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Electron-yhonon coupling in the transition metals: Electronic aspects*
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The electron-phonon coupling parameter X may be written as the product of three factors: the Fermi-energy
density of states, N(EF), the Fermi-surface average of the electron-phonon interaction, (I'), and an
effective inverse lattice force constant 4. We have calculated (I ) and N(Ez) for 11 4d transition-metal
systems using the rigid muffin-tin approximation. We find a large but understandable variation in (I )
which is in good agreement with the empirical variation in (I ). (I ) varies approximately as the inverse
second power of the atomic volume and as the first power of the amount of I = 3 Fermi-energy state density
within the Wigner-Seitz cell. We discuss the implications of our findings in regard to the search for systems
with higher superconducting transition temperatures.

I. INTRODUCTION

The primary determinant of the superconducting
transition temperature T, is the electron-phonon
coupling parameter X. It is therefore of consider-
able importance to attempt to predict in a qualita-
tive way from first principles how X varies from
one material to another. Qf special interest in
this regard are the transition metals, their alloys,
and their compounds for it is in these systems
that the highest transition temperatures are found.
It is probably not coincidental that these are, strong
scattering systems. Their electronic structure
cannot be usefully viewed in terms of weakly per-
turbed free-electron bands. This last fact has

. greatly impeded our progress in understanding
electron-phonon coupling in these systems.

In this paper we attempt to sort out some of the
factors which strongly affect X. We concentrate
our attention on the transition metals. Qur ob-
jective is to understand the variation of X with Z,
across the transition-metal series as shown in
Fig. 1. These X values were obtained empirically
from McMillan's formula which relates X to T„'

1.04(1+x)
1.2 ~ x- u'(1+0.62')) '

using experimen. tal values of T„reasonable reli-
able estimates of the logarithmically averaged
phonon frequency &„,introduced by Allen and
Dynes' and a value of the electron-electron Cou-
lomb pseudopotential, '

jL(,*, equal to 0.13.
We also show in Fig. 1 the variation of the elec-

tronic density of states at the Fermi energy N(E~).
It is not surprising that much of the variation in
X is related to changes in the density of states
since in the BCS model X=N(E~)V, where V is a
Fermi-surface average of an effective interaction
energy between the electrons due to the exchange
of phonons. The variation of N(E~) does not ex-

plain the entire variation of X, however, as is
especially evident at the ends of the series where
X is small in spite of a high density of states.

McMillan' showed that X may be written as the
product of two factors, X=g4. The first factor g
measures the response of the electrons at the
Fermi energy to a potential fluctuation caused by
the displacement of an atom. It depends directly
only upon the electronic structure at t'. .'-;e Fermi
energy. The second factor 4 measures the ease
with which an atom can be displaced. It is equal
to an effective inverse force constant or to
(M(ar')) ', where M is the atomic mass and (v') is
a proper average square phonon frequency.

We shall concentrate our attention upon calcu-
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FIG. 1. Variation of electron-phonon coupling parame-
ter X and of Fermi-energy density of states across the
transition-metal series.
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lating q, the electronic component of A. , and esti-
mate the yhonon component 4 from experiment.
There are two reasons for taking this approach.
Firstly, we know qualitatively how the phonon
component of X varies across the transition-metal
series, whereas data on the electronic component
are very difficult to obtain directly from experi-
ment. Secondly, g is easier to cal.culate since it
depends mainly upon the Fermi-energy electronic
structure whereas (~') depends in a complicated
way on the electronic structure at all energies.

McMillan obtained empirical values of X using
Eq. (1.1) and measured values of T,. He combined
these values of X with estimates of 4 = (M(tu')) '
and then obtained empirical values of q for V, Nb,
Ta, Mo, and W. Examination of these results led
him to the conclusion that g is approximately a
constant in the transition metals. Our calculations,
however, indicate substantial variation in q (a fac-
tor of 6) as one crosses the transition-metal se-
ries and we bel. ieve that his observation of approx-
imately constant q is not a general result, but is
due to two facts. Firstly, systems with low g's
do not have measurable T,'s and hence empirical
g's are not calculable. On the other hand, transi-
tion-metal phases with very high q's appear to be
unstable and hence also do not yield empirical q's.

Since the work of McMillan, there has been a
substantial amount of work aimed at calcul. eting q
and explaining its variation or lact of variation
with Z.~" It will be easier to discuss the rela-
tionship of this work to the present paper after we
have presented our results and our interpretation
of them.

In a recent paper" it was shown that it is possi-
ble to evaluate g essentially exactly within the
rigid muffin-tin approximation and the usual ap-
proximations of band theory for the cubic elements.
In Sec. II we briefly review the formal results of
that payer. In Sec. III we present our results for
the electron-phonon interaction for the 4d transi-
tion metals. In Sec. IV we discuss our results

and compare them with experiment and previous
calculations. We also give our view on the types
of systems that are likely to have high transition
temperatures.

co + co d(d, (2.1)

n (co)F(~)d&, (2.2)

(d Q I' d. (2.3)

n'(&o) is a frequency- dependent electron-phonon
coupling parameter and F(&a&) is the phonon den-
sity of states. (~') clearly depends upon the func-
tional form of n'(&u) which is not known very well
for the transition metals. We do know, however,
that in the limit of &u -0, n'((u) - constant. We also
know that if the phonon mediated electron-electron
interaction takes place primarily via a process in
which an electron scatters off an ion. causing that
same ion to move this potential fluctuation scat-
tering a second electron that ~' is proportional to
1/to. " Thus it is probably true that

1
(0 Fd(d ((co ) & (dF de) co-1I dh)

For consistency with previous work we will use
the a'= constant approximation, however, it should
be remembered that this is probably an upper
limit for (a').

q as defined in Eq. (2.2) is rigorously given (in
atomic units) by

II. q FOR ELEMENTS WITH CUBIC SYMMETRY

McMillan has shown that an approximate separa-
tion of the electron-phonon coupling parameters
into electronic and primarily phononic contribu-
tions can be achieved by writing X =7i/M(~') where
X, ri, and (& ) have the following definitions in
terms of the Eliashberg function n'(+)F(ur):

02

(2n) 'N(E ~)
3k d k' d r d r'&Vr ~ &'Vr' „* r „, r ~

r' qr' 6 E~-E~ 6 E~, —E~, 2 4

where 0 is the volume of a Wigner-Seitz cell,
N(E~) is the Fermi energy density of states of one
spin, rP~(r) is a Bloch vector, and u ~ VV is the
change in crystal potential when one nucleus suffers
an infinitesimal displacement u, the other nuclei
being held fixed.

A very important aspect of the electron-phonon
problem is the understanding of the quantity &V
which enters (2.4). In this paper we shall employ

the rigid muffin-tin approximation of Gaspari and
Gyorffy. ' In the rigid muffin-tin approximation one
assumes that the total self-consistent change in
crystal potential when one nucleus is moved is
given. by the gradient of the usual band-theory po-
tential. We have shown'~ in calculations on Nb
that the rigid muffin-tin approximation result for
the matrix elements of &V is approximately the
same as that obtained by assuming t;hat the charge



ELECTRON-PHONON COUPLING IN THE TRANSITION. . . 5269

density in the solid is a linear superposition of
atomic charge densities. This has been a very
useful approximation for generating band- theory
potentials. Its validity has not been extensively
tested, however, for generating potential changes
due to atomic displacements.

Equation (2.4) can be rewritten in terms of the
Fermi energy density matrix

0
p(1 r Ey')

( p
k 6(E~- E~))g(r) P~ (r'),

(2.6)

V rr(z„)' =fd rfer' vV(r) vV'(r')

"p(r, r'; & )p(r', r; & ) . (2.6)

The Fermi-energy density matrix can be expanded
in terms of radial wave functions R,(r), and cubic
harmonics K',„(r), where f labels the irreducible
representation, p, is the row of that irreducible
representation, and l is the orbital quantum num-
ber:

p(r, r', Ez) = g T'„,R,(r)R, ,(r')

X &'i «'i ~'
~ (2. 1)

The central results of Ref. 12 are firstly, an
expression for q is terms of the coefficients Tfg„
and the radial wave function potential gradient ma-
trix elements

VI) g., = r'dr R, (r)
dV

(2.8)

and secondly, the description of an efficient tech-
nique for evaluating these coefficients. The ex-
pression for g for cubic systems having small
phase shifts for l & 2 is

g=2N(E&) P (l+1)Ts& rr) ~ srx~s, &vt
i=Op ly 2

where

25e 2 12
00 00& 11 ll & 22 5 22 +5 22&

33 33+ 33+ 33 ~

(2.9)

(2.10)

Results of a calculation of g for Nb were presented
in Ref. 12. ln the following section we present
results for nine other cubic 4d transition. metal
systems.

The final term in Eq. (2.9) differs by a sign from
Eq. (2.26) of Hef. 12. Table II and Eq. (2.23) of
Ref. 12 are correct, however, a factor of i'3 '4

was mistakenly neglected in going from Eq. (2.23)
to Eq. (2.25). The effect of this sign error on the
final value of q or (I') is only a few percent in
most cases.

III. CALCULATED AND EMPIRICAL VALUES OF (I2&

A. Calculated values of &I &

Table I gives a summary of the systems on
which we report in this paper. We have performed
Korringa-Kohn-Hostocker (KKH) constant-energy
searches of the type described in Ref. 12 for the
listed potentials and energies. All potentials were
constructed by the standard non-self-consistent
prescription of overlapping neutral-atom charge
densities. An exchange multiplier of 1.0 and a 5s'
atomic configuration were used for all of the po-
tentials except for Y and Zr where a 5s' config-
uration was used. It was shown in Ref. 12 that our
Nb potential has Fermi-energy properties which
hardly differ from those of a potential generated
from the self-consistent x- n technique.

All calculations are for cubic systems even
though the stable low-temperature phase of Y, Zr,
Tc, and Ru is hcp. This is primarily for conven-
ience. The expression for g is much more corn-
plicated for hcp systems involving 19 independent
density-matrix coefficients. The band-structure
calculation also becomes substantially more ex-
pensive for two atom per unit cell. Hopefully the
average electron-phonon interaction, (I') defined
by (I') = q/N(Er) will -not be too phase dependent.
In any event it is interesting and informative to
follow the behavior of 7i, or better, (I') over an
extensive range of Z for a single phase. Accord-
ingly we have performed calculations on Y, Zr,
Nb, Mo, Tc, and Ru assuming the bcc phase. Two
additional constant-energy searches were per-
formed for Nb. at energies above and below the
Fermi energy in order to investigate in a rigid
band picture how q changes upon alloying. Cal-
culations were also performed on the fcc phases
of Ru, Rh, and Pd. The bvo calculations on Ru
were performed to give an idea of how much
(I') depends on phase. In.all cases except for the
extra Nb calculations the lattice parameter is
chosen to give the observed volume per atom.

In Table I we also give the phase shifts at the
energy for which the constant energy search was
performed. 50 and 5, are both negative for all the
systems shown. This indicates that the potential
is repulsive for s and P electrons which are re-
pelled from the ionic core by orthogonality re-
quirements. This effect is diminished for I'd
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1 ~ R,(r)R, ,(r') r~~, (E)
p r, r', E) = ——Im

v ~~, sin5, sin5, ,

x I', (r) y, , (r ) . (3.2)

Qsz in Eq. (3.1) indicates the volume of the Bril-
louin zone and we have used L to denote both the
orbital quantum l and the azimuthal quantum num-
ber m. t(E) is the scattering operator for scat-
tering off a single potential and G'(E, k) is the
KKB structure constant matrix. The numbers in
the first eight rows of Table II correspond essen-
tially to an evaluation of the imaginary part of
7». in a cubic harmonic basis. The single scat-
terer value comes from expanding Eq. (3.1) in
powers of t and keeping only the first term

r' ~, =t~, (E)=(Er) e' sin5, 5„,5 (3.3)

because the ionic core is smaller and more tightly
bound. The l = 3 phase shift is essentially neg-
ligible for all of the energies and potentials. The
l = 2 phase shift on the other hand increases from
0.47 to nearly w as we cross the transition metal
series. Considered i~dividually as a function of
energy, 5,(E) for each of the potentials would show
the resonant behavior characteristic of transition
metals rising rapidly from a small value to a
value of approximately m. This behavior is some-
what distorted in Table I where we list 6, as a
function of Z. This distortion is due to the fact
that the width of the resonance depends upon the
atomic separations and upon the relative positions
of the resonant energy [at which 5,(E) =-, n] and the
bottom of the s band.

Table II lists the coefficients of the Fermi-
energy density matrix defined in Eq. (2.7). The
radial wave functions in (2.7) are normalized so
that R,(r) =j, cos5, —n, sin5, for r greater than the
muffin-tin radius. It is probably easiest to under-
stand the trends in these coefficients by comparing
,them with the single scatterer value, (E~)' '/v,
given in the last row. As shown by Gyorffy" the
Fermi-energy density matrix may be written. in
terms of the scattering path operator ~», defined
by

d'k([t(~s) —G'(k, E) j g~~. , (3.1)
BZ

Q

8
8

K

g& @
O

~~
at C7 g)

Q
cd

~ ~

A
N

0
M
cd
A

cu co
CQ ~ ~ CQ

Thus in. the single scatter approximation Tf
—5(&.(E~) /v.

Consider first the d coefficients, t =22I'», and
t =22I"„. If we take a weighted average of these
coefficients and compare with (Ez)' '/v we find
that the effect of multiple scattering effects is to
decrease the d density of states for Zr, Nb, and
Mo, and to increase it for Y, Tc, Bu, Bh, and Pd.
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TABLE II. Density matrix expansion coefficients T&&, in atomic units (inverse Bohr radii),

Nb (f ) Nb (2) Nb (3) Mo Tc Ru(bcc) Ru(fcc)

0 0 I'(
r„

2 2 I2p
2 2

3 3
3 3 I'»
3 3 I'2.

r„
(g~)' /x

0.027
0.449
0.470
0.183
2.035
0.408
0.186
0.239
0.1864

0.120
0.569
0.201
0.0762
1.785
0.602
0.802
0.157
0.2190

0.316
0.948
0.252
0.108
2.448
0.753
0.377
0.136
0.2494

0.223
0.727
0.2071
0.0739
1.657
0.742
1.222
0.090
0.2512

0.107
0.457
0.0878
0.0357
0.590
0.513
0.659
0.044
0.2576

0.063
0.278
0.1282
0.0860
0.608
0.626
0.741

-0.056
0.2736

0.110
0.227
0.486
0.719
1.177
2.072
1.518

-0.358
0.2631

0.060
0.139
0.5356
1 .7737
0.614
1,311
1.834

-0.262
0.2673

0.098
0.229
0.3186
f .0422
1.999
0.479
0.192

-0.093
0.2608

0.087
0.124
f .0486
1.1079
2.230
0.291
0.136

-0.080
0.2416

0.085
0.080
2.5234
0.9911
1.946
0.173
0.118

-0.049
0.2164

We expect this because we know that. multiple scat-
tering effects broaden the relatively narrow d reso-
nance into the full d band. Thus Pd has a Fermi
energy which falls well above its narrow l =2 re-
sonance. For a single scatterer the d density of
states (= (I/m)d6, (E)/dE

~ s s ) would be very small
at that energy. The true band-theory density of
states is known to be quite high since the fcc tran-
sition metal density of states curves tend to have
a peak near the upper hand edge —hence the factor
of 12 enhancement of the d density matrix coef-
ficient for Pd. For Mo on the other hand the band-
theory density of states is known to be low while
the single scatterer density of states will be high
due to the Mo Fermi energy falling near the reso-
nant energy.

The l =0 density matrix coefficient is generally
less than. its single scatterer value. This is prob-
ably due in part to a hybridization effect which
expels s electrons from the d bands. This effect
is especially pronounced near the ends of the
series for Y and for Ru, Rh, and Pd.

The P coefficients are strongly enhanced over
their single scatterer values for systems to the
left of Mo. For the systems to the right of Mo,
T,", is less than its single scatterer value. The
l =3 density of states is strongly enhanced over
its single scatterer value for all systems.

This enhancement of the f-like density of states
is a crucial point in understanding our results on
the strength of the electron-phonon interaction.

Because of the potential gradient in the electron-
phonon matrix elements there is an angular mo-
mentum selection rule. / must change by + 1 when
an electron scatters off of a potential fluctuation
caused by a lattice vibration. For transition
metals whose Fermi-energy wave functions have
primarily l = 2 character the most important pro-
cesses contributing to the electron-phonon. coup-
ling are those which involve scattering between
d and f, or d and P states. In fact our calculations
indicate that d —f scattering is the most impor-
tant. It follows that the density of f-like states
at the Fermi energy is a very important quantity
for understanding superconductivity in the transi-
tion metals.

Table III lists the integrals over the Wigner-
Seitz cell which are necessary to calculate the
Fermi-energy density of states

p«, = d're, ', r Ei" i r +» +r ~ 3 4

Thus from Eq. (2.7) we have

N(E~) = Q N~„, (E~),

where

t
Nii (Ez)=&ii &ri ~ ~

is the contribution to the Fermi-energy den. sity of
states arising from irreducible representation t
and angular momenta l and l'. The partial Fermi-

TABLE III. Cellular integralsof radialwavefunctions p» in atomicunits. Entries inlastrowhavebeenmultiplied by 2.

Nb(f) Nb(2) - Nb(3) Mo Tc Ru(bcc) Ru(fcc) Rh

0 0
1

2 2

2 2
3 3
3 3
3 3
1 3

4.271
I (5 5 ~ 88f
I'25' 25.993

18 ~ 590
0.1627

I (5 0.1620
0.0299

I'g5 0.3117

2.444
3.522

33.098
23.330
0.143
0.143
0.027
0.2284

1.6245
2.4915

29.5143
20.6282
0.1416
0.1409
0.0268
0.1901

1.6128
2.5002

29.824
20.824
0.f469
0.1462
0.0278
0.1934

1.5710
2.5270

28.6568
19.8792
0.1669
0.1661
0.3179
0.20512

1.3321
2.2151

18.3506
12.4636
0.1550
0.1542
0.2971
0.2406

1.3870
2.1564

1 1.5068
7.7555
0.1021
0.1017
0.0193
0.1491

1.3666
2.1604
8.3160
5.5793
0.0959
0.0954
0.0f 8f.
0.1438

1.4239
2.1964
9.0618
6.0609
0.0625
0.1005
0.0260
0.1366

1.7189
2.4334
5.6092
3.7436
0.0420
0.0686
0.1759
0.1203

2.3196
, 2.9013

4.7296
3.1576
0.0273
0.0455
0.0115
0.1077
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TABLE IV. Density of states decomposed into contributions from different angular momenta and symmetries N&&,

(states of one spin per rydberg).

Nb (1) Nb(2) Nb (3) Mo Tc Ru(bcc) Ru(fcc)

0 0 I'(
1
2 2 125,
2 2 1(2
3 3 I'25

3 3 I'(5
3 3 12.

3
Total

/ fo
ff
f2
f3

+Out/~ tota1
d d

0.116
2.641

12.222
3.407
0.331
0.066
0.006
0.074

18.863
0.006
0.140
0.829
0.021
0.152:

0.293
2.004
6.653
1.778
0.255
0.086
0.022
0.036

11.127
0.026
0.180
0.758
0.033
0.123

0.513
2.363
7.437
2.222
0.347
0.106
0.010
0.026

13.024
0.039
0.181
0.742
0.036

0.360
1.818
6.176
1.539
0.243
0.108
0.034
0.018

10 ~ 296
0.035
0.177
0.749
0.037
0.106

0.168
1.156
2.515
0.710
0.098
0.085
0.021
0.009
4.762
0.035
0.243
0.677
0.043

0.084
0.616
2.353
1.072
0.094
0.097
0.022

—0.013
4.325
0.019
0.142
0.792
0.049
O. 058

0.153
0.490
5.598
5.578
0.120
0.211
0.029

—0.053
12.126
0.013 '

0.040
0.922
0.030
0.030

0.082
0.300
4.454
9.896
0.060
0.125
0.033

-0.038
14.912
0.006
0.020,
0.962
0.0146
0.020

0.139
0.503
2.887
6.317
0.125
0.043
0.005

—0.013
10.006

0 ~ 014
0.050
0.920
0.0173
0.015

0.149
0.302
5.882
4.148
0.094
0.020
O. 002

-0.010
10.587
0.014
0.029
0.947
0.011
0.005

0.196
0.231

11.935
3.130
0.0531
0.0079
0.0014

—0.0053
15.549
0.013
0.015
0.969
0.004
0.0025

energy state densities N'», are listed in Table IV
together with the fraction of the total density of
states f, that is s, P, d-, or f-like. The P frac-
tion f, is sizeable in the first half of the series, in-
creasing from 14% for Y to 24/o for a NbMo alloy
then falling off rapidly for Tc. The f fraction is
al.so sizable in the first half of the series increas-
ing with Z, reaching a maximum of nearly 5 jp for
Mo and then decreasing rapidly for Tc and Hu.
Note that f, and f, are both extremely small for Pd.

We believe that the variation of f, can be partly
understood in terms of the tight-binding model. It
should be borne in mind that the full electronic
state density within a, given Wigner-Seitz cell is,
in our formalism, expanded about the center of
that cell. Thus if one wants to think in terms of
tight-binding orbitals he must remember that an
orbital which has a tail extending into a neighboring
site will yield a contribution. to the state density
at that site. Furthermore a d orbital tail when ex-
panded about a neighboring site will yield a, non-e-
state density. The rapid decrease in f, near the
end of the transition metal series is due to the in-
creased localization of the dorbitals. For Pd
there remains hardly any. d orbital "tail" which
overlaps into the next cell. The increase in local-
ization of the d orbitals is shown in Table IV where
we list the ratio of the d density of states within
the muffin-tin to the total d density of states,
~OO2 j~202(21

d

This argument leaves unexplained, however, the
rise in f, seen for Y through Mo. Apparently the
tails of the d orbitals of Y, for example, do not
"like" to be expanded as f states about neighboring
sites. This is probably related to the r dependence
of the radial wave function. As is well known the
derivative of the radial wave function evaluated
at the muffin-tin. radius or slightly beyond is ap-
proximately zero at the bottom of the d band, while

= (2(r 1)y„r',R', (r,)( '),
it follows that Eq. (3.8) is equivalent to

QN, y, ( ') =0.

(3.9)

(3.10)

the radial wave function itself goes to zero in the
interstitial region for energies near the top of the
d band. In fact, since the density of states per unit
volume at the Fermi energy, p(r, r;Ez), must have
the full symmetry of the lattice it: follows that its
normal derivative must vanish at all points on the
surface of the Wigner-Seitz cell. One can show
for example by considering the normal derivative
in the [111]direction (where the muffin tins touch)
using the formulas for Z„K22„(x)A(;„(r)oi Ref. 12
that

r'.Q', r.+ 3T22R 5+T' 22 Y2

+ (3 117"+ 3 89T")R'y + 2 (21)'~'T"

x R,R, (y, + y, )+ = 0. (3.7)

where R, is evaluated at the cell boundary (muffin-
tin radius) and y, is the logarithmic derivative of
R, evaluated at the same radius. If, on the other
hand, one replaces the Wigner-Seitz cell by a
sphere it is clear that the following approximate
boundary condition must hold:

Q (2l + 1)T„R',y, = 0, (3.8)
1

where T» is a den. sity matrix coefficient averaged
over irreducible representations tsee Eq. (2.10)]
and B, and y, should be evaluated at some average
cell radius r,. Since the lth contribution to the
density of states is given by

S
N, = (2l+1)T» x'drR',

0
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TABLE V. Contributions to (I ) (units of 10 ~ a.u. ).
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Type of
contribution Nb(1) Nb(2) Nb(3) Mo Tc Ru(bcc) Ru(fcc)

(spherical)
SP
pd
d-f
(nonspher ical)
d-f
p-d-f
(I') (Total)
g(a.u. )

q ieV/A')

0.033
0.156
2.093
0.0395
1.92

0.144
0.312
7.148
0.0795
3.87

0.007 0.220
0.590 2.080
1.307 4.392

0.929
4.269
8.012

0.112
0.325

13.647
0.1777
8.64

0.811
4.205
9.068

0 ~ 350
0.331

14.765
0.1520
7.39

0.142
0.305

16.636
0.0792
3.85

0.072
-0.275
23.535
0.1018
4.95

0.245
0.558

18.86'6

0.2288
11.12

1.170 0.535 0.086
5.214, 3.760 0.779
9.805 19.443 17.198

0.018
0.380

10.277

-O.114
1.026

11.587
0.1728
8.40

0.098
0.875

13.069

—0.386
0.480

14.136
0.1414
6.87

0.193 0.004
*0.300 0.106
8.518 2.678

-0.020 0.110
0.012 —0, 050
9.003 2.848
0.0953 0.0443
4.63 2.15

If only l =2 and l =3 are kept in the sum Eq. (3.10)
one finds that

y, dy, /dE
N, y, dy, /dE

(3.11)

Now y, and dy, /dE do not change greatly as one
crosses the transition-metal series. The ratio
-y, (dy, /dE) ' changes considerably, however, .

going to zero at both the bottom and the top of the
d band. N, /N, given by Eq. (3.11) will therefore
follow the general trend of the values of f, given
in Table IV.

While we believe these arguments offer a quali-
tative explanation for the observed variation off,
we consider it to be very risky to use Eq. (3.11)
for quantitative calculations. The reason is that
the wave functions near the cell boundary contain
substantial contributions from / higher than 3.
Thus when we checked Eq. (3.7) for Nb, truncating
at l = 3, we found that it failed badly even though we
are confident that our coefficients, T~»„are con-
verged. The higher l components make a negligi-
ble contribution to the density of states and are
not important for superconductivity due to the
angular- momentum selection rule. They are,
however, necessary to satisfy the boundary con-
ditions at the surface of the Wigner-Seitz cell.

A. Contributions to &I )

As indicated by Eq. (2.9) there are five terms
which contribute to q or to (I') = q/N(E~) for mon-
atomic cubic systems. The first three terms are
contained in the Gaspari-Gyorffy formula' which
assumed spherical energy bands. The other two
terms may be lthought of as "nonspherical correct-
ions. "

In Table V we list the contributions to (I') from
Eq. (2.9). The coefficients T'», come from Table
II, the density-of-states values from Table IV
and the matrix elements V', „,from Table I since
in the rigid muffin-tin approximation Vf g

= sin(5, —0&,,). In all cases~the d-f (spherical) term is

the largest followed in most cases by the P-d term.
Note however, that in bcc Ru and fcc Pd the non-.

spherical terms are larger than the P-d term.
Qualitatively, however, the nonspherical correct-
ions do not appear to be of great importance. Only
for bcc Ru does their net contribution approach
10/o of the totaL The P-d terms are imporant for
Y, Zr, and Nb but essentially negligible for the
higher Z systems.

EMP IR I CA L

EMP I R I CAL (ALLOYS)

CALCULATED

I I I I I I

0.050—

0.025 g 0'r
/

& 0.020
0
E
O

0.0&5

cu

H

bcc ~

/.
0

0 ~~ gfcc
0.010— /w

CP
b/

0.005 — j
I I I I I I I

Y Zr Nb Mo Tc Ru Rh -Pd

FIG. 2. Empirical and calculated values of (I2), the
Fermi-surface average of the electron-phonon inter-
action. Open triangles are empirical values for ele-
ments (Table VQ. Open squares are empirical values
for Zrwb, NbMo, and MoRe alloys. Closed circles are
calculated values for cubic phases. The two calculated
points which represent Zrwb and NbMo alloys in a rigid
band picture were scaled according to (I2) cc 1/V2 to
allow for the effect of volume on (I2).

.B. Empirial values of &J )

Figure 2 shows the calculated values of (I')
together with empirical values. Empirical values
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TABLE VI. Empirical quantities related to 4d transition-metal superconductivity.

Y Nb Mo Tc Rh Pd

V, (K)
0D ('K)
8, (K)
((u'& '~2i'K)

co)og ( K)
(~2) 1/2/8

~i'/8c
O, /8,
y (mJ/mole K )

&(&&) (states/Ry)
M&(u'& (a.u. )
(I'& (~ u )

g (a.u. )

(o.oooe)
256
210
149
132

0.71
0.63
0.82

10.2
0.26

23.3
0.0722
0.00081
0.019

0.55
290
255
173
142

0.68
0.56
0.88
2.78
0.45
5.53
0.100
0.00814
0.045

9.22
277
288
195
161

0.68
0.56
1.04
7.8
0.97

11.41
0.129
0.011
0.125

0.92
460
382
268
241

0.70
0.63
0.83
1.83
0.44
3.66
0.252
0.0303
0.111

7.86
454
(355)
245
223

(o.69)
(o.63)

,
0.78
4.30
0.78
6.96
0.218
0.0244
0.170

0.48
550
382

(264)
(229)

(0.69)
(o.eo)
0.69
3.1
0.41
6.33
0.258
0.0167
0.106

(0.0002)
500
346

(239)
(2O8)

(o.69)
(o.eo)
0.69
4.70
0.27

10.66
0.215
0.00544
0.058

270
290
200

(174)
O. 69

(o.eo)
1.07
9.4

(o.7)
15.9
0.156

of (I') require experimental estimates for T, ,
N(E~), &„,, (to'), and p, *. Our estimates for
these quantities are given in Table VI. Since
there is some un. certainty as to how best to ex-
tract the empirical quantities from the experi-
mental data we feel obliged to give an account of
how the numbers in Table VI were obtained.

1. Transition temperature

Superconducting transition temperatures can be
measured with satisfactory accuracy. Qur values
for T, are essentially the same as those quoted
by McMillan' except for Y and Rh. For Y our
value of T, (0.0006'K) was obtained by extrapolat-
ing the measured T,'s of Y-La alloys determined
by Satoh and Qhtsuka. " This value of T, when used
in Eg. (1.1) with p* = 0.13 and a value of v„, de-
termined from the measured phonon. spectrum
yields a value of X equal to 0.26 which is in good
agreement with the estimate of A. by Knapp and
Jones. ' They obtained X= 0.30+ 0.05 by extrapola-
ting the high-temperature electronic heat capacity
(which is not electron-phonon enhanced) to low
temperature arid comparing with the observed low-
temperature electronic specific heat coefficient.
This value is also in agreement with an extrapola-
tion based on the high-pressure data of Wittig. ""
The quoted value of T,= 0.002'K for Rh was ob-
tained from the work of Mota et al."who extra-
polated T, measurements on Rh-Ir and Rh-Qs
alloys.

2. Phonon frequencies

According to Allen and Dynes two characteristic
yhonon frequencies are required i.n order to de-
termine q or (I'), (&u') defined by Eq. (2.3) and
co„,defined by

1
log +„,= —log u.n'I' d —n'I' dc@ . (3.12)

Unfortunately there is little reliable information
about the va.riation of a' with &' for the transition
metals. The tunneling data of Shen" on Ta in-
dicates that Q.

' is approximately a constant whereas
the very recent tunneling data of Robinson. "and of
Bostock et al."on. Nb indicates that n' falls off sub-
stantially for the higher frequencies. The calcula-
tions of Harmon, "however, indicate that a' is ap-
proximately constant for Nb.

In the following we shall assume for consistency
and convenience that a'=constant in calculating wr
and (&u') . This approximation is probably accurate
to about 10/o for (~')'~'. It is probably also an
overestimate due to two effects. Firstly, as
pointed out by Appel and Kohn" it is probably not
unreasonable to suppose that the phonon mediated
electron-electron interaction is primarily a local
effect with both electrons interacting with the
same ion. This assumption leads to n'~1/~.
Secondly, in the transition metals with high T, 's,
(e.g. , Nb and Tc) one finds anomalous dips in the
phonon spectra. ' It is thought that these dips are
caused by the electron-phonon interaction. If this
is in fact the case it is reasonable to believe that
e' is anomalously large for the phonon modes
which show the dips. This correlation between
large n' and reduced (o would act to reduce (&o')
and &„g.

For Y, ' Zr, "Nb, "Mo,' Tc,"Pd, and ' Nb-Mo
solid- solution alloys the phonon spectrum has been
determined by inealstic neutron scattering. There
is also a limited amount of neutron-scattering data
on Ru. '~ For Y, Zr, Nb, and Mo, &o„,and (~')
were calculated by fitting a Born-Von Karman mo-
del dynamical matrix to the experimental phonon
spectra. " For Nb and Mo, these (~') values are
in good agreement with those obtained by Weber"
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using a shell model to fit the phonon spectra. Our
(~') and v„, values are, however, somewhat
higher than those quoted by Allen and Dynes. ((u')
for Pd was taken from Ref. 9 and ro„, estimated
as 0.87 ((o').

Although the phonon spectrum of technetium has
been measured, a force- constant fit is not yet
available so we estimated (~') and ~„,by the fol-
lowing procedure: we assume that the acoustic
modes have a Debye like density of states with a
maximum frequency of 331'K and that the optical-
mode frequencies are uniformly distributed between
192 and 331'K. These particular frequencies were
chosen to agree with the phonon measurements of
Smith. " The same procedure when applied to Y
turned out to be in error by only 5/o

For Ru and Rh, phonon spectra are not yet
available. For these elements we have es'timated
(&u') and +„,from characteristic phonon frequenc-
ies associated with specific-heat measurements.
It is traditiorial in reporting results of low-tem-
perature specific heat measurements to quote a
Debye temperature GD obtained by fitting the spec-
ific heat to the formula

C„=yT+ P T', (3.13)

where P is related to 8o through P= 12m'R/583D, If

being the gas constant. This procedure does not
yield a satisfactory measure of typical phonon
frequencies for two reasons. Firstly, Eq. (3.13)
does not apply until really low temperatures are
reached. In Nb for example the fit must be done
at temperatures less than 3 K.""' At these low
temperatures the second term in Eq. (3.13) is
quite small compared to the first so that it is dif-
ficult to get a precise measure of OD. The second
problem is that e~, even if obtained accurately, is
not a good measure of typical phonon frequencies,
but only of the very lowest ones. Thus when we
compare (~')'~' obtained from neutron scattering
to e~ we find that the ratio varies fr'om 0.57 to
0.71. There is a 25% difference in these ratios
which would translate into a 55/o difference if we
were comparing (v') values. The.8~ values in

Table VI were obtained from the compilation by
Heiniger et al. ' except for" Y and Tc."

It is possible to obtain a more reliable estimate
of (~') if specific heat measurements at higher
temperatures are available. In particular the
temPexature-dePendent Debye temperature de-
termined by setting the Debye specific heat func-
tion equal to the experimentally determined lattice
specific heat tends to a constant for temperatures
above about 3 of the Debye temperature. Values
of this quantity are available for all of the 4d tran-
sition metals except Tc (Refs. 37-43). We have
listed them in Table VI as 0,. For the cases where

we can compare, the ratio of (v')' ' to 8, is very
close to 0.69. Thus for Ru and Rh we have used
this ratio to calculate ((o') from the experimental
0,. We have also calculated &„,from 0™,for Ru,
Rh, and Pd by multiplying 0, by 0.60. There- seems
to be more variation in the ratio of ~„,to 0, than
in the ratio of (&o')'~' to 8,. Fortunately, empirical
values of q and (I') are rather insensitive to vari-
ations in &&«.

2 Empirical values of 'A and N(EF)

By using the listed values of T, and „, one can
calculate the exponent appearing in Eq. (1.1). In
order to calculate A. one must assume a value for

For want of better information we fol, low Mc-
Millan and use p,*=0.13 for all of the 4d transition
metals. The resultant values of X are given in

Table VI. Our empirical value for A. for Y is con-
sistent with the estimate of Knapp and Jones. "
Our estimates for X are generally slightly higher
than those of McMillan due to +„,/1. 2 being gen-
erally less than 8o/1. 45. For pd we do not cal-
culate an empirical value of A. since we do not
believe that Pd is a superconductor at any tem-
perature. Knapp and Jones have, however, ob-
tained a value for the electronic specific-heat en-
hancement of 0.7. This electronic specific-heat
enhancement is probably due at least partly to
persistent spin fluctuations. '~"

From the observed electronic specific heat co-
efficients' "' ' ' one can calculate the unenhanced
electronic specific-heat coefficient, y'=y/(1+ %),
and from it one can calculate the unenhanced or
band- theory Fermi-energy density of states. For
Mo, Yb, Rh, and Pd these empirical values of
N(E~) can be compared with our calculated values
in Table IV. The agreement is extremely good for
Rh and Pd and acceptable for Nb and Mo. For Nb
the calculated N(Ez) seems to be 10o/o too low
while for Mo it is about 18% too high. The empir-
ical density of states of Tc (6.94 states/Ry) is
about 13% higher than the value calculated by
Faulkner. 4' The empirical N(E~) value for Ru is
in good agreement with the calculation by Jepsen
et al. ,

"but the empirical value for Zr is about
20% lower than their calculated value.

4. Empirical values of &I~&

Ry multiplying the empirical values of & by (&')
and dividing by N(Ez) one may obtain empirical
values of (I') which are listed in Table VI and
plotted in Fig. 2. Note that (I') varies by a factor
of about 40, increasing rapidly from Y to Mo, and
then declining rapidly for higher Z. We have also
included in Fig. 2 empirical values of (I') de-
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termined by Weber for Nb-Mo alloys. Weber's
estimates of (I'.) for Nb and Mo disagree slightly
with our empirical values because we used ~„,/1. 2

rather than Oh/1. 45 as the pre-exponential factor
in the T, equation. (I') is also plotted for the
alloys Nbp 87Zrp y3p and Mo, „Re,„. For the
NbZr alloy, y and T, were obtained from the work
of Masuda et al."arid Heiniger et al."while the
phonon data were taken from the work of Waka-.

bayashi et al." For the MoRe alloy, y and T,
measurements of Morin and Maita" were used
while the phonon data were obtained from the work
of Smith. "

0.025

0.020

C
0.015

E0
0

0.010

0.005
Pd

Nb

Tc

Mo
0

HI. CONCLUSIONS AND DISCUSSION

A. Calculated and empirical values of V &

In general the agreement between the calculated
and empirical values of (I') is quite good consider-
ing the uncertainties in each. The principal un-
certainties in the calculated values of (I') arise
from the use of the rigid muffin-tin approximation
and our lack of knowledge of the phase dependence
of (I'). The existence of some phase dependence
is clear from our calculations on bcc and fcc Ru.
The principal uncertainties in the empirical val-
ues of (I') arise from uncertainties in ((u') and

One should also not rule out the possibility of
persistent spin fluctuations decreasing T, in Y,
Nb, and Rh. The existence of this effect seems to
be fairly well established in Pd.

If one chooses to view these calculations as a
test of the rigid muffin-tin approximation he has
to admit that the rigid muffin-tin approximation
agrees with the empirical data almost within "ex-
perimental" uncertainties. Consider Mo, for ex-
ample, the empirical value of (I') is 25/o higher
than the calculated value, but the two values can
be brought into agreement by a small downward
adjustment of p, * and a small upward adjustment
of (v'), both adjustments being well within exper-
imental uncertainties.

Nb is somewhat harder to bring into agreement.
Benneman and Garland" have suggested that p, *
for Nb should be 0.16 (including a small spin fluc-
tuation contribution). Vse of this value in calcu-
lating the empirical (I') would account for about
one-half of the observed discrepancy. It would
also reduce the discrepancy between the empirical
and calculated N(Ez) values and it would give
a larger value for A..

It is likely that much of the discrepancy between
the empirical and calculated values for (I') is due
to the ad Roc manner in which the rigid muffin- tin
approximation treats the problem of screening.
It is also likely, however, that theories which

I I I

0 1 2 3 4 5

10 f&/V (atomic units)

FIG. 3. Plot of (I2) showing approximate proportion-
ality tofa/V . f3 is the ratio of E = 3 Fermi-energy
density of states to total density of states. V is atomic
volume.

treat only the screening aspects of the electron-
phonon interaction while ignoring the more mun-
dane electronic structure aspects will fail when
applied to the transition metals. There is clearly
a need for improvement in the accuracy of the ex-
perimental numbers in order to provide a more
stringent test of the calculations. Most helpful
would be accurate determinations of p, * and (&').

The results for Y and, Rh are interesting. In
both cases the calculated (I') exceeds the empiri-
cal value. It has been suggested that persistent
spin fluctuations are responsible for the absence
of observable superconductivity in these elements
as well as in Pd. ' " Our calculations do not rule
out a small spin fluctuation effect. They do indi-
cate however that the main reason for low T, 's in
these elements is their low values of (I'). Pd, for
example, is probably not a superconductor at any
temperature due to persistent spin fluctuations.
If, however, we calculate T, ignoring spin fluctua-
tion effects using our calculated value of (I') and
empirical values of N(E~) and (&u ) and p, *=0.13we
obtain A, = 0.29 and a value of T, of only 0.01 K. If
the mass enhancement of Pd is indeed 0.7 our cal-
culations would indicate that approximately one-
half of it results from persistent spin fluctuations.

B. Variation of &P)

Since both empirical and calculated values of
(I') have such a large variation (a factor of 40) as
one crosses the 4d transition-metal series com-
pared to M(+') (a factor of 4), and N(E~) (a factor
of 6), it is very important to understand the origin
of this variation. The variation in the calculated
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(I') = 6N(E ~) 'T» T» sin'(6, —5,) . (4 1)

However, T» and'T» are related to the l = 2 and
I =3 density of states, respectively, through

N, =5T„
~ws

r'R,'(r) dr (4.2)

values of (I') arises primarily from two effects.
The first effect is the rapid decrease in atomic
volume at the beginn. in.g of the transition-metal
series followed by the minimum which occurs for
Ru foBowed by a slight increase in volume for Rh
and a somewhat la.rger increase for Pd. We find
that (I') is roughly proportional to the inverse
second power of the atomic volume V. The second
important effect is the variation of f„ the fraction
of the Fermi-energy density of states arising from
states with f = 3. From Table IV we see that f,
decreases rapidly in the latter half of the series.
We find that (I') is roughly proportional to f,. The
dependence of (I') on f, and V is illustrated in Fig.
3 where we have plotted calculated values of (I')
versus f,/V'.

The simple dependence of (I') on f, and V may
seem improbable considering the complicated in-
tegrals of Eqs. (2.4)-(2.6). This result can be
understood in a qualitative way, however. Con-
sider the spherical d —f term in Eq. (2.9). Since
this is the most important term especially in the
latter half of the transition metal series we have
in the rigid muffin-tin approximation

6,(E) such that tan5, (E) = I'/(E„- E) it is easy to
show that d6, /dE = sin26, (E)/I'. Thus we have for
a resonant phase shift 5, that

sin S,(d ) fR'(r(r'dr=I'd (4.6)

3
~ I

ws I

"ws
r'R'(r) dr =10 'E'r'„s

0
(4.7)

It is the very small value of this integral com-
pared to the similar integral for the l = 1 radial
wave functions that causes d —f scattering to be
more important than d —p scattering. It is also
the strong volume dependence of this integral that
is primarily responsible for the volume depen-
dence of (I'). Combining Eqs. (4.4), (4.6), and
(4.7) we obtain a very rough estimate of (I'),

(I') =1.25 && 10'(f I'/E'~'V)f /V'

Evaluation of the quantity I'/E~~'V for the transi-
tion-metal systems considered here yields
I'/E' 'V=4&&10 ' so that

(4.8)

where I' is the width of the reson. ance. I and E~
vary with Z but not nearly so rapidly as sin'6, (E~).

The remaining factor in Eq. (4.4) is the cellular
integral of the l =3 radial wave functions

f,""sx'R,'(r) dr This factor has a very strong
volume dependence since R, (r) =j,(u Er) = (v Er)'/
105. Thus the integral may be roughly approxi-
mated as

and
(I') =5 x 10'f,f /V' (4.9)

N3 = VT33
WS

r'R', (~) d~, (4 3)

where r» is the signer-Seitz radius. Thus we
can write (I') in terms off, and f, as

which is in reasonably good agreement with the
slopes of the lines through the data points in Fig.
3. Although the above arguments are qualitatively
correct the strict proportionality of (I') tof, /V'

(I')=,,f,f, sin'(S S,) ( . r'R, d—rf r'R', dr)', .
0.3

I I I I I I I

~h~

y 2R2(y) d/ =Ef

dic

&E&

dE (4.5)

In fact, if We assume a resonance formula for

(4 4)
The origin of the linear dependence of (I') on f,

is obvious from Eq. (4.4), but it may still seem
surprising that there is not a strong dependence
on Z arising from the factor sin'(5, —6,) which is
strongly peaked near the center of the series. It
turns out that this dependence is roughly cancelled
by the integral of R,' in the denominator. ' Since
5, is generally negligible, consider the ratio
sin'6, /f R22(r)r'dr sin'5, w.ill have a resonance
behavior peaking where 6,(E~) =2m, but fr 'Ra2(r)dr
will show a similar behavior since for tightly
bound d electrons

Os2

O
O

O.I

I I

Zr Nb Mo Tc

I I I

Ru Rh Pd

Flo. 4. Plot of M(&u2) and of the unrenornialized
phonon frequencies MQ . values of MQ are somewhat
speculative. Also shown is (I2)/MQ2.
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observed in Fig. 3 is somewhat fortuitous since
for low Z, 1"/E'„~'V is less than 4 && l0 3 but this is
compensated by contributions from P d scatter-
ing.

Physically, the approximate proportionality of
(I') to f,/V' arises from the angular-momentum
selection rule and from the fact that a transition-
metal ion is a compact resonant scatterer. It
would be reassuring if we could check this result
experimentally. Two types of experiments would
be useful in their regard. To check on the volume
dependence of (I') it would be useful to have mea-
surements of T„y, and 9, under pressure. To
check on the dominance of d —f scattering it
wouM be useful to have extensive measurements
of the electron-phonon contribution to the phonon
linewidth. If our calculations are correct this
linewidth which measures the strength of the elec-
tron-phonon coupling should show peaks for those
q's which connect points on the Fermi surface
having large d- and large f state densit-ies.

C. Variation of (w2) and X

So far we have only discussed the electronic
component of the electron-phonon coupling param-
eter. We feel that the results illustrated in Fig. 2

justify some confidence that a basic understanding
of this quantity is emerging for the transition met-
als. There remains, however, the problem of
understanding the phononic component of X. Table
~ lists empirical values of ((o'). These are also
plotted in Fig. 4. At present it is not possible to
calculate phonon frequencies from first principles
for transition metals. We are forced therefore to
resort to a qualitative and somewhat speculative
discussion.

Most properties related to nonmagnetic transi-
tion-metal bondin. g when plotted versus Z follow a
rather smooth curve having a extrenum near Z = 6
or slightly beyond. This is generally interpreted
in terms of the filling of the d band. The lower d
orbitals are bonding in character and the upper
ones are antibonding although strictly speaking the
tran. sition from bonding to antibonding n.eed not
occur when the d band is exactly half-filled since
whether or not an additional d electron. contributes
a net bonding effect depends upon the position of
the Fermi energy relative to the d state of the
free atom among other things.

The average square phonon frequency ((u') does
not seem to follow a smooth curve, however.
M((u') for Nb and Tc is lower than the rather arbi-
trary smooth curve labeled MO' that we have
drawn. through the mean-square frequencies of the
other elements. Nb and Tc both have high super-
conducting transition temperatures and it is gen-

I

erally believed that there is a softening of the pho-
nons due to the stronger electron-phonon inter-
action in these systems.

A qualitative explanation of the variation of A,

with Z in the transition-metal series can be con-
structed along the following lines. A. is the product
of three factors, N(E~), (I'), and (M(+')) '. (I')
has the variation shown in Fig. 2. The main origin
of this variation can be traced to the variation of
the volume per atom and to the l = 3 component of

' the Fermi-energy density of states. Some of this
variation is however canceBed out by a similar
variation of MQ' (Fig. 4). The variation of MQ'
with Z being caused by the progressive filling of
the d band. If we divide (I') by MQ' we get a curve
like the lower one of Fig. 4. In principle this
curve would describe the variation of X with Z if
all of the transition metals had the same Fermi-
energy density of states and the same phonon fre-
quency "renormalization. " The effect of the den-
sity of states seems to enter two ways. It enters
as a simple multiplicative factor and it also ap-
pears to be involved in. the phonon "renormaliza-
tion" which reduces 0' to (&u'). The connection be-
tween phonon "renormalization" and the Fermi-
energy density of states is not completely
straightforward however. When Zr is added to
Nb, T„A., and N(Ez) increase substantially. The
"renormalization" effect, however, does not seen
to be enhanced. It seems in fact that if one allows
for the expected softening due to having fewer d
electrons per atom that the phonon "renormaliza-
tion" is in fact decreased. "

There is a final piece of experimental evidence
which we believe supports our basic picture de-
scribing the variation of A, with Z. Collver and
Hammond have measured T,'s, of "amorphous"
transition-metal alloys. '4 These T,'s show much
less variation with Z than those for the crystalline
state. In addition, they have a single peak which
occurs between Mo and Tc. It is difficult to ana-
lyze these results in detail since nothing is known
about the Fermi-energy densities of states or pho-
non frequencies for these alloys. It is reasonable
to believe, however, that the primary effect of
destroying the crysta1. line order is to reduce the
structure in the density of states. The remaining
variation in X is due to (I')/M(tu') (or possibly
(I')/M(&')) and this quantity we would predict to
have a single maximum falling between Mo and Tc
in general agreement with the observed variation
lnT.

D. Relation of this work to some previous work

Many people have tried to systematize the varia-
tions in T, for the transition metals. We shall only
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comment on that work which is directly related to
our own. We have made extensive use of McMil-
lan's idea that X can be regarded as the product of
electronic and phononic factors. ' We disagree
with his conclusion that the electronic factor is
essentially constant, however. Table VI indicates
a factor of 6.5 difference between g for bcc Tc and

g for bcc Y. The empirical g's show an even
larger variation (a factor of 9). Nb and Mo, the
two 4d elements which McMillan considered, d0
have rather similar values for q (both calculated
and empirical). This is due to two compensating
effects. (I') increases rapidly in going from Nb

to Mo but this is offset by a decrease in N(Ez).
This compensation does not however, appear to be
a general effect.

Hopfield4 was the first to point out the impor-
tance of the angular momentum selection rule due

to the potential gradient in the electron-phonon in-
teraction. Hayfield obtained the result

dV 'N»(E~)N„(Ey)
dX N(E )M(&')

(4.10)

where dV/dX is a potential gradient and N», N„,
and N are the P, d, and total Fermi-energy den-
sities of states. Hopfield considered N(E~) to be
approximately equal to N~(Ez), and N»(E~) to be
approximately a constant independent of Z, thus
he obtained

(4.11)

We believe that Hopfield erred in two details.
Firstly, he did not anticipate the imyortance of
d f scattering. Secondly, he did not realize that
for the type of calculation. he envisioned the entire
density of states within a cell must be expanded
about the center of that cell. Thus, the amount of

P or f density of states at the Fermi energy de-
pends strongly on the number and nature of the d
states on the neighboring sites.

Qyorffy, Qaspari, and Evans" introduced the
idea of calculating the electron-phonon matrix ele-
ments in the rigid muffin-tin approximation and
showed that they could be written in a closed form
involving the phase shifts. Their original esti-
mates of X, however, suffer from their having had

to approximate N, for /+2 by its single scatterer
value. This approximation can be in error by al-
most an. order of magnitude.

Klein, Papaconstantopoulos, and Boyer' ' have

performed a number of cal.culations on transition
metals and transition-metal compounds using the
Gaspari-Gyorffy theory. Their calculations do .

not include the donspherical terms of Eq. (2.9),
but these terms are rather small for the cubic
elements. Our results for q are in good agree-

ment with theirs for Nb, but somewhat lower for
pd.

Brinboim and Qutfreund'"" have tried a differ-
ent apporach to calculating A. for the transition
metals. Their work is based on that of Appel and
Kohn. " Aypel and Kohn showed that one couM
avoid the Fermi surface integrals that we have
performed if he is willing to make the "contact"
approximation. The contact approximation is
equivalent to setting certain Fermi-surface inte-
grals to zero, i.e. , one assumes that

dS» v 'e'"'""=N(E~)5(R„),
FS

(4.12)

where R„ is a lattice vector, and v~ is the magni-
tude of the Fermi velocity. We have evaluated
these integrals for R„not equal to zero and have
found them to be non-negligib'le. For Nb we esti-
mate that the "contact" approximation leads to an
underestimate of (I') of about a factor of 2.

Probably a more serious source of error in the
work of Qutfreund and Birnboim is the replace-
ment of the Wannier fun. ctions of Appel and Kohn

by rather arbitrary atomic wave functions. The
error associated with this approximation is diffi-
cult to estimate. We believe, however, that the
physical picture that emerges from the local ap-
proach is equivalent to the one which emerges
from the present work. In particular some read-
ers may prefer to think of the d f scattering
which arises in the KKR or augmented-plane-wave
picture in terms of a scattering between tight-
binding d orbitals sitting on neighboring sites.

One important, difference between our work and
that'of Brinhoim and Qutfreund is that we assume
the validity of the Bloch formulation of the elec-
tron-phonon in.teraction. " They abandoned the
Bloch formulation in favor of a tight-binding for-
mulation because the Bloch formulation appeared
to give a value of X an order of magnitude too
large. . We believe that the source of this discrep-
ancy lies not in the Bloch formulation of the elec-
tron-phonon interaction but in their other approxi-
mations.

The very recent work of pettifor" is quite in-
teresting. He has made calculations of q for the
4d transition metals following Qaspari and
Qyorffy. Some of his results are qualitatively
similar to those reported here. Pettifor avoids
any calculation of the energy bands and is able to
estimate the partial p and f densities of states by
means of an antiresonance formula for the P states
and an equation equivalent to Eq. (3.11) for the f
states. The Z dependence which he obtains for the
ratio N, /N, is qualitatively similar to that which
we obtain in the sense that he finds N, /N, to be
quite small for the higher Z members of the se-
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ries. Eq. (3.10) cannot be quantitative, however,
because of the neglect of the higher l components
of the radial wave functions. We find that Petti-
for's values of f, are larger than ours (except for
Mo) sometimes by a factor of almost 3. This
overestimate of N, /N, makes his values of q some-
what larger than ours. Pettifor reduces these val-
ues of g by means of arguments related to screen-
ing of the rigid muffin-tin matrix elements. A
similar reduction applied to our rigid muffin-tin
calculations would lead to somewhat poorer agree-
ment with the empirical values of (I') or q.

E. To obtain ahigh T,

Ultimately the theorist would like to be able to
predict new systems which have high supercon-
ducting transition temperatures and which are
stable (or at least metastable) at low temperature
and atmospheric pressure. Although we have
studied only a limited class of systems we offer
the following considerations concerning systems
involving transition metals which are likely to
have high T,'s.

The electron-phonon coupling parameter A. is the
product of three factors: (I'), N(E~), and
(M(v')) '. Clearly we want all three to be as large
as possible. This is not a trivial matter to accom-
plish, however, since a modification of the system
which leads to an increase in one of the factors
often causes a decrease in one of the others.

We have seen that (I'), in systems which have
primarily d el.ctrons at the Fermi energy depends
strongly on the amount of non-d (P or f) Fermi-
energy density of states and (especially if the
scattering is primarily d —f) on the volume per
atom. Thus to obtain a high value for (I') one
wants delocalized d orbitals and a small volume
yer atom. These two properties are usually as-
sociated with strong bonding which generally im-
plies a high value of (&u'). Thus the factor of 40
variation in (I') across the 4-d series seen in Fig.
3 is partly offset by the variation in M(+') or MQ'

(Fig. 4). In addition, strong bonding tends to re-
duce N(Er) by spreading out the d band.

From Fig. 4 we can see that the increase in (I')
near the center of the series dominates the in-
crease in (tu'). Thus the rule of thumb in the
transition metals is that the highest T,'s wil. l be
found near the center of the series for those sys-
tems which have a high Fermi-energy density of
states. It should be remembered that N(E~) enters
A. in two ways, directly as a multiplicative factor,
and indirectly through its effect on (&u'). It is
therefore a fairly simple matter to predict transi-
tion-metal systems which would in principle have
higher T,'s than those heretofore observed. An

hcp alloy of composition Mop 3Tcp 7 for example,
should be on a peak in N(E~)'0 (assuming a rigid
band model) and consequently have a very high
transition temperature since (I')/MQ' is high in
this region. Unfortunately the hcp phase appears
to be unstable for Z less than 6.9." This instabil-
ity is probably not coincidental since a phase hav-
ing a half-filled d band and a high Fermi energy
density of states is likely to be unstable compared
to a phase which splits the d band into bonding and
antibonding sub-bands with a near gap in the cen-
ter of the band (viz. , the bcc phase).

It is sometimes stated that the bcc phase is con-
ducive to high T,. Our view is somewhat different.
We suggest that the strong d-d bonding which oc-
curs near the center of the series is conducive to
strong electron-phonon coupl. ing. This strong di-
rectional bonding also leads to the stability of the
bcc phase. Qur calculations which have been re-
stricted to cubic phases seem to suggest that the
fcc phase is somewhat more favorable than the
bcc phase for high T,. This may, however, be an
artifact of the rigid muffin-tin approximation
which truncates the potential at different radii
for the twophases. In our view the effect of crystal
structure on T, in the transition metals will enter
primarily through its effect on the Fermi-energy
density of states and on the fraction of that density
of states which has l =3 character.

Finally, we would like to speculate on the possi-
bility of finding systems in which the advantage of
having a high (I') is not offset by a concommitant
high (&'). The connection between high (I') and
strong bonding originates in the angular-momentum
selection rule in the electron-phonon interaction.
For the transition metals the scattering is pri-
marily d —f where the f density of states arises
from the tails of the d orbitals centered on neigh-
boring sites. Thus in the transition metals an
increase in the f density of states can be achieved
only by increasing the overlap of the d orbitals
and hence the strength of the interatomic binding.

In the early rare earths and actinides, however,
the situation is different. .In these systems the f
density of states in a given cell arises primarily
from the atomic f orbitals centered on the site at
the origin. Let us consider d f scattering for
such a system. Using Eq. (4.4) and remembering
that both the d and f orbitals are tightly bound so
that

r'R'dr = [I',(E )'~'j"' sin'5

where I, is the width of the f resonance we obtain
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where E, and E, are the d and f resonance ener-
gies. The volume does not enter Eq. (4.l3) ex-
plicitly, however, it does enter indirectly through
the resonance widths I', and I', . It is impossible
without doing an energy-band calculation to esti-
mate (I') for this class of system with any confi-
dence. A rough estimate indicates that values of
(I.') comparable to the highest found in the transi-
tion metals might be achieved under favorable
circumstances. In addition to d —f scattering
there will also be f—g scattering analagous to the
d f scattering in the transition metals. Such a
large value of (I') coupled with a very large N(EJ)
(which is likely. in such a system) and a compara-

tively low M(uP) could lead to very strong electron-
phon. on couplin. g.

Unfortunately, few high T, phases are known

among the rare earths and actinides. It is possi-
ble that even if strong electron-phonon coupling
exists in these systems superconductivity may be
prevented or T, drastically reduced by exchange
effects.
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