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Perturbation corrections to the variational ground-state energy of liquid He
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The ground state of liquid He is studied by means of a variation-perturbation procedure based on the method
of correlated basis functions. The main purpose of the study is to evaluate leading corrections to the
variational ground-state energy optimized in the Bijl-Dingle-Jastrow (BDJ) type of trial-wave-function space.
The total energy correction consists of: (i) a two-ring type of second-order perturbation energy calculated by
including the leading correction to the convolution approximation for the three-particle distribution function,
(ii)' eight three-ring types of third- and fourth-order perturbation energies computed with the use of
convolution approximations for the three- and four-particle distribution functions, and (iii) contribution from
the triple-dipole three-body interaction evaluated with the use of the Kirkwood superposition approximation.
The formulation for the perturbation energies is given in terms of the liquid-structure function generated by
the optimum BDJ-type wave function. The numerical values of the energy corrections are obtained by using
the liquid-structure function determined by Pokrant. The resulting ground-state energy per particle is
—7.16'K in close agreement with experimental value —7.20'K.

I. INTRODUCTION

Recently the ground state and low-lying excited
states of liquid 4He have been studied by many
authors using the method of correlated basis func-
tions. ' " In this approach, the ground state is
usually described variationally by a Bijl-Dingle-
Jastrow (BDJ) type of trial wave function

N

O' =A „exp[-,'u(r, )], (1)

in which A is the normalization constant and N is
the number of particles confined in a box of volume
Q. The correlation function u(r) in Eq. (1) is de-
termined by minimizing the expectation value of
the Hamiltonian operator

E
H= — &;+ v x]~ . (2)2m

The two-body potential v(r) does not appear ex-
plicitly in the formalism based on the method of
correlated basis functions (except for the expres-
sion for the mean value of the potential energy)
and nearly all of the important properties of low-
lying states can be expressed in terms of the liquid
structure function S(k) and the number density p
=N/A. In the case of liquid 'He, the procedure
usually yields results in semiquantitative agree-
ment with experimental observations. In the uni-
form limit and/or weak-coupling limit, however,
results for the ground-state energy and excitation
energy spectrum obtained in the correlated basis
function approach agree exactly with those evaluat-
ed with substantially different methods" ' such as
the occupation number formalisms developed by

Bogoliubov" and by Bogoliubov and Zubarev. "
Thus, the method of correlated basis functions
based on the BDJ-type description of the ground
state appears quite useful for model systems and
also for the real physical system of liquid 4He.

Although it is generally difficult to obtain the op-
timum form of the BDJ-type wave function in a
direct way, any reasonably accurate variational
description of the ground state by a nonoptimum
form can be optimized in a systematic way by em-
ploying the paired-phonon analysis. ' " A. very im-
portant relation in this', optimization process (and
also in the BDJ description of the ground state in
general) is a formula for the correlation function
u(r) given as a functional in the liquid structure
function S(k) and/or the radial distribution function
g(r). It is often expressed

B(r)=0 (4)

is called the hypernetted chain (HNC) equation. "'"
The Campbell-Feenberg results' for the optimum
ground-state energy per particle indicate that the
accuracy of the paired-phonon analysis is sensitive
to the type of approximation used for u(r), or,
equivalently, B(r).

The problem of evaluating the leading correction
to the ground-state energy minimized in the BDJ
function space was considered by Davison and
Feenberg, ' who made an important observation

u(r)=ing(r) —(2, e'"' dk+B(r),1,.„-.; [1-S(k)]'-
2% p

(3)
where B(r) is the sum of bridge diagrams Equa-.
tion (3) with the approximation
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PIG. 1. Tvro- and three-ring diagrams considered in
the calculation of the perturbation energy correction to
the variational ground-state energy.

that the dominant contribution from non-BDJ com-
ponents is the second-order perturbation energy
generated by three-phonon vertices (E, in Fig. 1).
They used the convolution approximation for the
three-particle distribution function needed in the
evaluation of the matrix element representing a
collision process in which three phonons are creat-
ed out of (or coalesce into) the ground-state sub-
strate. The Davison-Feenberg formalism is ex-
pressed in terms of the liquid structure function
that is generated by the optimum BDJ-type wave
function.

Another important correction to the variational
energy based on the many-body Hamiltonian of Eq.
(2) is the contribution from the triple-dipole three-
body interaction given by

V,(l+ 3 cos8, cos8, cos8, )
v, r;, r~, r~ = 3. 3 3+jj+ /krak j

where 8„6„and 83 are the interior angles of the
triangle formed by particles at positions r„r&,
and r„and V, =1.521 x 10''KA'. Studies made on
this contribution are reported in Refs. 5, 9, and
22-24.

In this paper, a more accurate calculation of
the ground-state energy is prese&ted by extending
the Davison-Feenberg procedure. First, the in-
teraction matrix elements appearing in the domin-
ant (second order) perturbation energy correction
is evaluated with higher accuracy by including the
leading correction to the convolution approxima-
tion for the three-particle distribution function
P"'(1, 2, 3}. Second, in addition to the dominant
(second order) perturbation energy (represented
by the two-ring diagram E, in Fig. 1), we evaluate
eight three-ring energy corrections shown in Fig.
1, which are third- and fourth-order perturbation
terms. Matrix elements needed for the three-ring
diagrams are evaluated using the convolution ap-
proximations for the three- and four-particle dis-
tribution functions p"'(1, 2, 3) and p"'(1, 2, 3, 4).

The Campbell-Feenberg results for the optimum
BDJ-type ground-state description are based main-
ly on the use of the HNC and Percus-7evick"'"
approximations. A similar variational calculation
was made later by Pokrant" by applying a com-
pressibility consistent integral equation for the
radial distribution function g(x) to compute the
sum of the bridge diagrams B(x}in Eg. (3). Since
the method employed by Pokrant is an attempt
to obtain the best variational description by using
an approximation superior to the INC and Percus-
Yevick approximations, our primary numerical
results in the present study are based on the use
of the optimum results for the ground-state energy
and the liquid structure function S(k) at the equili-
brium density p=0.0218 A ' given in Ref. 10.

'The total correction to the variational ground-
state energy is the sum of contributions from: (i)
a two-ring energy diagram; (ii) eight three-ring
energy diagrams; and (iii} the triple-dipole three-
body interaction. 'The final result obtained here
for the ground-state energy per particle is -7.16
'K, which compares favorably with experimental
value -7.2 'K." In many respects, the present
analysis parallels the recent study of the energy
spectrum of elementary excitations in liquid ~He."

F(k) = 1-S(k),

&(k, k', k")

= —
(PP)*p f&P P(PIP)P+&IP(P -&'),

(6)

f'(k, k', k")=, dp[P'+ (p+i)'+ (p i '}']
2v p

xF(p)Z(p+ip(p k),

where

k+k'+k"=0, kk'k" 00.

(8)

Then, the matrix elements of the perturbation op-
erator

6a=If -&0IBlo&

are given by"
(10)

II. FORMULATION OF ENERGY CORRECTIONS

The basic formalism necessary to evaluate the
two- and three-ring perturbation energy correc-
tions is developed in Ref. 28, where derivations
of phonon functions and interaction matrix elements
are given and many related subjects are discussed.
'To make the expressions for the perturbation en-
ergy corrections complete, we list here some of
the useful results of Ref. 28.

It is convenient to define
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(k, k', k"
~

M
~
0) = (i3'/4m)[NS(l'3)s(k')S(k" )] '

X([1+a(k, k', 13")][-2(i32+k"+I3 "2)S(i3)s(k')S(k")+k2S (k')S(i3") +0 "S(k")S(k)+0"2S(k)s(k')]

+(k k')s(n")+(k'. k")s(u)+(k" k)s(u')+-,'s(u)s(u')s(a")r(u, u', u")}, (11)

(-k', -k"
~

&H P) = (h /4m)[NS(k)s(k')S(k )]
&&[-2(i'32+ I'3" +0"2)s(k)s(k')S(k")+0"S(k")S(l'3)+0 "2S(k)s(l'3')

I 2S(u')sq")+ (2 k")s(n) (k k')s(o") (k k")s(~')], (12)
\

1 2

(k, k2
~
5H

~
k, k )=,S(y ) L(k +k ) E (k +k ) + (k +k ) E (k +k )+ (k +k )

g=l

k2 1+E k.
-2[E(k, +k,) +E(k,+k4)] Q

&=1

k~ k k, k4

s(a, )
'

s(y, ) s(n, ) s(u, )

(k„k„k„k,~~H O)=O,

2 4 cps

S(k4 +k ') (13}

gk,.=o, k&+OWk&+k, (ij =1,2, 3, 4),
j=1

and
~
0) is the optimum BDJ-type wave function and S(k) is the optimum liquid structure function generated

by 0). Equation (11) is evaluated with inclusion of the leading correction to the, convolution approximation
for P +'(l, 2, 3) and Egs. (12)-(14) are evaluated with convolution approximations for P"'(1,2, 3) and
p(4)(1 2 3 4) 29-32

The explicit expressions of the two- and three-ring perturbation energy diagrams shown in Fig. 1 are

, I (k, k', k" I &H I 0) I
'

6(22)' C,(k)+C,(l'3')+e, (k") '

03 ~ (OI5HI k„k, -k, —k )(k, -k~ —k I5Hlk3, -k, -k3)(k|, k„-k, —k, l DUHIO)

4(2m)' '" [e,(k,) +e,(k2)+ E,(F,+ Q)] [&,(k, ) +e,(k3) + e9(K, + F,)]

l(0 l&Hlk|, k„-k2 -k )(k, l&Hlk, +k„-k3)l'
[69(k~) +69(k2)+69(k~+ k2)] [E9(k2)+ E9(k3)+ 69(k, +k, ) + 69(k~+k, )]

Q3 ~ (0 I5Hlk~, k2, -k~-k )(k, -k~ —k I&HI —k)(-k~l&Hlk3, -k~-k3)(k~, k3, -k~ -k3I&HIO)

[e,(l3,)+c9(l'32)+ e, (k, +k, )][2e9(l3,)][4:,(l'3, )+~,(&3)+~,(k, + k, )]

(19)
0'

4(2~)'

(015H I k„k„-k,-k2)ck, I &H lk, +k„-k3)(k„-k, —k, l&H I-k|)(—k„-k„k,+ k I&H lo)
(20)

[E9(kq) + C9(k2)+ 49(k~+ k )][&9(k2)+ 69(k3) + 4(9kq +k )'+ e9(ki+ k3)][69(l'3q) + 4 9(k3) + E9(kq+ k3)]

G3
49 (2 )9

(0 15H Ik„k„-k,—k)(k, I5H I k, + g, —k,}(k„-k,16H I k, —k)(-k, —k„k, —k„k,+ k, l5H lo)

[69(k|)+f9(132)+ e9(k|+k2)][t9(k2) + E9(k3) + 49(kq+ k2)+ t9(kq+ k )][&9(ki+k ) + cq(k, + k )+ 49(k2 —k )]
(21)

l(0 16H Ik„k„-k, —k,)(0 16H Ik„k„-k,—k,) I2

[a9(k,) + e9(k2) + a9(k, + k2)] [2&9(k,) + e9(k2)+ &9(k3) + 69(k, + k ) + E9(k, + k )]
(22)
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03

-k — )&016HIk„k, -k, —

4~ 4(2m)'

l&0 16H lk„k „-k,
k + 2 0 i k +to(k3)+ Eo(ki+k2 + 60 i 6 k +COe. . . , k +k,)j[2&0(k,)+ e, (k,)+ e. . . + e, , & k[ (k)+~ (k)+~, (k,+. . . k +~, ,

where

(24)

e,(r„r„r,), (25)v,
1~4&g&k~N

smal], 5 9»-24d its contributxo
t consider along

an
nwe need oano ther corrects

three-ring energy terms is the
which can evalu e of V„

r r, ) dr, dr, ."'(1,2, 3)v, r„r»&y,)=-,'A p . . . r

(26)

I.O

=tf'k /2mS(k)e, (k) =

rmula for erm the excitationis the Bi]-"1-Feynman form

em ' Eq. (2)] used in

th
e calculation o

due to the traptential energy u
interaction of Eq.. (5

III. NUMERICAL EVA LUATION

(27)
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'
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'
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P"' 3)=~p'g(r„)g(r„)g(r„
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Energy terms

&ol&l o)/N
E2N
Ei lN
E4 /N
E /N
E4 /N
E~/N
E~/N
E~/N
Ee lN
(V, )/N
E/N

Numerical values

-6.60
-0.465
-0.0393
-0.0399
-0.0591
-0.0591
-0.0267
-0.0195
-0.0026
-0.0026
+ 0.154
-7.16
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was used in Eq. (26) to compute (Vg. The final
result for the ground-state energy per particle is

z/N = ((o
I
alo&+ z,+ z, + z„+z„+z„

+ E~ + E4,+ E~+ E~+ (V3))/N

= -7.].6 'K, (28)

which agrees closely with the experimental value
-7.2 'R.

It may be instructive to make some remarks here
in connection with the present calculation of the
ground-state energy:

(a) Evaluation of E,/N [Eq. (16)] with the use of
the convolution approximation for p")(1,2, 3),
which is equivalent to the approximation &(k, k', k~)
= 0= I'(k, k', k' ) in Eq. (11), yields E,/N = -0.520
'K. This means that inclusion of the leading correc-
tion to the convolution approximation for P'"(1,2, 3)
results in the energy shift of + 0.055 'K for E,/N.

(b) The total contribution from the three-ring
diagrams is E, „„/N = -0.2488 'K, which is about
54% of the second-order (two ring) correction.
This may seem to suggest that the perturbation
energy series does not converge fast at least in
low orders. On the other hand, we can also regard
{E3„„+(Vq&),N=-0. 0948'K (20% of E2/N) as the
second-lowest-order energy correction. It is,
therefore, difficult to estimate the degree of im-
portance for the higher-order corrections.

(c) We have also evaluated the energy corrections
using ihe Campbell-Feenberg results for the op-
timum liquid structure function obtained with the
use of the HNC approximation (dotted line in Fig.
2). The numerical results are

&0IIfI0&/N= 4.o4a,
E, „,/N=E, /N= -0.623 'K,

s, „„/N=(s,is +s„+s„+s„+s,.+s,&is.,)/N

= -0.3275 'K, {29)

(V,)/N=+ 0.156 'K,

s/N=((0IaIo)is, „„+s,„ i(v, &)/N

= -4.83 'K.

We note that the result for E/N here is quite dif-

ferent from that obtained using Pokrant's S(k).
'The most likely source of the discrepancy is the
use of the HNC approximation. Since all of the
bridge diagrams are entirely neglected in this ap-
proximation, the above result for the variational
ground-state energy per particle (-4.04 'K), in
particular, is believed to be less accurate than
Pokrant's value (-6.60 'K) obtained by including the
sum of the bridge diagrams.

(d} A form of improved HNC equation derived in
a series-expansion method gives"

(olalo&/N=-4. 37'K, s/N= 5.17'K. (31)

Although the correction due to Eq. (30) is in the
right direction, consideration of the leading bridge
diagram alone seems to leave enough room for
further improvement.

(e) The two-body potential function v(r) used to
obtain the numerical results for (0 Iff

I
0&/N [Eqs.

(29) and (31)] is the 6-12 Lennard-Jones potential

v(r) = 4m[((r/r)" ((r/r}'], (32)

with" e = 10.22 'K and c = 2.556k
(f) A three-ring diagram of second-order per-

turbation correction involving
4 4

g ~,(k, ), gk, =o (33)

is not included in Fig. 1, since it vanishes because
of the relation given by Eq. (14).

(g) Finally, it may be remarked that the explicit
expressions for the three-ring perturbation ener-
gy diagrams given by Eqs. (17)-(23) are based on
the use of the relations

&(r)=-lp' ff dr, ur, (g(r, )]

' x'[g(r. ) —1)] [g(r,.) —1]

x [g(r, - r) —1][g(r,- r) —1].
(3o)

We have evaluated the contribution from Eq. (30)
to the variational ground-state energy per particle
using the Campbell-Feenberg S(k) based on the
HNC approximation. The obtained numerical value
is -0.3343 K and hence

(k k k ~ ~ k„
I kx~ k2~ g ~ k'

&
= (k) I

k )(k

k)'))& = &ka Ik &&k2

so that

(k„k„k„.. . , k„
I

6EZ
I k„k,', k,', . . . , k„')

((k„k2,k„.. . , k„lk„k„k,. . . , k„&(k„k,', k,', . . . , k' Ik„k', k,', .. . , k„'&)

(34)

(35)

((k2 Q ~ ~ ~ k lkn~k3 ~ ~ k &(k2 k ~ ~ ~k' lg~ks~ ~ ~ ~ ~kg)
(36)
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We proved Eqs. (34) and (35) for the matrix ele-
ments involved in the three-ring diagrams. Since
the proof is quite lengthy, it is not presented here.
Equation (36) justifies considering only the lines
entering and leaving a solid (black) circle in writ-
ing the matrix elements corresponding to a dia-
gram. The complete set of lines cut by a horizon-

tal line drawn between two adjacent solid circles
is involved in the energy denominator.
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