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Using the equation-of-motion method we derive, based on the pair approximation [Hartree-Fock (HF), BCS]
of the hard-sphere model for superfluid He, the Bogoliubov equation for the superfluid phase. At the
temperature T = T), the off-diagonal pairing factor (BCS) has to vanish; and the excitation energy must become
that of the HF solution. This condition yields a transition temperature T& ——2.3'K. The superfluid density ps
as a function of temperature is also investigated. Furthermore assuming the net translational kinetic energy of
the liquid to be E~ = (1/2)A(ps Vs'+ p„V„') we investigate the response of our system to the corresponding
perturbation HI. We calculate the persistent current components (J"(0))and (J (0)) which exhibits the
right behavior for T~O and T~T&.

I. INTRODUCTION

Liquid 4He undergoes a transition at Tz =2.17 'K.'
The specific-heat curve exhibits a singularity at
Tq which appears to be logarithmic in nature. An-
other remarkable property of litluid 'He is its zero
viscosity (under certain conditions) or superfluidity
for temperature below Tz.

A phenomenological theory using the two-fluid
concept was introduced in 1940 by Tisza' and in
1941 by Landau. ' This theory assumes that the
liquid He consists of a superfluid component having
zero entropy and viscosity and a normal component
consisting of a gas of excitations in the liquid.
Landau proposed that the existence of superfluidi-
ty in He II is related to the properties of the exci-
tation spectrum of the liquid, which he suggested
is a phonon spectrum for small momenta and a
phononlike (roton) spectrum for larger momenta
(see Fig. 1). In the roton region the spectrum is
given by

where 4 and P, stand for the roton energy and mo-
mentum, respectively.

Landau showed that at zero temperature, helium
flowing through a capillary will experience vis-
cosity if the flow velocity V of the liquid satisfies

Elementary excitations will occur dissipating ener-
gy and momentum. With V& V, there is no viscosity
at zero temperature.

At finite temperature, excitations of phonons and
rotons must be taken into account. At temperatures
above T -1 'K the superfluid will be depleted pri-
marily by rotons, and the roton-roton scattering

frequency will provide the main contribution to the
viscosity. 4 According to Landau's theory, the
superfluid will be depleted completely at a tem-
perature 'E, =2.6'K, at which the superfluid den-
sity vanishes, in comparison with the experimental
value of T& =2.17'K.

Various attempts have been made to derive the
above-mentioned properties like excitation spec-
trum, ' "viscosity, " ' and ~ point" under special
assumptions such as, for example, weakly inter-
acting Bose gas, suitable ad ~ roton interaction
Hamiltonians, or semiempirical considerations.

A purely microscopic theory based on hard-
sphere interaction for a de&se Bose gas has been
put forward by two of the authors. '6' ' The numer-
ical calculation based on this model reproduces
some features of the experimentally measured ex-
citation spectrum, best fit in this case with a core
diameter a =2.17 A. The hard-sphere approach is
also very successful for exploring the interactions
between excitations, such as roton-roton binding
energy and roton collision frequency. Although
this model seems to give rise to a coupling s'trength
for the finding energy that is 5 times too large,
a more accurate analysis reveals that this large
coupling strength is compatible with other physical
considerations and does not contradict the experi-
ment. ""The coupling strength depends only very
weakly on a, decreasing less than 5%t for an in-
crease of a from 2.1 to 2.5 A.

On the other hand, for a core diameter of
a =2.17 A we obtain the right upper bound for the
collision frequency. The collision frequency is
linearly proportional to the core diameter a."

The aims of this paper are to calculate, based on
the hard-sphere model, the transition tempera-
ture Tq and to study the response of the system to

5283



5284 W. MEYER, K ~ W. WONG,
\

AND LIN-ING KUNG

40

—30—
0

hl

20
C9
K
NJ

l0

)
k( k02

MOMENTUM k (A i)

Flo. l. Excitation energy spectrum as suggested by
Landau.

external perturbations. At this point it seems to be
adequate to present a brief description of this
model (for further detail we refer the reader to
Ref. 1V and references therein).

The analysis of a quantum-mechanical system
of many particles with har'd-sphere interaction is
also important in other physical models such as,
for example, liquid 'He or nuclear matter. Such
systems exhibit very strong and short-range re-
pulsive forces which closely resemble those of
hard spheres. Relatively weak attractive forces
may be handled by ordinary perturbation theory.
These are some of the reasons why the hard-
sphere problem has received considerable atten-
tion for more than two decades. In order to deal
with this problem, it is desirable to replace the
N-particle hard-sphere boundary conditions by an
equivalent Hamiltonian (the "pseudo-Hamiltonian")
so that we can treat this problem in the usual
second-quantization manner. However, most such
treatments either are valid only for the S-wave
component or they are not actually nonpenetrable.
Although there exist two approaches which give
the exact solution for the two-particle problem,
they are hard to apply in the N-particle case. One
of them requires a subsidiary condition, "and the
other one leads to a non-Hermitian pseudopoten-
tial." These difficulties have perhaps limited all
former pseudopotential treatments to only dilute
systems. In this paper we utilize an exact method
developed"' "earlier. This method is equiva-
lent to that of Ref. 21 for the two-particle problem,
but the generalization to the N-particle problem
leads to a Hermitian pseudopotential. In our treat-
ment the hard-sphere boundary conditions are
taken into account by introducing nonlocal field
operators with generalized symmetric commuta-
tion relations. An iteration procedure devised
earlier by one of us ' allows for a successive ex-
pansion of these nonlocal hard-sphere field opera-

tors in terms of the usual Boson point-particle
operators. The exact N-body hard-sphere pseudo-
Hamiltonian then contains all order of interaction
potentials up to genuine N-body potential inter-
action, which we reduce to an approximate form,
maintaining the pair particle boundary conditions
only. This approximate pseudo-Hamiltonian,
which we call the tuo-body Potential Hamiltonian,
would be exact for two particles, but is only an
approximation for more than two particles in the
case in which the approximation becomes strictly
accurate only for dilute systems.

Because of the analytical tractability of the two-
body potential Hamiltonian, and the correct low-
density limit, we adopt it as a mode/ Hamiltonian
for our problem. This reduced Hamiltonian is
Hermitian, a property not retained in previous
work employing similar approximate pseudo-
Hamiltonians. "" The ultimate test has to be the
comparison of the theoretical predictions one can
make based on this model with the experimental
data obtained. Before doing so, a further approxi-
mation has to be employed. We extract from the
two-body potential Hamiltonian a set of terms which
we call the Pais Hamiltonian, It might be quite a
delicate problem to decide to which step of approx-
imation occurring discrepancies between experi-
ment and theory belong to.

The range of applicability of the pair approxima-
tion is demonstrated by the following facts: Nu-
merical calculations based on this pair Hamil-
tonian at liquid-helium density reproduced some
features of the experimentally measured excita-
tion spectrum. The pair Hamiltonian leads to a
true upper bound of the ground-state energy of
the entire two-body potential Hamiltonian. The
pair Hamiltonian gives rise to a long-range order-
ing (off-diagonal long-range order) which is typical
for the occurrence of a new thermodynamic phase.
It also leads to a condensation in momentum space
around the roton branch of the excitation spectrum,
as must be expected in the case of a hard-sphere
interaction. " And, as shown in this paper, rather
accurate statements can be made about phase-
transition temperature and temperature dependence
of the normal component of He II. Since the exact
form of the excitation spectrum as a function of
temperature is a prerequisite to achieving a quan-
titativeevaluationof Tz, it is important to point
out" that, based on our model, a simple Hartree-
Fock calculation along the lines similar to the one
presented by Ruvalds" leads to a decrease of the
roton energy with increasing temperature, in con-
trast to the results obtained by Parry and Ter
Haar. "

On the other hand, it was found" that the pair
correlation function was in poor agreement with
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the expected pair correlation function obtained by
Bijl-Dingle- Jastrow. 2'

The question arises: Is it the pair approximation
or the two-body potential approximation that in-
troduces this deficiency~ For two reasons we are
convinced that the hard-core properties for the
many-particle system are still sufficiently re-
tained in the two-body potential approximation.
Calculating the correction to the pair correlation
function due to all nonpair terms gives qualitatively
the right correction. " Furthermore, computing
the roton scattering frequency in liquid helium, -

which is dominated by short-range interaction be-
tween the rotons, "one observes that the interac-
tion Hamiltonian resulting from our model rep-
resents essentially our nonpair terms in the two-
body potential Hamiltonian. The good results ob-
tained earlier by two of us" reinforces our conjec-
ture that the hard-core properties of our system
are still retained in the two-body potential approxi-
mation at realistic liquid-helium densities and
that therefore higher-order body potential inter-

action terms can be neglected.
Bearing in mind these introductory remarks,

we use this model Hamiltonian again in the pair-
approximated form to calculate in Sec. II thermo-
dynamical quantities for a bulk system. In Sec. III
the transition temperature 7'q for a N-particle
hard-sphere system is estimated. The results
for Tz, including attractive square-well interac-
tions, are presented in Sec. IV.

In Sec. V we study the temperature dependence
of the normal-fluid component and compare it with
the experiment. In Sec. VI the response of our
system to an external velocity flow is investigated
and expressions for the resulting superfluid and
normal-fluid current density are derived.

II. SELF-CONSISTENT-FIELD METHOD

We develop now the self-consistent-field equa-
tion for our model Hamiltonian. The hard-sphere
Hamiltonian in the two-body potential approxima-
tion, using the convention I =2'~ =1, is given
by~7'23

H=- d'x x, t &„x,t + lim — d'xd'x' V'„p x, t
p

x', t V'„p x', t p x, t
~p+

+ lim d'x d'x' 5 (r —a) g, (x, t)g (x', t) g, (x', t)g(x, t)

+ lim d'x d'x' —&(~ —a)got (x, t)g, (x', t) —&g, (x', t)g, (x, t)
~ ~p+ Cl r= a+a

where $0(x, t) and got(x, t) are the Heisenberg-free
field operators with time commutations given by

[g,(x, t), $0 (x', t)] = & (x —x'),

[g,(x, t), g, (x, t)] = [g, (x, t), g, (x, t)1 = 0 .
(4)

In order to study the thermodynamic properties of
the above model Hamiltonian we make use of the
self-consistent linearized equation of motion for
the particle fields. " This method is essentially
a generalization of the Hartree-Fock method by
Bogoliubov" and includes the non-particle-con-
serving off-diagonal long-range-ordering terms

in the linearized equation of motion. Hence, such
a method can only be applied to a grand canonical
ensemble of particles. This condition is generally
satisfied in the case of liquid He whqre the system
is embedded in a thermobath and balanced by its
own vapor pressure, which acts as a particles re-
servoir.

The equation of motion for (0(x, t) is given by

which yields

i P, (x, t) =-&2$,(x, t)+ lim 2
t

d'x'&(& —a) got(x', t) g, (x', t)g, (x, t)
~ ~p+ ~+ r=a+~

+lim — d'x'P r-a
p x t + px t px

~p

+ [~'00 (x', t)1 [7'00(x', t)eo(x, t)1d'x'.
r&a

The abave equation of matian is nonlinear, since it cauples the solution of the single-particle field to
those of two- and three-particle fields. In order to obtain an approximated solution, we linearize this
equation of motion by replacing terms consisting of more than one particle operators by their thermo-

(6)
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dynamic averages.

i f,(x, t) =-&'g, (x, t)+ lim 2 d'r. '&(r-a) gt(x', t)(g, (x', t)g, (x, t))

+ lim —I d'x' 5(r —a) r($t(x', t)g (x', t))( (x, t)
~~0+ 0

+ lim — d'x'5(r —a) r(Pt(x', t)g, (x, t))( (x', t)
0+ Q

+ ' 'Ox', ' Ox', Ox, ~ + dx' 9' ~x't V' x'I; xt

d'x' V'(gt (x', t)g (x, t)) .&'g, (x', t),

where (g(X, t)((x, t)) represents the grand canonical
ensemble average. We note that in the above field
equation only the second and fifth terms do not con-
serve particle numbers. These are the terms re-
sponsible for off-diagonal long-range ordering,
while the rest of the terms are basically terms
corresponding to the Hartree-Pock single-particle
dressed energy. We have shown in detail in Ref.
17 that at liquid-helium density it is mathematically
sensible to choose + +0 as an expansion param-
eter, since the density of zero-momentum con-
densate in actual liquid helium has been estimated
by various authors~'~ to be no more than 8/p.
Based on this procedure and the numerical values
of the single-particle condensate for this model
Hamiltonian as calculated in Ref. 17 for realistic
liquid-helium densities, which give a negligible
amount of zero-particle condensite, we introduce
a unitary transformation similar to the Bogoliubov
transformation for the case of superconductivity,
where in the thermodynamic limit we neglect the
zero-momentum component.

( (x, t)=P [U (x, t)e ' & n&

momentum component is omitted.
To preserve the statistics, the transformation

functions Up and Vp must satisfy the following
conditions

g [U&(x, t)Up(x', t}—Vp(x, t)V&(x', t)] =&'(x —x'),

Q [Up(x, t)Vp(x', t) —U (x', t)V-(x, t)] =P.
.P

The inverse transformation is given by

np e's&' --[Up(x, t)g, (x, t)+Vp(x, t)(,*(x, t)]d'x,

such that

[~ ~~, ]p& p pp

from which we can obtain two more conditions for
the transformation functions

—Vp(x, t)&' &'n*-],
[Up(x, t)UT, (x, t) —Vz(x, t)Vq(x, t)] d'x =&zz,

(12)

qJ(x, t) = Q [Up(x, t)e"s&'np
P

—V-(x, t)e ' ~'o.:],

Up X ~ V]f x, t —Vp X ~ U]f x t d'x = 0

The thermoaverage over the quasiparticle ampli-
tudes are defined by

where E~ is the excitation spectrum associated
with the quasiparticle operator o.p. The prime
over the summation sign indicates that the zero-

(a~o.-) =1/(e ~+er —1).

Substituting the transformation Eq. (8) into the
equation of motion Eq. (7), we obtain

(13)

i —[U-(x, t)e '~&']=(0 —p)U~(x, t)e 's&' —S, (x)VP(x, t)e 's&',

where
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(h —g))to(x, t) =-(&'+p)$0(x, t)

+ lim — d'x' &(r —a) r()t)ov (x', t)(t), (x', t))(,(x, t)
p+ Q

+ lim — d'x'6(r —a) x()t)~(x', t)g (x, t))g, (x', t)'
~p+ Q

+ [&'()t)t(x', t)(t) (x, t))]&'(t)(x', t)+ (V'g(x', t)')7'g (x', t))(t) (x, t)d'x',
r&a r&a

S, (x)»r(x, t)=))m 2 J»'x' (r —x) (»,(x', )(),(x)))ij»( , xt)
p+

(15a)

d'x' V'(g, (x', t)(t), (x, t)) &'got(x', t) .
r&a

(15b)

In Eq. (15a) we introduced the chemical potential
p. to assure particle conservation. Similarly, we
obtain an equation for Vz(x, t)

[V-(x, t)e'e&'] = (h —t()V—(x, t)e'eI'

Epa- =S,(p)ap —S, (p)b p,
@~b- =S+(p)a- S,(p)b—p .

From Eq. (22) it follows that

(22)

+S,(x)U~p(x, t)e's&'. (16)

Equations (14) and (16}can be combined in matrix
form yielding

E [S2( ) S2(p)]1/2

which agrees with the solution one obtains at zero
temperature. ""The transformation coefficients
are

. 9 /'Uz(x, t)) (h- y, -S,(x)) /U&(x, t)IE"'st
I

E, V;(x, t)j E, S,*(x) -h+I f (V;(x, t)f

(17)

This is the Bogoliubov equation for the superfluid
phase. In the absence of a'n external perturbation,
we may assume U~ (x, t) and Vz(x, t) independent of
t. In this case, we shall express the transforma-
tion function in terms of a complete set of ortho-
normal wave functions

Up(x) =a-(t)-(x), Vp(x) =bp(t)p(x) (18)

such that

2 2a-- b-=1.
P P

In Eq. (18), the choice of the complete ortho-
normal set Qz (x) should depend on the geometrical
shape of the system, and should be chosen as the
eigenfunctions of h. This method is therefore valid
also for liquid films. With this choice of (t)z(x},
we define

P 2 E ~ P 2 E p
(24)

where &P is the single-particle distribution of the
condensed state in momentum space. Notice that
b- is proportional to P ' for values of P approach-

P
~ 2 2

ing zero, i.e., P'bp vanishes as P approaches
zero. This means that, although the single-parti-
cle distribution is divergent at low momenta, the
phase-space factor- is enough to curb the amount
of Bose-Einstein condensation implied by the di-
vergence of the single-particle distribution. On
the other hand, P'&p has a maximum at the mo-
mentum value corresponding to that of the roton
dip. The maximum number of particles are there-
fore concentrated near the momentum range of the
roton dip.

In order to study the thermodynamic properties
of our boson system, it is necessary for us to ob-
tain S,(P) and S, (P) analytically. It is one of the
advantages of the present approach that such
analytic solutions can be found.

From Eq. (20), we have

d'x (t)-(x)(h —p, )P-(x) =S,(p) (20) (h —p)(t)p(x) =S,(p)yp (x), (25)

and

then Eq. (17) reduces to

where Qz(x) is supposedly an eigenfunction of
(h —t(). To solve for Q~(x}, therefore, we must
solve Eq. (15a). With the help of Eqs. (8) and (25)
we obtain the following differential equation for
(t)

p (x):
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S,(k)%),(x)=-(~'+u)A), (x) t»m g r, (p)—t
d'x'6(&-a) &[4, (x')0-, (x')A), (x)+4, (x')4), (x')4-, (x)]

o+ r=a+e

+g' I' (p) I (Px'[[v'(t)-*(x')1 [v'P)) (x')1 P„(x)+[V'(t)~)) (x')1. [v'(I)-„(x')] &f&p (x)],
P ~&a

(26)

where

I;(p) =(a-+b-)((x-u ) +b-. (2t)

S,(k) =k'[1 ——', wa'p) —g

+, Fj (ka)+B, cos(ka)ma'

-r (4) + 1)B„j„(ks)),
~=p

(28)

where the constants B» are defined with x =la as

B» = dxx I2 —J2) x (29)

and

I" =g (4& +1)(-1)'8„.
l=p

(30)

Since we have assumed zero amount of single-
particle condensation, the chemica1. potentia1. p.

must be determined self-consistently by requiring

=p.1

P

Under the plane-wave approximation we obtain
from Eq. (15b)

S, (k) =-, Dj,(ka) —g (4L 1+)E„j„(ak)
ga

(31)

A first-order approximation to (I)&(x} is the plane
wave V '~'exp(ip x). In fact, we expect the single-
plane-wave approximation as the eigenfunction of
(k —i(, )' to be rather good, since (k —p, ) is essen-
tially the Hartree-Fock Hamiltonian of a hard-
sphere system, and its eigenfunctions should be
close to plane waves with an effective-mass cor-
rection to the single-particle spectrum. We shall
therefore treat (t)&(x} as a single plane wave.
From Eq. (26) we therefore obtain

III. CALCULATION OF THE TRANSITION

TEMPERATURE T~

It is physically clear that at zero temperature
no quasiparticle is excited and therefore all the
particles are in the pair condensate state, i.e.,
Q), b), =N [see Eq. (24)]. But at temperatures just
above the critical temperature we expect all the
particles to be excited from that condensed state.
This implies bp(T~} must be equal to zero such
that the excitation energy becomes that of the
Hartree-Fock solution. In other words, the off-
diagonal pairing factor S,(p) vanishes. Under this
condition we can evaluate T& and the chemical
potential p, which is given by

1 ~i
es2{P)/kgTg (36)

P

From Eqs. (28) and (29}, we see that the domi-
nant contribution to B» has to come from the low-
momenta region. At small momenta S,(p) is rough-
ly given by

S,(p) -(1 —o')P'- Jj,
where

(y =—', na'p.

(37)

The constants B» near Tq can be evaluated by
successive iterations. The first iteration using
Eq. (3V) as an input gives

and

r, (p) =a;b;(2(~~;&+I) . (35)

For more details about the derivation of Eqs. (28)
and (32) we refer the reader to Ref. 17.

sk, sos(ks) —js,j,(ks)),

where E» and E» are given by

E
&

—lj.m dxx2I' x(1 —e) j„(x)
~p 0 a

E„=l ck x(1+ c) j.r (x),
&~0 0 a

D =Q (4l +1)(-1)'Em),
&=0

(32)

(33)

(34)

2"'~'[n(1 —~)1"~r(21 +-', )

x g"»'a~~M a'k T
4(1 —(x)n

(39)

Here M(a, b, c}stands for the confluent hypergeo-
metric function. ~ To estimate B», we set a'p.
= -5, Tz =2 'K. We find that B» is quite small
for all values of. I.

Substituting Eq. (24) in Eq. (35) and then in (33),
we obtain an infinite set of coupled integral equa-
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tions

E» --lim Chx'- ' coth ~ j,g (x(I —~)},
&~0 0 P B

Z, g
—lim (h x' ' coth T j„(~(I+E)}.

0+ 0 B

(40)

From our initial assumption that there is no
single-particle zero-momentum condensation and
the boundary condition that the thermoaverage
(f,(x, t)(0(x', t)) vanishes at the hard-sphere diam-
eter, i.e., for lx-x'l =a, we conclude" that the
constants E» and E» are equal, and that E, is
equal to zero. This final restriction on Ep is es-

sentially Lieb's subsidiary condition. 'O The limit-
ing process involved in Eq. (40) actually arises
only because of our choice of (!)(x)as a plane wave
and not imposing the Lieb's subsidiary condition.
In obtaining the actual Hartree-Fock eigenfunctions
of (h —p. ), we must also put in the subsidiary con-
dition. Therefore, although we should not really
accept the thermoaverage ((0(x, t)(I)0(x', t)) to satis-
fy the temperature independent boundary condition,
the limiting processes and integration can still be
interchanged because no actual undamped oscillatmm

ing term exists in the off-diagonal pairing factor
S, (p).

Substituting Eq. (32) and (34) into Eq. (40), we
obtain

Z, , =- 4»»' cote ' )„(»)—C, coc» —I, (cm»))O, .[),.(»)- (-)) C.(»))) .2 1 4
2E m=p

(41)

To solve for T)„we have to solve Eq. (41) together with the constraint given by Eq. (36).
Equation (41) can be written more formally as

&» = Z le)) &2)
l'=0

where

(42}

(43)I„= (4l'+ I) d)4 x' coth
l (j„(x}([j»,(x) —(-1)' j,(x)]—,cos(&)}'}.

ZQ 2u, r„~
A simple estimation is to ignore B» in S,(p), and approximate S,(p) by Eq. (37). Thus, M«has the fol-
lowing form:

where

= —(4V +1)(-1)',(C„(-1)' —C, —g (4m+1)(-1)""Cg 4, ),m=p
(44)

C, = (-1) ' I2 ~)/2[-!/. a'/—(I —n)] ' 'A», ,/, [-p, a'/(I —o')V/~
2 2'2

00 4)0 ~+~+g+g2gg( 1)s 2-2&ad+m+ g+q ~

1 A g 0 n y 1 G

I"(l +m yS + ~)I'(Bi +2m +2$ +2)I"(-l —m —$ ——,', n!/. /ksT), )
$!I'(2m +$ +—')I"(2l +S +—')I'(2l +2m +8 +2) (45)

Detll!f - II =o.
With Eq. (46) and the constraint given in (36),

(46}

for m~ l -1. For m& l-1 we interchange ~ and m

in Eq. (45). I„and K' are hyperbolic Bessel func-
tions. 30 I (a, 5) is the incomplete y function.

To solve now for Tz we observe that for 1' + Tz
we assumed $, (p) -=0. Lowering the temperature
through 1'q an on set of long-range ordering is ex-
pected, i.e., $, (p)$0. This implies a nontrivial
solution of Eq. (42), which means

which after integrations takes the form

(I +)-P/Qg B k e)(n/))erg 6+3/ p
I T

n=y
(47)

we are able to solve for Tz. We find under these
approximations a'p, (T),) =-6 and T), =2.5'K. The
size of the core is taken as 2.1V A and the density
of the liquid as (3.6) ' A '. The choice of the size
is governed by the best fit to the excitation spec-
trum, "particularly the position and amplitude of
the roton dip. By increasing a we decrease &),,
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which can be easily seen from Eq. (47) if we write
it in a slightly different way

y-s/2 OQ

8v~'p(I —n)~' ' —= dxx ~'e "
B ~ - p/k&T~

(48)

0.04

0.03

Hence, by increasing a, we decrease JLI. and Tq
simultaneously. In fact, if a is increased to values
larger than 2.2 A, T& drops to zero very fast and
beyond values for which 0.&1, there is no solution
for T~. A better approximation to S,(P) than that
given by Eq. (37) can be performed numerically
with Eqs. (28) and (41). Under this improved ap-
proximation, we can solve numerically for Tz

o
again. For a=2.1V A, we obtain Tq=2. 3 K in
slightly better agreement with experiment.

0.02

0.01

0.00
0.5 I.O I.5

IV. SOLUTION OF THE TRANSITION TEMPERATURE
V(HEN ATTRACTIVE TAIL INTERACTION IS ADDED '

V= dxd'x' 'x, t *x', t

where

x V(lx —x'[)g(x', t}g(x, t), (49)

V(lx —x'l) =

0 otherwise,
(50)

where W=Wa~/6. 06 is dimensionless and can be
converted to 'K by multiplying with 6.06/a' and
inserting the diameter a in A.

Going through the same procedure with the new
model Hamiltonian as in Sec. III (detailed calcula-
tions are presented in Ref. 32), we obtain a new
critical equation similar to Eq. (46),

If we consider a square-well attractive tail in the
interaction potential, the model Hamiltonian (3) is
modified by adding the following term:

FIG. 2. Dependence of p on Tz End p,.

ly). The result of the first iteration is

T~ =3.43'K, p. =-0.949 A '.
In the following iterations, the exact form of

S2(k) is used employing the results from the pre-
vious iteration.

From Fig. 4, we can see the convergence of the
result of each iteration. Therefore, for the case
specified by a =2.073 A, & =3.5 A, and W =1.41 'K,
the transition temperature Tq is determined to be
3.78 'K.

For the case with W =0.846 'K and W =0.282 'K,
we obtain T~ =3.83 and 3.92 'K, respectively.
Within the limit of computational accuracy, the
dependence of the transition temperature on the
attractive well depth 8" is not conclusive from this
self-consistent-field method approach.

IO.

DetlM' —Il =0, (51)
I.T),= 2.5'K

where M' now also contains the terms resulting
from the decomposition of Eq. (50) into spherical
Bessel functions. The determinant on the left side
is a function of temperature ~ and the chemical
potential p, only. Therefore, T& and g can be found
by satisfying Eqs. (51}and (36) simultaneously.

For the numerical calculation, we start the iter-
ation with

5

S,(k) = (1 —n)a'k' —p, a'.
We define

q -=DetlM'- ll .

(52)

-5.

Both q and p [see Eq. (36)] are calculated with
different sets of (Tq, p, ) (Figs. 2 and 3, respective- FIG. 3. Dependence of g on T„and p.
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l.5

T& 3.78 K

Ip l

lP 2

lo3
C

IO-4

l
P-5

IO6

0.5

I

0.3 0.4 0.50.6 0.8

TZ( K)
2. -3. 4. 5

2.5 3.0

T„( K)

3,5 4.0 FIG. 5. Normalized normal fluid density p„/p vs T.

FEG. 4. All the points along the lines of p and g are
the values of Tz and p which satisfy Eqs. (36) and (53),
respectively. Therefore, the values at the intersection
4, 2, 3 satisfy Eqs. (36) and (53) simultaneously.

V. NORMAL FLUID DENSITY p~ AS A FUNCTION
OF TEMPERATURE

g

&a= (ufo'8= s, i&srB (54)

According to Tisza's, two-Quid model, ' the
amount of the normal fluid is zero at T =0 K, and
increases as temperature is increased. The tran-
sition temperature is, therefore, the temperature
at which all the superQuid part is depleted, that
is, p„/p=1. The temperature dependence is found

empirically by Andrikonikashvili. '
From Eq. (13), we have

by

T,' (1 —o. ')'~' (-g') '~' r(--,', - p/ksT, )
'

Assuming

@=0.8 (a=2.073 A), T~=5.2 'K,

we obtain

n'=0. 9 (a=2.156 A), T„'-2.3 'K,

which brings the value for T„closer to the one ob-
tained in Sec. III.

T„ is also found for different values of 8', and

plotted in Fig. 6. As TV is decreased to 0.282 'K,

T~ goes down to 4.0 K. This behavior indicates
that the stronger the attractive interactions be-
tween He atoms are, the harder it will be to excite
the particles out of the pair condensed state.

Using the energy spectrum at T = 0 as an approxi-
mation, p„can be calculated numerically at tem-
perature T ~ T„. The numerical calculation has
been performed i~ Ref. 17 and is used here to cal-
culate the curve p„T with a specified attractive
well depth W. The result is plotted in Fig. 5.
Qualitatively, it is similar to the experimental
curve, except the change of slope is too small to
be noticeable in our case, where as experimen-
tally it is very clear. Due to the lack of a suffi-
cient roton dip in the energy spectrum E~, T~
found from p~/p= 1 is 5.2 'K, much larger than the
experimental value 2.17 'K. This numerical dis-
crepancy is also partially due to our choice of the
core radius a =2.073 A in the calculation of E„, in-
stead of 2.17 A as discussed previously in Sec. III.
From Eq. (48), we can see that the change of T~ as
a function of core size can be estimated roughly

VI. RESPONSE TO EXTERNAL PERTURBATION

hC
0

I-

4

W (Dimensionless)

FIG. 6. T~ vs attractive well depth tT'.

In this section we shall study the responses of
our system to an external perturbation. To be
able to pursue this task we must first separate our
eigenfunction of the unperturbed Hamiltonian H
given by Eq. (17) into a normal and a superfluid
component. Before doing that, let us investigate
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Eq. (31). We have

Q '~ [(a2~+ b2~) &n,*-n;&+ bm& ]= p . (56)

According to Landau'~ the normal component is
defined by

v;(x)

(„-),( )

0

0

(67)

p„=n ' &nfl;&. (57) and

Hence we can obtain

p, =f1 '+ (2bs&~;~;&+ b';) . (58)

Let us denote the field operator as a four-com-
ponent operator

0

c-rx) =N-S 0
P v- (x)

v (x)

~ (q
t'tto (x)~

k tt"(x) &

(58) where with Eq. (18)

where the superscripts N and S denote the normal
and superfluid component, respectively, such that
g, (x) and $g(x) are each a two-component operator
given by

( v(x);
p (-V p(x)o. p)

2 9 2
N =a +5

P P P '

Both C'z(x) and 4'z(x) are eigenfunctions of the
4 x 4 Hamiltonian

( ff 0)
&0 aj

(68}

(68}

(eo}

With these definitions we obtain

&|t'0rx)korx)& = &40'rx)40 rx)+ yg"rx)40 (x)& (61)

It is now easy to study the corrections to 4' (x}
S P

and @'~(x}if we have an external perturbation H,

(a,"(t} o

& o If,'(t))
Because of the block diagonal form of (70) and
since C'p(x) form a complete orthonormal set, we
can express the perturbed wave functions C'& (x, t)
and C'~z (x, t) in the following form

(62)

and

From Eqs. (60}, (61), (57), and (58}we deduce

c-', (r) =f,(p)/r, (p)
and

NC'- (x, t}=@[(x)+QApk(t)@f(x) (71)

~p(7') = [2bpfr(p) + b
p

1/I', (p),

where fr(p) is the Bose distribution

fr(p) =1/(e'&" '-1)
Using the notation [see Eq. (17)j

t' b —p, -S, (x)~

(S,*rx) -b + p, J

(68)

(64)

(65)

gt
4'p (x, t) =@p(x)+Q Bp-„(t)@f(x),

where

P

(72)

(73)

we have for the unperturbed system

(66)
- ( v-, rx)~ t'v;rx})

( vp rx)j (v~ (x)f

We can construct a complete set of orthonormal
functions

0

-Ev"(xw V)

As for an application of the Bogoliubov equations
derived for the normal and superfluid components,
we shall consider the velocity flow of the two com-
ponents, respectively, such that

~g (-~v" Qx V
(74)

o
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and

~-&v'(x) Var' =

o -iv (x) V)
(V5)

energy of the system given by

ET — d's x Hz x

=-,'Q[p~ (v )'+p„(v")'] . (76)

In constructing the perturbation Hi, we have
assumed that there is a net translational kinetic

A. pk and B&k can now be obtained explicitly, we
have

&-« =[p v"(p-k)(~«+b«) '"(u-+b-) "/(E- -E«)l(u«s-+b«b-)

&-« =lp v'(p-k)(s«+b«) '"(~-+b-) '/(&- —E«)](~«s-+b«b-).
(77)

The current operator of our system is given by

J(x) = »» (g() (x)&(I)()(x)—[Vg() (x)] g() Qx). (78)

Applying E(ls. (59), (60), (67), (V1), and (72) it is straightforward to obtain the Fourier transform of J(x)

J(i) =J"(i) +J'(i), (V9)

J (T) Cquqsq+TAq q+[ & ((1 +I }(rq(rq +Cqb q q TAq q+] &+ ((I+i)Q qo( . q
q q

v

+CqA q q T ~ +q T+qcfqQq q +Cq+ q q T + ~ q+T~ qQ qQ q q (so)

and for J ((I) we just need to exchange C» with D„'.
Hence, for the persistent current components we
take the thermal-averages of J (0}and J (0)

(0 (0)) =lim P 0([v (-. 0) k]ll (k 0))fv(k)

(81)

and

(Jv(0)) =limg t)([v (-0)'k[k

x[2f (k)b +b ].
vk' 0'0))

(s2)

(0;, (0)) =.-"g'(0",„')),(0),
k

(0;, (0))=.-g'(0 ';, )-', ('," -i)
x [1+2fr(k)] .

(88)

(84)

For low temperature T-O, we can approximate
Ek by

EI,= Ck.

Thus,

(85)

Investigating E(ls. (81) and (82) we observe that the
perpendicular components of J"(0) to v" and J (0)
to v vanish and the parallel components are al-
ways in the same direction as the flow velocities
v~ and vs, respectively, and are given by

lim(JP)(0)& =v"
T~ Q

(ss)

Equation (86) is in agreement with (67.2) given in
Ref. 34, except for a factor of ~." On the other
hand,

lim(J~ (0)) =v~ [I —(p. /C')K(kT)'], (SV)

where

l=g'(0 '")—'(""'-i),
g2 (ss)

f (x) = I/(e" —1).
We would like to point out here that our results

given by E(ls. (88) and (84) are in fact quite in-
structive. At exactly zero temperature we see that
the total current is given by the superfluid compo-
nent alone and I is simply the average value of the
momentum of all the particles over the sound
velocity amplitude. But as temperature T sur-
passes Tq, the superfluid current component van-
ishes as S,(k) vanishes and the current is purely
normal in character.

In discussing the temperature dependence of the
superfluid current component near zero tempera-
ture, we must bear in mind that the chemical
potential, p. i~self is also temperature dependent
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such that p~(T) +p„(T) is kept temperature indepen-
dent. Therefore the constant I we have in Eq. (88)
is actually temperature dependent too.

VII. CONCLUSION

Based on the hard-sphere model we calculated
the transition temperature Tq, the normal fluid
density p„(T) and the persistent super- and nor-
mal-current components S and J" in the presence
of an external perturbation. Using the onset of
off-diagonal long-range order as the criterion for
the occurrence of Tz, our model, which contains
the diameter a as a sole parameter, gives rise to
'&), =2.3 'K in remarkably good agreement with the
experimental value of 2.17'K. The choice of
diameter a =2.17 A agrees with the best fit of the
excitation spectrum resulting from this model.
Such a choice of diameter is also compatible with
inelastic neutron scattering data. For increasing
diameter a, corresponding to increasing density
of the system, &q decreases in qualitative agree-
ment with the experiment.

As far as the numerical calculations of p~(T)
are concerned, 'we found that our results only

exhibit some qualitative features of the experi-
mental curve p„/p vs T. Equation (54) reveals
immediately that the absence of a sufficiently
strong roton dip in the calculation of the excitation
spectrum E„adeficiency that can be traced back
to the pair approximation, "is the origin for this
lack of a more quantitative agreement. The calcu-
lation of the super and normal current components
is based on strict particle conservation [Eqs. (56)-
(58)]. If the current density were to be expressed
as

j(T) ~~NpN f8p8 (89)

where p~ and p" are defined by Eqs. (57) and (58),
instead of 67.3 (Ref. 34), then it would follow that
the temperature dependence of J" and J are the
same as p" and p . However, this is not the case,
since S" is not proportional to v p„. p" is propor-
tional to T' where as J" is proportional to &4.

Therefore Eq. (89) is not consistent with the par-
ticle-conservation equation (56). We must there-
fore be very careful as to our interpretation of ex-
perimental results obtained from current measure-
ments.

*Part of this paper was submitted by Lin-Ing Kung as
a Ph.D. thesis it the University of Kansas. Present
address: Institute of Nuclear Energy Research,
Atomic Energy Committee, Republic of China.
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