 0.5689 0.2760  0.0318 0.0022
0.25 0.0 0.1542 1.154  -0.9947 0.2745 0.0754 0.8865 —0.7426 0.2052
0.50" 0.0 0.2122 0.3013 —0.1098 0.0095 0.0564 0.5558 —0.5072 0.1422
0.75 0.0089 0.1399 0.2267 —0.0666 0.0 0.0510 0.3857 —0.3613 0.1027
1.00 0.0145. 0.1029 0.1753 —0.0504 0.0 0.0475 0.2839 —0.2686 0.0771
2.50 0.0239 .0.0544 0.0293 —0.0030 0.0 0.0335 0.0940 —0.0821 0.0242
5.00 0.0248 0.0430 0.0078  0.0030 0.0 0.0280 0.0609 —0.0449 0.0114
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TABLE IV. Coefficients in Eqgs. (21) for S=2.

R a.y a.y a ay a, by by by by
0.0 0.0 0.5689 0.2760 0.0318 0.0022 0.5689 0.2760 0.0318 0.0022
0.25 0.0 0.2025 0.4825 —-0.3047 0.0681 0.0638 0.6085 —0.5452 0.1530
0.50 0.0126 0.1194 0.1990 -0.0583 0.0 0.0532 0.3021 —0.2996 0.0860
0.75 0.0190 0.0790 0.1270 —-0.0347 0.0 0.0467 0.2010 -0.1867 0.0545
1.00 0.0216 0.0637 0.0838 —-0.0204 0.0 0.0420 0.1453 —-0.1312 0.0386
2.50 0.0254 0.0438 0.0144 0.0012 0.0 0.0302 0.0660 —0.0515 0.0140
5.00 0.0245 0.0428 0.0055 0.0035 0.0 0.0272 0.0593 —-0.0427 0.0105

(20a) and (20b) are done, one finally obtains an
a.pprox1mat10n to the dependence of I‘m(" ,0).
In the small-q limit (|qia 1q] ¢ << 1) the result is

T{P@,0)~ [§|%D, + Rf()2,(0), (232)

F{2@, 0= |#|%D,, (230)
where .

151= (a®sin®6+ c®cos?6)B, (R, S) (23c)
and

50 = (a®sin%6+ c® cos?6)B,(R, S). (234d)

The quantities 51,ﬁ0 are, by definition,?®%* the
dimensionless spin-diffusion coefficients belonging
to the spectral functions Z,,(d,y) and Z,,(d,»), re-
spectively. By Eq. (14a), in order to obtain the
physically observable diffusion coefficients, one
must multiply these dimensionless quantities by

V which is given under these conditions by V
=4[3S(S+1)]*/2J,. In Egs. (23c) and (23d), 6 is the
angle that the wave vector q makes with the ¢ axis
of the crystal and the R- and S-dependent parts
_of D, and D, are given explicitly by

B,(R,S)=0.6501a_,+ 0.2176a_,

+0.1250a,+ 0.0868a, +0.0661a, (24a)
and
B,(R,S)=0,2176b_, +0.12500,
+0.0868b, +0.0661b,. (24b)

These functions have been evaluated for various

R and for 1<S<3 and the results are summarized
in Figs. (8a) and (8b). From these figures it can
be seen that, for a given S, both spin-diffusion
coefficients fall off rather quickly with increasing
R at small R and finally reach a virtually constant
value for R between 2.0 and 5.0. Thus there is a
“saturation point” where they will no longer de-
pend on R. Also, these figures show that for a
given R>0, as S is increased the diffusion coeffi-
cients decrease but this decrease becomes less
the larger the value of S. This is an indication
that the classical limit, where D and D would

no longer depend on S, is being rap1d1y approached
even for S=3. This should be contrasted with the
remarks made in Sec, IV where it was noted that
for a given R, the classical limit with respect to
the Z,,,(») had not been reached even for S=3.
From these two results, it can be concluded that
the rapidity of the approach to the classical limit,
in the sense referred to here, depends on just
what physical quantity one is referring to. Thus
for a given R, this limit is bemg approached
faster with respect to the D and D than with re-
spect to the spectral functlons. Furthermore,

as was the case with the 5,,(y), this limit is ap-
proached faster for some values of R than others.
In this case, the largest discrepancy between the
values of the spin-diffusion coefficients at one
value of S and their values at the next higher val-
ue of S occurs for 0.25 <R < 1.25,

_1It should be noted that the magnitudes of 51 and
D, depend on the lattice constants @ and ¢ as well
as the angle 6 that § makes with the ¢ axis, Fur-

TABLE V. Coefficients in Egs. (21) for S=3.

R a.y a-y a) aq as b—l bo b1 bz
0.0 0.0 0.5689 0.2760  0.0318 0.0022 0.5689 0.2760  0.0318 0.0022
0.25 0.0065 0.1679 0.2324 —0.0683 0.0 0.0588 0.4204 —0.3854 0,1100
0.50 0.0178 0.0798 0.1377 —0.0386 0.0 0.0480 0.2085 —0.1871 0.0550
0.75 0.0193 0.0640 0.1006 —0.0265 0.0 0.0425 0.1575 ~0.1325 0.0379
1.00 0.0231 0.0523 0.0514 —0.0101 0.0 0.0370 0.1043 —0.0871 0.0248
2.50 0.0224 0.0474 0.0357 —0.0052 0.0 0.0329 0.0894 —0.0683 0.0180
5.00 0.0221 0.0509 0.0418 —0.0073 0.0 0.0339  0.0973 —0.0790 0.0218
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FIG. 8. R - and S-dependent parts of the spin-diffusion
coefficients. (a) By(R,S); (b) By(R,S).

thermore, since there is a §-independent part to
I'{®(d,0), the {-dependent part and thus D, could
conceivably be masked from experimental obser-
vation for some values of R, S, and |§|. One can
obtain some idea where this effect might occur by
examining Eq. (23a) in detail. Using that equation
along with Eq. (23c) at #=37, a reasonable cri-
terion for the observation of D, can be seen to be

|§| 2a®> Rf(5)2,,(0)/B,(R,S)=Q. (25)

The ratio @, in Eq. (25) has been plotted in Fig. 9
as a function of R for 1<S<3, In order to have
Eq. (25) and the criterion for the validity of Eq.
(23a) (|§|2a< 1) satisfied at the same time, it is
obvious that the relationship @ <1 must hold.
From Fig. 9, it can be seen that this relationship
occurs only for small R. From that figure, the
criteria for the observability of D, are the follow-
ing: for S=1, R<0.26875; for S=3, R<013 125;
for S=2, R<0.075; and for S=3, R<0.05. For all
values of R greater than these critical values spin
diffusion is effectively quenched or masked for the
spectral function gn(ﬁ,y). Fortunately, most com-
pounds found in nature satisfy the above criteria.
Finally, it should be noted that, contrary to what
one would naively expect, D,(R=0)=D (R =0) is not
exactly equal to the results for the dimensionless
diffusion coefficient obtained in Ref, 34. This is
because the lattice used in that reference had the

simple cubic strucf:ure, rather than the rutile
structure used here.

B. Exchange-narrowed dipolar linewidth

The exchange-narrowed dipolar linewidths of.
paramagnetic systems have been of considerable
theoretical interest for many years.***"" put have
been approached from the microscopic viewpoint
only in the last few years.’* % It is possible to
calculate such linewidths as functions of R and S
by the use of the above self-consistent results for
A, (a,0) and A, («,0) along with the introduction
of one other auxiliary function that can be calcu-
lated from the self-consistent functions discussed
in Sec. IV.

If, in addition to the interaction of Eq. (1), the
Hamiltonian contains dipole-dipole interactions,
an extra term will be added to that equation which
has the form

H'=% i ,Z bla,,(z',j)sa(z')s,,(j), (26a)

where
Iy, 5) =1, (0) = (v )Y B, — 3(r vy /rD)] /72, (26D)

Here ¥=F, -T;, and 7, is the electron gyromag-
netic ratio. With this additional interaction, the
derivation of the formalism for the correlation
functions will carry through exactly as in Sec. III
for anisotropic exchange if one makes the replace-
ment

Jab ‘Jab"'lab (27)

1.0

10.0

0.0 1 L 1 1
0.0 0.25 0.5 0.75 1.0

FIG. 9. Ratio @ defined Eq. (25) as a function R and
S.
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throughout the derivation. Thus, Eq. (6a) for

the dipole self-energy functions retains the same
functional form even in the presence of the di-
polar interaction. It will be assumed in the
ifollowing discussion that the replacement, Eq.
'(27), has been made. Note, now, that for sys-
tems of practical interest, J,,>I,,. Thus, it

is reasonable to treat the effect of the dipolar
interaction on the correlation functions as a
‘small perturbation on the self-consistent solu-
tions obtained in the absence of a dipolar interac-
tion. The effect of the dipolar interaction on the
‘linewidth, which is the effect of interest here, can
thus be obtained by the following scheme.

If, after making the replacement, Eq. (27), one
takes the imaginary part of Eq. (6a) and Fourier
transforms the result, one has the linewidth func-
tion of interest I',,(§,w). The next step is to pass
to the isotropic exchange limit, as in Sec. IV, but
still retaining a finite dipolar interaction. Note
that at §=0, the part of the resulting T',,(§, w)
which depends explicitly on the isotropic exchange
interaction will vanish. [See, for example, Eq.
(9a).] Thus, since J(§)>I,,(d) the only part of the
Brillouin zone where the dipolar interaction will
make an important contribution to the functions
T',,.(q,w) is near §=0. In other words, it is rea-
sonable, for §#0, to neglect the dependence of the
T,,@,®) on the I,,(§). Therefore, by Eq. (8), the
dependence of the g,,,(d,w) on I,(@) for §#0 can

also be neglected to a good approximation. Thus,
the dipolar interaction has virtually no effect, for
§+0, on the self-consistent solutions for T..@,w)
and gm(’ ,w) obtained earlier in this paper and will
only affect those functions near §=0. The error
made in not taking the dipolar interaction into ac-
count self-consistently is discussed at the end of
this subsection.

It is now straightforward to find the effects of
the dipolar interaction at §=0. Returning to the
I‘lm(ﬁ, w) obtained by the method in the preceding
paragraph, one sees that the §=0 limit of that
function depends, because the explicit dependence
on J(§) will vanish in that limit, on a sum over
the Brillouinizone in which the summand consists
of the square of the Fourier-transformed dipolar
energy I,,(§) multiplied by the frequency convolu-
tion of two wave-vector and frequency-dependent
dipolar spectral functions g,,(d, w). By the dis-
cussion in the preceding paragraph, these spectral
functions can, except in a very small part of the
Brillouin zone, be approximated to a high degree
of accuracy by the self-consistent solutions to the
isotropic exchange case obtained earlier. It will
be assumed here that it is sufficient to approxi-
mate the dimensionless versions of these functions
by the functions Z{%)(a,y) which were discussed in
Sec. VA. When this approximation is made and
the w=0 limit of the resulting equation is also
taken, the dimensionless linewidths take the form

3 Efu<a=o,w=o>-Séf,:;’Z[{[zm-d,,,,(q)-zzy,r)] 4L, @ - L@ + [L,@1F4,,a(@, 0)
L,@1+ (1, @13 [34,{a@),0)+ AL @), 0)]]+ RF(S)Z,, (0) (28a)
and
~p_ = S(S+1)

=Fyo(@=0,0=0)= 2325 3 H7,@ - L, @1 + 4L @14, @), 0) + {1, @1+ [, @14, ( 2@, 0)],

where A, (a,y) and A, (a,y) are defined in Egs.
(20c) and (20d), @(§) is defined in Eq (18c), and
Ay(a,y) is defined by

Agoler, )= f——‘g‘”(a,yl)g a,y -y4).

'(28¢)

The w=0 limit has been taken in Egs. (28) because
the dipolar linewidths are only appreciable in that
limit., Equations (28) reduce, of course, to Eq.
(42) of Ref. 34 in the R =0.0 (zero uniaxial aniso-
tropy) limit.

The task of calculating the two dipolar linewidths
I'? and T2 has now been reduced to that of evalua-
tmg the wave-vector sums which occur in Egs.

(28Db)

r

(28). To accomplish this, as was done with
A, (a,0) and A, ,(a,0), the function A (a,y) was
generated numerically as a function of @ and the
results were fit to a polynomial of the form

Ago(@,0)=cp/ay+c /a+co+c o+ c,a?,  (29)

where the c; are, of course, functions of R and

S. Some typical c; are listed in Tables VI and

VII. The wave-vector sums in Eqs. (28) have been
carried out for various R and for 1<S <%, Since
dipolar forces are long ranged, it is necessary to
include the forces of several neighbor shells in
the wave-vector sums in Eqs. (28). Therefore, in
evaluating these sums, the first- through fifth-
neighbor shells of the rutile structure were in-
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TABLE VI. Coefficients in Eq. (29) for S=1 and S=3.

S=1 S=%

R C.g cy [N cy cy Coy [ [ cy Cy
0.0 0.0 0.5689 0.2760  0.0318 0.0022 0.0 0.5689 0.2760 0.0318 0.0022
0.25 0.0 0.2343 1.934 -1.741 0.5040 0.0 0.1928 1.443 -1.243 0.3431
0.50 0.0 0.1650 1.663 —1.444 0.4016 0.0 0.2653 0.3766 -0.1313 0.0119
0.75 0.0 0.1648 1.217 -0.9688 0.2555 0.0134 0,1749 0.2834 -0.0833 0.0
1.00 0.0 0.1845 0.8054 —0.5403 0.1269 0.0218 0.1286 0.2191 —0.0630 0.0
2.50 0.0 0.2400 0.3923 -0.3553 0.0844 0.0359. 0.0680 0.0366 —0.0038 0.0
5.00 0.0251 0.0926 0.0376 —0.0040 0.0 0.0372 0.0538 0.0098 0.0038 0.0

cluded. At that point, the differences in the line-
widths at a given R and S for each succeeding ap-
proximation were of the order of (1-2)% as is
illustrated for I'2 in Table VII for the particular
case of R=0.25 and S=1. Thus it was thought that
little could be gained by including more neighbors
since the expected accuracy of the theory is only
1/Z, where Z is the number of second neighbors
(because only second neighbor exchange is kept)
and is equal to 8 for the rutile structure. In Table
VIII and in the following linewidth calculations,
only second-neighbor exchange forces are assumed
and J denotes J,.

When the wave-vector sums in Egs. (28) are
carried out as described above the results have
the form

T2 = (i%4/a®D)E, (R, S) + RF(S)Z,, 0)
and

T2= (1%2/a®JDE,(R, S),

(30a)

(30b)

where E,(r,S) and E,(R,S) are plotted as a func-
tion of R for 1<S <% in Figs. 10(a).and 10(b).
These functions were obtained under the assump-
tion, approximately valid for the rutile compounds
of interest, that the ratio c/a of the lattice con-
stants is 2. If an infinite number of neighbor
shells had been included in the dipolar sum, one
would have had I'?| ,_ =T?|._. From Figs.10(a)
and 10(b), however, it can be seen that such is not
‘the case with the inclusion of only five neighbor

shells since the calculations of I') and I'? require
the summation to be done with the inclusion of
different dipolar functions I,,(q) of the rutile lat-
tice. It should be noted, however, that the dif-
ference between the two linewidths at R=0.0 is
much less than the expected 1/Z inaccuracy of the
theory. Furthermore neither Iy |, , nor 2|,
are equal to the result obtained in Ref. 28 since,
in that reference, the dipolar sums were done
over the simple cubic, rather than rutile, lattice.

As canbe seen from Figs. 10(a) and 10(b) the func-
tions E,(R,S) and E (R, S) behave similarly to the
functions B,(R,S) and B,(R,S) associated with the
diffusion coefficients. In particular, for a given
S they fall off rapidly with increasing R, soon
reaching a saturated value. Also, as a function of
S for constant R they are rapidly approaching the
classical limit where the dipolar linewidths will
be independent of S. Thus the dipolar linewidths
appear, like the diffusion coefficients, to be ap-
proaching the classical limit faster than the func-
tions 3,,(y) themselves.

The second term in Eq. (30a) is going to be
large for almost all R and S. In particular, it will
in general be much larger than the first term in
that equation. Thus, the first term in the linewidth
f‘f is probably unobservable for any R and S and
exchange narrowing is effectively quenched by the
anisotropy for the spectral function g,,(d,y).

By not taking into account the dipolar interaction
self-consistently, an error of the order of 2/

TABLE VII. Coefficients in Eq. (29) for S=2 and S=3.

5=2 s=%

R Coy c.q ¢y cy Cy Coy cy [ [ Cy
0.0 0.0 0.5689 0.2760 0.0318 0.0022 0.0 0.5689 0.2760 0.0318 0.0022
0.25 0.0 0.2531 0.6031 -0.3809 0.0851 0.0098 0.2099 0.2905 -0.0854 0.0
0.5 0.0189 0.1493 0.2488 -0.0729 0.0 0.0267 0.0998 0.1721 -0.0483 0.0
0.75 0.0285 0.0988 0.1588 -0.0434 0.0 0.0290 0.0800 0.1258 —0.0331 0.0
1.00 0.0324 0.0796 0.1048 -0.0255 0.0 0.0347 0.0654 0.0643 -0.0126 0.0
2.50 0.0381 0.0548 0.0180 0.0015 0.0 0.0336 0.0594 0.0446 —0.0065 0.0
5.00 0.368 0.0535 -0.0069 0.0044 0.0 0.0332 0.0636 0.0523 —0.0091 0.0
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TABLE VIII. Exchange-narrowed dipolar linewidth
I"OD for R=0.25 and S=1 for each succeeding neighbor
shell.

Number of shells J2r DQ a®
included miyt

2 12.0094

3 18.2814

4 20.9365

5 21.2113

D,|d|? has been made in calculating the spectral
function glo(ﬁ,y) and a similar error has been
made in calculating the spectral function g,,(d,v).
The dipolar interaction will only matter in the
calculation of these functions when this ratio is not
very small compared to 1. Using reasonable values
for the exchange and dipolar energies, for exam-
ple, those found Jor rutile compounds in the litera-
ture,*"*" one finds that such a situation will only
occur for |§|a<102 or in a volume in § space
which is only around 10~ of the total volume of

the first Brillouin zone. Since all wave vectors

in Egs. (28) are summed over, the dipolar inter-
action is indeed negligible in the calculation of
£.,@,y) and ,,(d,y).

C. Diffusion coefficients and dipolar linewidths
for NiF,, CoF,, FeF,, and MnF,

Using the exchange, anisotropy, and lattice
parameters obtained in Refs. 43—47 and 58, and
summarized in Table IX, the spin-diffusion co-
efficients and dipolar linewidths have been cal-
culated for the compounds NiF,(S=1), CoF,(S=3),
FeF,(S=2), and MnF,(S=3). The values of R
quoted in Table IX have been computed assuming
d,,Jd;<<J, so that only J, contributes. From that
table it can be seen that this approximation, which
has been made throughout this paper, is justified
for these compounds. The physical values of the
diffusion coefficients and the linewidths were ob-
tained from the dimensionless values by the use
of Eq. (14a). The results are summarized in
Table X, with the diffusion coefficients quoted
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FIG. 10. R- and S-dependent parts of the dipolar line-
widths. (a) Ey(R, S); (b) Ey(R,S).

in meV A? and the linewidths quoted in gauss.

Also, the second term in Eqgs. (23a) and (30a)

has been listed in both meV and gauss to aid in

the comparison of the magnitudes of first and

second terms of those equations. The diffusion

coefficients have been computed assuming that
=37 in Egs. (23) and the notation in the table is

the following: D,=VD,, D,=VD,, T2=yI2 T3

= VRf(5)3,(0), and T2 =VI? T3 where V is

given by [S(S+1)]*/%J,. Finally, it should be

noted that the numbers quoted in gauss in Table

X depend strongly upon what one chooses for the

g value of the ion in question. Since these numbers

do not appear to be in the literature for the case

where the ions considered here (Ni%*, Co®*, Fe®,

Mn®) are in the rutile structure, their values

in the cubic structure MgO (see Ref. 59) have been

used in Table X. Thus, the linewidths quoted in

that table could conceivably change considerably

TABLE IX. Summary of relevant data for rutile compounds. All energies are in ecm™!. En-
ergies are from Refs. 43—47, lattice constants from Ref. 58.

Compound Spin Jy Jy D a ([o\) c (A) R
NiF, 1 —-0.22 13.87 0.79 4.36 4.6506 3.0836 0.0072
CoF3 % -0.83 4.54 0.346 3.53 4.6951 3.1796 0.0299
FeF, 2 -0.05 3.64 0.19 6.46 4.6966 3.3091 0.0962
MnF, % -0.44 2.45 0.06 0.74 4.8734 3.3099 0.0019
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TABLE X. Spin-diffusion coefficients and dipolar linewidths g values are from Ref. 59.

Compound Dy meVA?) D, mevVA?) TH mev) TP@G) T,(@ Ty (G g
NiF, 19.66 19.86 0.024 28.02 33.97 1907  2.1728
CoF, 7.97 8.79 0.098 101.29  134.76 7828  2.1705
FeF, 5.06 7.14 0.408 418.56  717.72 21280  3.4280
MnF, 7.92 8.06 0.015 194,11  237.36 1286  2.0014

‘depending on how the g values of the ions change
in going from a cubic to a rutile structure.

From Table X, it can be seen that the spin-dif-
fusion coefficients D, and D, are within the range
of possible observation by present neutron scat-
tering techniques.®® Furthermore, it is clear that
for the compounds listed, the explicitly anisotropy
energy-dependent linewidth I‘fb is not of sufficient
magnitude to totally obscure the observation of
D, for reasonable values of |§|. Thus both D, and
D, should be able to be seen in these compounds,
although they do not appear to have been mea-
sured at the present time in the high-temperature
phase where the theory is valid. Such measure-
ments would provide a good test of the present
theory.

Also, it can be seen from Table X that, for all
compounds shown, the linewidth I'? is sufficiently
small to be resolved by current EPR techniques.®!®
However, it is also clear from that table that for
all compounds shown, the exchange narrowed part
of the linewidth I'?, T'2,, will be totally obscured
by the explicitly anisotropy energy-dependent line-
width T’} and that, furthermore, the total I' is
probably much too large to be observable in EPR
experiments as anything other than a broad back-
ground. Thus, it appears as if only 1"3 could rea-
sonably be expected to be observable in these
compounds.

As far as can be determined, the only compound
where such measurements have been made at the
high temperatures where this theory is relevant
is MnF,.>!* For this compound, Gulley et al.’
find that the room-temperature value of I'S is 260
+10 G. Thus, in comparison with this number,
the number obtained from the above infinite-tem-
perature theory (194.1 G) is in error by 25.4%.
Considering that the theory is strictly valid only
at 7= while it is compared to a 7=300 K experi-
ment, that the expected error is of the order 1/Z
or 12,5% for the rutile structure and that I'? was
determined self-consistently, this appears to be
a reasonable result. The error here is of the
same order of magnitude as that obtained for the
isotropic case.** On the other hand, Dormann and
Jaccarino'® have more recently measured I'y for

MnF, at temperatures up to the melting point.
Thus, it is possible to obtain a theoretical-experi-
mental comparison for experimental temperatures
of the order 1000 K before the linewidth begins

to change drastically as a function of temperature
due to the onset of the melting process.!® (The
present rigid lattice model is certainly not valid
once this process begins.) Dormann and Jaccarino®®
obtain aI'? of ~245 G at T~ 1073 K. Thus, compari-
son of the T =« theory to this high-temperature ex-
periment brings the experimental-theoretical dis-
crepancy down to 20%. The measurements of the
other linewidths predicted in Table X would be an-
other good test of the theory.

Finally, it should be noted that the numbers for
NiF, should be treated with caution since there is
evidence®*™" that, for that compound, there is an
additional single-ion term in the Hamiltonian of
the form E(SZ -S2) which has not been taken into
account in the present paper.

VI. SUMMARY AND CONCLUSIONS

In the preceding discussion, a general theory for
the first-principles calculation of dyna}nical two-
point spin-correlation functions in a Heisenberg
paramagnet with both uniaxial and exchange aniso-
tropy has been presented. By the use of a dia-
grammatic technique, a set of integral equations
for these correlation functions was obtained.
These equations are valid at infinite temperature
and are applicable at all values of the spin quan-
tum number S and all ratios D/J of the uniaxial
anisotropy energy to the exchange energy. Fur-
thermore, these equations form the lowest-order
approximation in a heirarchy of the self-consistent
approximations which can be generated by carrying
the diagrammatic technique to higher-order dia-
grams. The expected accuracy of the solutions to
these equations is of the order of 1/Z, where Z
is the number of spins in the range of the inter-
action,

In the isotropic exchange limit, the “local” ver-
sions of these equations were solved and a study
was made of their solutions for 1<S<3 and for
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various values of R, where R is defined in Eq.
(17c). Among other interesting behavior, it was
found from these solutions that even for a spin

as high as S=% one still has not reached the clas-
sical limit. In other words, even for S=3 the
solutions, §,, (), for the local dipolar spectral
functions depend strongly on S. The strength of
this S dependence, however, varies considerably
with the value of R; the classical limit, where
£,,(v) would no longer depend on S, is approached
faster or large R than for small R.

Using the local dipolar spectral function solu-
tions, 3,,(y), approximate wave-vector-dependent
linewidth functions I',,,(§,y) were generated, From
these latter functions the dependence of the spin-
diffusion coefficients and the exchange-narrowed
dipolar linewidths on R and S were explicitly ob-
tained. It was found that, for these quantities, the
classical limit is approached much faster than for
the g,,,(»), with their S dependences being almost
saturated for S=3. Furthermore, for some values
of R and S both spin diffusion and exchange narrow-
ing for gu(ﬁ, y) are effectively quenched by uniaxial
anisotropy effects. Thus it is clear that caution
must be used in assuming the classical limit even
for systems with S as large as %, because such
an assumption may be valid for some properties
of the system and wrong for others.

Finally, the diffusion coefficients and dipolar
linewidths for NiF,, CoF,, FeF,, and MnF, were
calculated. For all four compounds it appears as
if both diffusion coefficients (D, and D,) and one
of the dipolar linewidths (I'2) are within observable
range by the appropriate experimental techniques.
The linewidth I'?, on the other hand, is too broad
to be seen because of uniaxial anisotropy effects.
The only experimental number for these com-
pounds which is available for comparison with
these calculations appears to be I'? for MnF, and,
as is discussed in Sec. V, theory and experiment
agree reasonably well for that case.

There are two possible improvements to the
present theory which would probably be worth-
while. The first of these is to take into account
higher-order diagrams in the self-energy dia-
grammatic expansion. Fedders* has already
accomplished a resummation of an infinite subset
of these diagrams for the isotropic ieisenberg
case and an extension of his formalism to systems
with uniaxial anisotropy, although probably a
herculean task, might be possible. The second
possibility for improving the theory lies in ex-
tending it to finite temperatures. Reiter®*® has
proposed such an extension of the diagrammatic
formalism for the isotropic case and perhaps the
anisotropic effects considered here could be in-
corporated into his formalism.

ACKNOWLEDGMENTS

The author would like to thank Professor P. A.
Fedders for several discussions and Dr. G. F.
Reiter for pointing out Ref. 49 to him and thus
helping him find explicit forms for the C%, . He
is also grateful to Battelle Memorial Institute,
Columbus, Ohio, for a two year fellowship during
which this work was originated and on whose CDC
6400 computer a portion of the numerical work was

done.

APPENDIX A: RELATION BETWEEN THE OPERATORS 4,
AND THE RACAH OPERATOR EQUIVALENTS

The irreducible tensor operators A;,, and the
method of generating them have previously been
thoroughly discussed®* 3% and they have been
listed for 0 s /< 2 in terms of the ordinary spin
operators S,, S_, and S,. Likewise, the Racah
operator equivalents (3,,,, have been thoroughly dis-
cussedin Ref. 49. In fact, Table I of that reference
lists these operators in terms of the ordinary spin
operators for 0<I<8, There is a simple one to
one relationship between these two kinds of opera-
tors which will enable one to conveniently convert
the operators 0,,, in Table I of Ref. 49 into the
operators A;, needed in this paper. The relation-
ship can be derived as follows.

Since both the 0,,, and the A,,, are tensor spin
operators, there certainly must be a linear rela-
tionship between the two for a given S, 7, and m.
Thus, one can write in general

61m=g(syl’m)Alm’ (Al)

where g(S,1,m) is a function to be determined.
This function can be determined by taking matrix
elements of both sides of Eq. (A1) within a mani-
fold of constant S. Then one has

(S,m"'|0,,|S,m)=g(S,1,mXS,m’ |A,,|S,m).
(A2)
The matrix element on the left-hand side of Eq.
(A2) has the form?®
— S S -
(S,m"| 01| S, )= (~1)5™ i QIATDS
-m' m m
(A3)

where (S110,1IS) is the reduced matrix element of
0,, and

S I S
-m' m m
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is a 3-j symbol. Since A4,,, is also a tensor opera-
tor, the matrix element on the right-hand side of
Eq. (A2) must take a similar form%%» ¢

S 1 S : .
(s,m'lAlm|S,ﬁ>=(—1)s-m'( ' ">(S”A’”S>’
-m m m :

(A4)

where (S|I4,lIS) is the reduced matrix element of
A,,. Comparison of Eqs. (A2)-(A4) leads to the
result

2(S,1,m)=(SII0, ISy /ASIIA,lIS). (A5)

Thus g(S,1,m) is independent of m. The reduced
matrix element {S||0,l|S) is given by*®

(25 + 1+ 1)1\1/2
(SllG,lIsy = > <w> ) (A6)
while (S|IA,IIS) is given by®
(SlA,lisy=[(2s+ 1) 22+ D2 (A7)

Combining Egs. (A5)-(A7) and (A1) yields the re-
sult

1 2S+1+ 1) 1/2
Oin '—’((25 IS+ 1)@+ 1)) Am (A8)

Thus, as long as one is working within a manifold
of constant S, Eq. (A8) may be used to relate the

operators A,m to the O,,. Thus, since the O,,,, are
listed in Table I of that reference for 0<7<8, the
A,, for those I can be found by the use of that table
and Eq. (A8).

APPENDIX B: COMMUTATION PROPERTIES OF THE Ay
EVALUATION OF THE QUANTITIES O™, ., C}2, .
AND C7°, ,,

From the tensor properties of the A, itis
easily shown that the commutators of Eq. (5) have
the f.orms

[A . Al=Cm! simyl,m+m' YA e (B1)

— |

I3
A A =
[ 1ymy? lzmz] mBZ-:la 13=l11-12I
where
{l1 lz ls}
S S$ S

is a 6-j coefficient,

11,4151
L{: [(=1)}2*t2s — 1](20,+ 1)

and
[A,0,4,,]= C(20; Im; 1-1 JA
+C(20;Im; L+ 1,m)A ;e (B2)

As was done in the text, throughout the rest of
this appendix the abbreviations

Clj"mm. =C(1m’'ylm;l,m+m’) (B3)
and
C, ,.=C(20;lm;1%1,m) (B4)

will be used. The quantity C}7 " ome 18 trivially cal-
culated from the well-known commutation relations

[szyAlm] = mAlm (B5)
and
[s*:Alm]=[l(l+ 1) -m@m £ 1)]1/2Al.m*1’ (B6)

along with the relations between the 4,,, and the
operators S,, S,, and S_3*:

A,,,=%,/[35(5+ D" (B7)
and

A=S,/[5S(S+ 1)]/2 (B8)
Combining Eqs. (B5)-(B8) with (B1) yields

- 1/2
R ) (89)
and
1o =[3/5(5+1)]*2m. (B10)

The evaluation of the C%), . in closed form is
also straightforward although it requires some
lengthy algebra. Curiously, although recursion
relations between these quantities have been de-
rived and utilized,* it appears as if the closed-
form expressions for them have never been de-
rived before. The derivation begins with the gen-
eral commutation relation between two tensor
operators, given in Eq. (8) of Ref. 49 for the Racah
operators (5,,,,. Using that expression along with
the results of Appenohx A for the relation between
the A,, and the 0,,, one can obtam the general
expressmn

(SlIA,lIS) fams?
(B11)

- l3}<ll I, 3>\<s“A'1”s>(S”A'2"S>A*
S

S)\m, m, m,



5348 CHARLES W. MYLES 15

ll.

ZZ l3
m, m, Mg

is a 3-j coefficient, (S|l4,lIS) is the reduced matrix element of 4,,, and A:a”‘a means the Hermitian conju-
gate of A4; , . Comparison of Eq. (B11) for 7, =2,m,=0 with Eq. (B2) yields explicit expressions for the

C2.  which have the form

lx1,m
2 7 z_1} 2
$S S 0

o m[ aies ole3 {2 U 1+ 1} 2
t+1,m=(_1) (“1) ‘1]( + ) S s

€2, = (= (<1 — 1)(21 - 1) {
and

S

0 m

L T=1) (s]|4,lIS)(SIIA,lIS) (B12)
_ (SIA,_TIS)

I 1+1\ (S]|4,lIS)(SIl4,lIS) 3
_m> G5 B

These expressions can be straightforwardly evaluated, but a considerable amount of algebra is required.
The(Sll4,lIS) can be obtained from Ref. 64 or Eq. (A7) and the 3-j and 6-j symbols can be evaluated by the
use of formulas given in any standard text.®* When Eqs. (B12) and (B13) are evaluated, the results are

20 _ 2 2 (l+m)(l-m)[4S(S+ - -1+ 1)] 1/2
Ciom= (45)2(=1)m (s(S+ D@ - DS+ @ - D@+ 1) > (B14)
and
20 - 2 2 (T+m+1)(T —m+ 1)[4S(S+ 1)—l(l+2)]\ 1/2
B m= 541750 S TS s @ D@D ) - (B15)
APPENDIX C: RELATION OF THEJ,, ., OF EQ. (1) TO THE Ay=[S2-38(S+1)]/u,, 1)

J,, OF EQ. (1)

To obtain the relationship of the J,,,. of Eq. (1')
to the J;, of Eq. (1) one first writes the spin op-
erators S,, S_, S,, and SZ in terms of the tensor
spin operators A, and A,,. The relationships
for the A,, are given in Eqs. (B7) and (B8) while

“the relation for 4,, is**

where L, is defined in Eq. (1”). Then Eq. (1’) re-
sults if the identifications

Ju=J4, =2 (I =y = 2id,y),
J10=do = ~Ig 0= I %, 0= (J,, — i)/ V2, (€2)
Jl.-!.:J-l.l: _(Jxx +Jw)’ J00=Jzz

are made.
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