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Existent spin-wave theories of antiferromagnets predict the T'" behavior of the paramagnetic-spin-flop
boundary in the (0, T) plane. This prediction has been confirmed by experiments on NiC12 ~ 6H20. However
in several compounds such dependence has not been observed. This failure is explained as arising from
transversally (J Q J ) anisotropic exchange interactions, as in CoC1, 6H,O, or from single-ion orthorhombic
anisotropy field, as in MnC1, 4H, O, In both these instances a T' law is proposed.

I. INTRODUCTION

A static magnetic field applied along a preferred
z direction in an antiferromagnet below its Noel
temperature can induce two phase transitions: a
first-order transition between the antiferromagne-
tic phase and the spin-flop phase, and, at a higher
field, a second-order transition between the spin-
flop and paramagnetic states. In the paramagnetic
phase the sublattices are forced to be aligned along
the preferred axis, whereas in the spin-flop state
the sublattices are canted.

A first theoretical description of these transi-
tions was supplied by Falk' and it was based on a
variational approach. A more detailed treatment,
which employed the Qreen's-function method with
the Callen decoupling scheme, was worked out by
Anderson and Callen. ' These authors discussed
the properties of an antiferromagnet in the low-
temperature region and in the vicinities of critical
and bicritical points. Falk considered an antifer-
romagnet with isotronic exchange interactions and
Anderson-Callen added uniaxial single-ion aniso-
tropy. Feder and Pytte' allowed, in addition, that
the coupling between the z components of the spins
be different from that between the transverse com-
ponents (Ising-Heisenberg model). Their theory
was based on the Holstein-Primakoff' spin repre-
sentation. The boundaries between the phases on
the II-,T diagram were derived in the framework
of soft-mode transitions concepts.

All of these three theories predicted that in the
low-temperature region, the critical field, at
which the spin-flop phase becomes unstable and
transforms into the paramagnetic phase, has the
form

H, (T) =h(1 —c,T' ' —c,T' ') + ~ ~ ~

This prediction was confirmed experimentally by
Oliveira et al. ' in ¹Cl,~ 6H,O in the range of tem-
peratures from 0.45 to 1.3'K(T»=5.34'K). How-

ever, in the experiments by Hives and Benedict' on
MnCI» 4H»O (T„=1.62'K) in the range 0.3to1.6'K
and of Rives and Bhatia' on goCI», '~ 6H,O (T„
=2.29'K) in the range 0.33 to 2.0 'K the lack of
7.' ' dependence was established. The authors re-
ported the T' ' law as better fitting the data, al-
though some slight departures from the T' ' curve
were still present. The direction of these depar-
tures seems not to exclude the possibility that the
T' curve was actually obtained.

In this work we will show that the discrepancies
between the existent theories and the results
of Rives and his collaborators are due for
QoCl, ~ 6H,O to transversally anisotropic exchange
interactions, whereas for MnCl, , 4H, O they are
mostly due to single-ion orthorhombic anisotropy.
In the presence of transversally anisotropic ex-
change interactions and (or) orthorhombic crystal-
field anisotropy, an antiferromagnet in its para-
magnetic phase behaves as a generalized X-F sys-
tern, ' since its magnon frequency begins as a lin-
ear, and not quadratic, function of wave vector.
This leads to the T' shape of the coexistence
curve.

II. SPIN WAVES IN CoC1& .68&O

Consider first CoC1, 6H,O. X-ray studies of
Mizuno indicated that this material has a mono-
clinic face-centered structure with a = 10.34,A b

0 Q P.

=7.06 A, c=6.67 &, p=122'20'. The magneticor
dering scheme in the antiferromagnetic phase was
settled by Kleinberg' by means of neutron diffrac-
tion techniques. The ordering consists of antifer-
romagnetic a& planes with an antiferromagnetic
coupling between adjacent planes, as shown in Fig.
1.

Now each Co" ion is surrounded by an elongated
octahedron formed of four water molecules in a
plane, which is inclined by 9'20' from the cb plane,
and by two chlorine ions along the axis perpendicu-
lar to the plane. Haseda's" empirical analysis of
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FIG. 1. Model of the ferromagnetic ordering in

CoC12 ~ 6820:. Cobalt ions are shown only. J denotes the
antiferromagnetic coupling between the nearest neigh-
bors, J& the coupling between the planes (next neigh-
bors) and J2 denotes the interaction between the next-
next neighbors.

possible linkages of atoms which may carry
through the superexchange interaction between two
adjacent Co" ions leads to the conclusion that the
coupling J, between the planes is weaker than the
coupling J in the planes, and that the J, coupling is
almost negligible. This leads several authors" "
to believe that CoCl, 6H,O has some tmo-dimen-
sional characteristics. However, even an approxi-
mate two-dimensionality of the system would not
be the source of the different temperature depen-
dence of the critical field since the magnetization
in two dimensions is divergent at any nonzero tem-
perature, unless the system is of the Ising-Heisen-
berg type.

It is the anisotropy of the exchange interactions
that matters. Nom how does this anisotropy come
abouts According to Date, "Metselaar et &I."and
authors cited therein, this is due to a strong cry-
stal field acting on the Co" ions. In the cubic
(octahedral) crystal field the ground state 4E of the
single ion gets split into three levels. The lowest
orbital triplet F4 is subsequently split into six
Kramers doublets by mainly tetragonal and slightly
orthorhombic components of the field. The ortho-
rhombic component appears because the H, O ring.
surrounding Co" is not completely quadratic and,
moreover, the other two waters, which do not be-
long to the cobalt octahedral unit, produce some
contribution to the field. Since the distance be-
tween the lowest Kramers doublet and the nearest-
higher energy level is about 10'K, whereas the
Noel temperature is 2.29'K, the exchange energy
is smaller than the doublet's separation and the
spin degrees of freedom of the Co" ion are ef-
fectively reduced to tmo, instead of 2&& ~+1. The

magnetic properties of the system have to be de-
scribed in terms of an effective fictitious spin 8'
= ~ with anisotropic exchange interactions and an-
isotropic Landd factors. Kimura" estimates that

J' =0.61' 1.19k, J'=0.61x 3.594,
J' =0.61 x 3.81k~,

J", =0.46x 1.19k, J", =0.46x 3.59k,
J', =0.46x 3.81k'~;

J2-0.08X 1.19pg J2 =0.08X 3.59

J2 =0.08 X 3.81k~ .
Two conclusions are to be drawn from inspection

of these numbers: The first one is that the approxi-
mate two dimensionality of the compound is not
justified as J;/Z= 4', the second is that J, can be
treated as a small correctionto Jand J,. Thereare
also known some data on the Lande factors. Ha-
seda" reports g, =g, =4.9, g„=2.9, Date" gives
g, =5.0, g, =4.0, g„=2.9, whereas Flippen and Fried-
berg" have measured g„=2.7, g, = 5.0, g, = 4.9.
These results are not too consistent with the above
exchange constants since J'& J"'.

Spin-wave theory for,CoCl, 6H,O in all its three
phases has already been worked out by Iwashita and
Uryu, "with the use of Kimura's exchange con-
stants, for the purpose of numerical analysis of the
susceptibilities. The authors did not explicitly find
the temperature-renormalized magnon frequencies
and they did not reach the important conclusion
about the power law describing the coexistence
curve. They did, however, claim to achieve a good
theoretical fit to that curve.

%e mill slightly generalize their Hamiltonian in
order to be able to discuss a wider class of sys-
tems. First of all, we mill not assume any rela-
tions among the nine exchange constants. However,
J, is still considered as much weaker than J'.
Moreover we introduce some extra, not included
yet in the values of the effective exchange con-
stants, single-ion uniaxial D and orthorhombic E
anisotropies. These single-ion anisotropies are
considered as much weaker than the exchange field.
Otherwise, we would have to modify" the Holstein-
Primakoff' representation of the spin operators.
The spin can attain any value. In the case of
CoCl, ~ 6H,O, it is the fictitious spin of 2.

In the paramegnetic phase, the division of spins
into sublattices disappears and the the Hamiltonian
for the model reads (for applied field along the c axis)

X= Q (JSSq +J S'S";+J'S'S';) + Q (ASS'g +JSS~) +J',S'S;)
&f, l&

+ Q (JP'fSqi+J2S S~q. +J2SgSq. ) -HQS', DQ(S;)'+ —,'EQ[(S))'+(S, )2].
Ai, y& 4
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H denotes the magnetic field multiplied by the Bohr magneton and the appropriate Lande factor.
With the use of the Holstein-Primakoff representation (If = 1)

S( =(2s)"(a('+a;) ('-—)(2s) "'[a(ta'+(a()'a(]+ ",
S";=i—',s(a; —a,.) +(i/4)(2s) ~ '[a; a2( —(a, }'a,]+ ~ ~ ~,

8'=s —a a,S

(S& )' = (2s —2)a( —a(~(t& + ~ ~ ~,

(S;. )' = (2s ——,')(a,')' —(a,')'a, + ~ ~ ~,

and the Fourier trsnsformstions a, =N '~2+«a«e'", etc. , we transform (1) into

X=E +X +~3C+ ~ ~ ~

R, =g e(k)a«a«+-2'g N(k)(a«a «+ a«a «),

(2a}

(2b)

(2c)

(2d)

(2e)

5X = — 5(k, + k, —k, —k4) 6(1, 4)'a«a+a«a« ',+ — 5(k, + k, +k, —k,)Q(1)(p«,a&t'a«, a«+ a«,a«, a«a«, ),
1234

where

E, =Ns[s(2J'+ J(+J;)-H- Ds],

C(k) =-2s(2J +Jz +J2) +H- D(2s —1) + 2s(J" +J )y(k) + 2s(J~+ J~)yz(k ) + zs(J2+ J2~)y2(k ),
(8(k) E(2s 2) + 2s(J &)y(k-) + 2s(+g +j)yy(k ) + 2s(J2 J)y (-k ),
6(1, 4}= -D + 2J y(k4 —k,) + 2J~y~(k« —k, ) + 2J'2y2(k4 —k2~) —2 (J"+J")[y(k,) + y(k4)]

2(&—+J",}[yi(k',}+y, (k:)] 2(J2—+J2)[y2(K}+y2(k,'}],
g(1) = ,'E+ —', (J' —-J")y(k,) + —'(J,"—J",)y,(k', ) + 2 (J,"—J',)y, (k",) .

(4a)

(4b)

(4c)

(4d)

(4e)

In Eq. (4) the following definitions were adopted:

y(k) =g e" ~

g(a&)

= 4 cos(k"2b)cos(-2'a)[k" cos(P -90')

—k2 sin(p -90'}], (5a)

and y, (k;) =-2. There are eight such vectors:

w(1) A: 77 p A 2' A 7t
k = x —tan(P - 90') + y —+a-

c c'
W( ) A jl -2r -wk(2~ = x —tan(P —90') —y —+s-

c b c' (7b)

y, (k') = 2 cosk'c,

y, (k') = 2 cosk'k .
(5b)

(5c)

ko = x —tan(P —90 ) +~(3) p 2' A 7T

p + gc a cos(P - 90') c '

(Vc}
Due to transverse anisotropy in the exchange

interactions in any of the three couplings, or due
to presence of an orthorhombic anisotropy, the
Holstein-Primakoff bosons a~, a~ no longer describe
the eigenmodes of the system of spins forced to be
aligned in one direction. This is seen from the
occurrence of the nondisgonal term B(k) in the Ham-
iltonian (8). Such a term was absent in the pre-
vious theories. ' '

In the harmonic approximation, the magnon fre-
quency is no longer equal to the coefficientC(k)a«ta«
in (8), but becomes

&e2(k) = [(e(k) —~'(k)]'~'.

If we assume that the J, coupling has only a per-
turbational influence and put J, =0, this frequency
is minimal at wave vectors k2 for which y(k«) =-4

k2 =,x ——tan(P- 90 ) +Q4) A'. 7t p 2 7 A
gc a cos(P- 90') c '

( td)

and -k(0', -ko, -ko, -ko ). Now, the direct mag-
netic lattice is spanned by the primitive vectors

a, = x (-.'a) cos( p —90 ) —y &/2

—z(—2'a) sin(P —90'),

s,, = x(-,'a)cos(p —90') +y&/2

—z(2a) sin(P —90'),
A

a, =~c.

(8a)

(Bb)

(8c)

If we construct the reciprocal lattice primitive vec-
tors b„b„b, out of the appropriate products of a„
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a„a, we will find that

kio'~ =«(1, +b, —b,),
ko' = 2(b, +b, —b,),

k+O«l =~2(b, +b2 —b,).

(9a)

(Qb)

(9c)

(9d)

The upper sign yields

H,+o = -D(2s —1) +E(2s —2)

+4s(J'+J') +2s(J, +Jf),
and the lower one

H, o
= -D(2s —1) —E(2s —«)

+4s(J' +J'*) + 2s (J', +J",) .

(1la)

(lib)

e(k,) =+a(k,) . (10)

This means that all ko's lie at the corners of the
Brillouin zone.

Since the expression under the root sign in Eq.
(6) does not form a perfect square, a)0(k) is linear
in f, -k( in the vicinity of any k, . Moreover &uo(k)

is the same function of the variable k, -k for any
k.

The paramagnetic phase becomes unstable when
&u,(k,) =0, which happens if

The critical field H„ is bigger than JI,O
when

2J'"+J, ~ -E(2 —1/2s) +2J"+J", . (12)

Therefore the first solution holds when (12) is sat-
isfied, whereas the second one holds when the in-

uality (12) is reversed.
Now we will include the effects of renormaliza-

tion. In the random-phase approximation employed,
for instance, by Feder and Pytte' (see also Ref.
20), the equation of motion for a«reads

i « =[8(k) +8(k)]a«+[$(k) +(k)]a„, (13)

where

8(k) =—+{[8(l,1) +8(k,k) +28(k, 1)](a«a«) +2[9(k) +28(1)](a«a «)},
, kg

(14)

(16)

@(k) =—+{28(k,l)(a»a») +2[28(k) + g(1)](a„a»)}.
1

The temperature-dependent averages are to be evaluated with respect to Xo. The temperature-dependent
frequency becomes

~(k, T) ={[a(k)+C(k)j'- [(a(k) +dl(k)]}' ' .
This frequency vanishes at ko when

H,' = H,' + e(k ) - a(k )

[i4'.(1)(s'p,,) ld„+ ~.(1)&~.,s-.,& IB ],
with

W«(1) = +3E -4D+J'[4 —y(k, )] +J~ [2 —y (k;)] +4J" "+2J",'" —y(k, )(«J'"+—,'J ') —y~(k', )(«J~~" + —,'J', "), (18a)

V«(1) = —3ET{-2D+2J '"+J~~'* —y(k~)(J + «J"~ —~J"' ) —y~(k~)(J~+ «J~'" —«J«'")},

Since the harmonic Hamiltonian is diagonalized4" under the transformation

s = (1/~2)[82(k) /2(k)]-&~&({e(k) +[8&(k) (g~(k)]&A}&~2 b«{8(k) [@&(k) / 2(k)]~&}b&kt )

where &&'s are again Bose operators, we get

1 8(k) e(k)
(k)

( ' ')

~(k) ~(k)(a,a «)=(a, a, )= — — (b, kg.

(18b)

(19)

(20)

(21)

This allows us to bring (1"I) to the form

H', =H', o
—AH'(0) —n.H'(T),

where
(22)
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1 (k, ) V ~(k, )»»»'(0) =
Q ))', (1) (~ )

—( —);(()
(~ ) (23)

(24)

hK'(0) represents the zero-point correction. The physical origin of this correction is the nonoptimal
choice of the eigenmodes of the system resulting from the fact that the real ground state is unknown.
Mathematically, b H'(0) comes from commutators arising when the normal order in the quartic terms of
the Hamiltonian is introduced. For the transversally isotropic exchange and for E =0, bH (0) vanishes.
The experimental value of H„- LH (0) (divided by the g factor and the Bohr magneton) for CoC1, ~ 6H,O
is 41.15 kOe. '

%e will be concerned with the temperature-dependent correction only. The dominant contributors to
4H'(T) are those wave vectors which are closeto any of the k&vectors. This allows us to replace the
quantities in the curly brackets in Eq. (24) by their values at k„which leaves out terms quadratic in

(k, -k).
In order to find the dominant term in the frequency, we make the expansion

(2(k) = 8(k ) +s(J"+J')(—,'b)'(k" —k')'+( —'s)(J", +J',)c'(k'- k')

+s(J"+J')(—,'a)'[(k", —k")cos(P- 90') —(k,' —k')sin(P- 90')]'+ ~ ~ ~,

$(k) = (ko) +s(J —J )(—,
' b)'(ko —k')' + (—,'s)(J',"—J,') c'(ko —k')'

+ s(J —J')(—,'a)'[(k*, —k")cos(P —90') —(k; - k') sin(P - 90')]2 + ~ ~ ~ .

(25a)

(25b)

(27)

where

Since at the critical field Eq. (10) holds, we get

&(),(k) (s ~ = [sJ "8(k,) I„~ ]'~'[b (k',—k"
( +a ( (k", —k")cos(P —90')

—(ko —k') sin(P —90') (+ c(2J", '*}'~'
Iko —k'(]+ (26)

where the quadratic and higher-order terms have been omitted. Now we select one of the wave vectors k„
say k~0', introduce the variable q =k+'l —k, and transform (24) into

b H(T) =6(J"'") ' 2(J '"-J '") +(J,'~- J"' ) +E(2-Il2s)]' '(2J'+J', +2J '*+X,"*—D+E)f(T' ~ ~ ~, .

1 (exp[(oo(k~(&'l q}/ksT] ——1j '
N ~~ b(q" (+a(q" cos(p —90') —q'»n(p —90') I+c(2J "/J' ")~'lq'I (28}

The sum in (28) is not restricted to such directions of the wave vectors which do not cross Brillouin zone
walls, intersecting at the corner k+' . This is because the contributions from the vicinities of the other
seven vectors k, make up for the whole space summation.

When the summation is replaced by the integration, simple change of variables shows that f(T) is propor-
tional to (T/s)' and not to (1/s)(T/s)' '. In particular, for an orthorhombic lattice, where P =90', f(T) be-
comes

kT 2/2f(f) — »»s ( } (J&."J)).&)-+2 Z(J&»" J»)') +J)'»" J"») + E(2 I/2 ')] )J2
M2 s (2m)' Nabc (29)

Expression (29) was derived by means of the following steps. First, q" was rescaled by introduction of
the variable q)'=q'b/a, then it was noted that for small q, (q*(+ (q" (=[(q")'+(q")']' ', finally, integration
in spherical coordinates was performed.

In the case when E =D =0 Eq. (27) gives

(30)3v 2 g(2) ksT ' V 2J'+J, +2J '"+J',"'"
(2s)' s Nabc J' (J",'[2(J"' —J'*') +J'"-J"]j("

This formula, although derived for P= 90 and J,= 0, gives quite satisfactory agreement with the experi-
ment' on CoCl, ~ 6H, O. If we take Kimura's" exchange constants and Haseda's" g,'-factor, and put
V/Nabc = ~, as there are two spins per elementary crystallographic cell, we obtain 2.35 kOe for 6H(T)
at T= 1 K, whereas the measured value is 1.93 kOe.
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H~(T) =H~a[1 —26M(T)/MD]. (31)

In the case of the anisotropic antiferromagnet,
we still expect the renormalized frequency to be-
have roughly like magnetization. However, since
the magnetization is no longer a constant of the
motion, as it precesses elliptically, the amplitude
of the temperature correction is only approximate-
ly reproduced by Eq. (31). Namely, (31) yields (if
the zero-point corrections are neglected}

H,'(T) =H,'
¹

„e-o&~xb&sr 1 (g)0(k, ) Co

(32}
Nhenthe small-k expansion is employed we arrive
ataformulawhichreproduces Eq. (27) exceptfor the
factor of 6 which is replaced by 4, and except for
some additional E and D terms which are propor-
tional to 1/s. It turns out also that the zero-tem-
perature corrections are not right in this picture.

Consider now an antiferromagnet with small ex-
change and orthorhombic anisotropies. Then $(k)
can give some contribution in the immediate vicini-
ty of k0. In this case, ~, is linear at very small
wave vectors (k0-k) and then becomes quadratic.
In this situation, we expect to find the coexistence
curve to behave as T' at extremely low tempera-

The T' dependence is riot surprising in the light
of the foQowing heuristic argument due to Keffer
and Qoudon" and its extension by Anderson and
Callen. ' Consider first a ferromagnet at a low
temperature and imagine an extra spin wave is be-
ing generated there. The new wave will move in
the background of already existing spin waves,
which have predominantly long wavelengths. This
extra excitation constitutes a deviation from the
previous instantaneous positions of spins. There-
fore, the energy required. to excite the new wave
drops proportionally to an average angle made by
one of the neighboring spins with the resultant spin
of the pair. This leads to the conclusion that the
temperature renormalization of the frequency goes
like the energy.

On the other hand, in isotropic antiferromagnets
in their paramagnetic phase, short wavelengths are
dominant at low temperatures. In such modes,
spins oscillate essentially in antiphase. An addi-
tional wave now sees not instantaneous but average
positions of the already present motions. It means
that a given spin detects only the ~ component of
the spin of its neighbor, so renormalization goes
like magnetization. More specifically, the exchange
energy appears to be multiplied by1-26M(T)/M,
in the renormalized frequency, where M, is a mag-
netization at T=O'K and 6M(T) is MD-M(T). The
factor of 2 follows from the self-energy considera-
tions. This leads to the relation

2P'+J,"~2J'+J', +(D —E)(1—1f4s) (35)

then, in the harmonic approximation, the critical
field is given by

8,",+ = ,'D+E(4s 4-)—+2s(2J*+J",)+2s(LP+J,"). (36)'
If the opposite condition holds we get

H," =D(2s ——,')+E(2s —4)+2s(2J +J',)+2s(2J'+J', ).
(37)

The temperature-dependent corrections again go
like T'. This is in qualitative agreement with
Rives and Bhatia, ' who observe that the shape of
the coexistence curve does not depend on the direc-
tion of the applied field.

.III. CRITICAL FIELD IN NiC12 6H~O AND MnClg '48gO

Cry stallographically ¹iC1,~ 68,0 is isomorphic
to CoC1, 6H,O."~' lt is a monoclinic crystal with

tures. For somewhat higher temperatures, when
an effectively quadratic dispersion relation has to
be used, the curve should exhibit the T' ' law.
Such behavior seems to have to be more common,
since even in perfectly isotropic antiferromagnets
there are always present dipole-dipole interactions
which produce the off-diagonal terms a~~a~~+a~a ~

If a transition between T' and T' ' laws can at all
be detected, this could be possibly done for an an-
tiferromagnet with high Noel temperature. Unfor-
tunately, this involves very large magnetic fields.

Note that in substances which exhibit a T' coex-
istence curve, a parallel pumping experiment
should be very efficient due to strong ellipticity of
the spin precession.

Consider finally the effect of the magnetic field
applied along a transverse direction, say along the
x axis. For a nonzero field in such a configuration,
only spin-flop and paramagnetic phases are al-
lowed. In the paramagnetic phase, the x direction
forms the proper quantization axis for the Holstein-
Primakoff excitations. C(k), as given by Eq. (4b),
is replaced by

g,"(k) =-4sJ'* —2sJ', +(~s)(J +J')y(k)

+(-,'s)(J, +Jf)y, (k')+H-D(s —') -3E(s-2),
(33}

and $(k) by

g*(k) =(-,'s)(J"-J")y(k) +(-,'s)(J', —J",)y,(k')

+E(s ——') —D(s ——'). (34)

The frequency is again linear around k0. Now the
uniaxial and orthorhombic anisotropies together
with the difference between the exchange constants
for y and ~ directions contribute to the off-diagonal
term+*(k}. If
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a = 10.23 A, 5 =7.05 A, c =6.57 A, and P= 122'10'.
The neutron diffraction studies by Kleinberg'4 and
the susceptibility measurements by Hamburger-
Friedberg" show that the preferred direction a~~

lies in the ac plane and is tilted from the a axis by
roughly 10'. This direction defines the new s axis.
The new y axis lies in the ce plane and is perpen-
dicular to a~~. Finally, the new x axis is parallel
to the & direction. The spin has the value s =1.
According to Kimura, ' the exchange interactions
in Nicl, 6H,O are isotropic and J'=(2.4+0.1)ks,
J;=(0.5+0.2)ks. The Lande factor is also isotrop-ic""and is equal to 2.22. The anisotropy is of
single-ion origin and it is mostly uniaxial" with
D =(-1.5+0.5)ks. It has also an orthorhombic con-
tribution which is equal to E =(0.26 +0.40)ks.

Since in the experiment of Oliveira et a/. ' not a
T' but a T' ' curve was obtained, we conclude that
probably the actual value of the orthorhombic an.-
isotropy is too small to give a T' law in the mea-
sured range of temperatures, or perhaps the ex-
periment was not accurate enough. For instance,
a nonspherical sample was used there and a cor-
rection for the demagnetizing factor was not con-
sidered.

The magnetic structure of MnCl, 4H, O was in-

vestigated by Spence-Nagarajan" and Altman. "
This compound has a monoclinic structure with
P =99'74' and the preferred spin direction is tilted
by V' from the c axis or by 2.8 from the axis which
is perpendicular to the a& plane. The spin has the
value of +. The exchange interactions seem to
Hives and Benedict, ' at least in the transverse di-
rections, to be isotropic. On the other hand, some
evidence against this view is presented in the
paper by Abkowitz and Honig" in which observation
of slightly transversally anisotropic g factor is re-
ported.

Anyway, the orthorhombic anisotropy appears to
be substantial in this material. Rives and Bene-
dict estimate the exchange field to be 10.375+0.03
kOe, but the anisotropy fields in two perpendicu-
lar-to-the-preferred-axis directions to be 2.20
+0.05 kOe and 3.80 +0.05 kOe. This orthorhombic
anisotropy seems to us mainly responsible for the
lack of the 7.' ' dependence in MnCl, ' 4H20.
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